

Systeme II

3. Die Datensicherungsschicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 14.05.2013

- 0 (0 / 0 (1)
- Zumeist gefordert von der Vermittlungsschicht
 - Mit Hilfe der Frames
- Fehlererkennung
 - Gibt es fehlerhaft übertragene Bits?
- Fehlerkorrektur
 - Behebung von Bitfehlern
 - Vorwärtsfehlerkorrektur (Forward Error Correction)
 - Verwendung von redundanter Kodierung, die es ermöglicht Fehler ohne zusätzliche Übertragungen zu beheben
 - Rückwärtsfehlerkorretur (Backward Error Correction)
 - Nach Erkennen eines Fehlers, wird durch weitere Kommunikation der Fehler behoben

Fehlerkontrolle

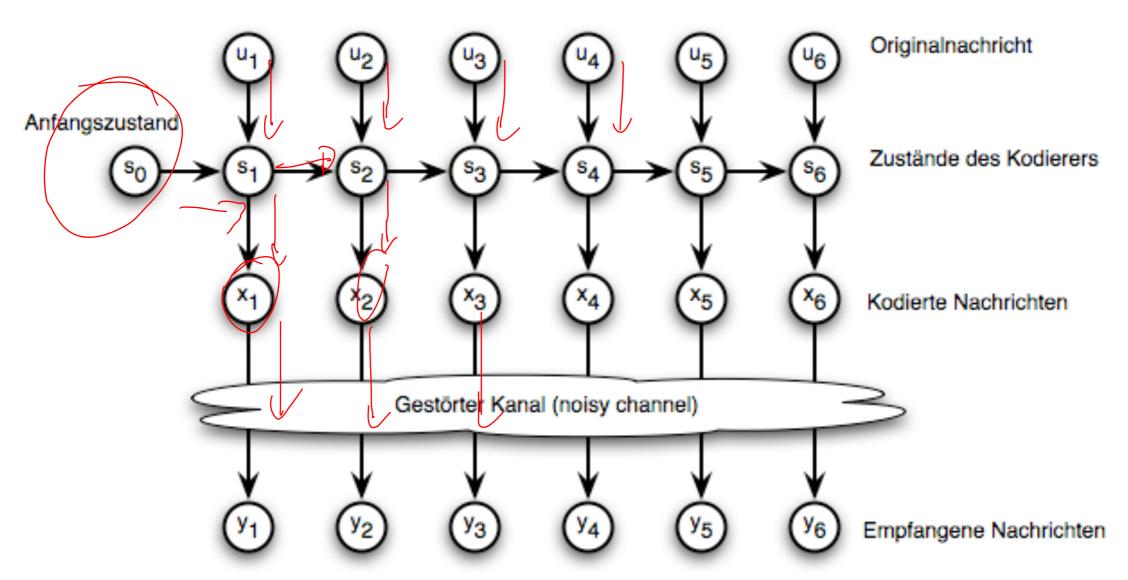
Fehlererkennung

Fehlerkorrektur

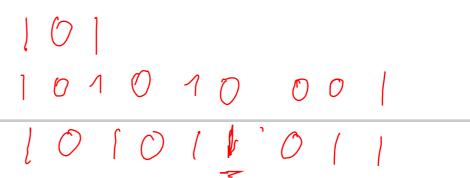
Vorwärtsfehlerkorrektur Rückwärtsfehlerkorrektur 3

Faltungs-Codes

- Faltungs-Codes (Convolutional Codes)
 - Daten und Fehlerredundanz werden vermischt.
 - k Bits werden auf n Bits abgebildet
 - Die Ausgabe hängt von den k letzten Bits und dem internen Zustand ab.

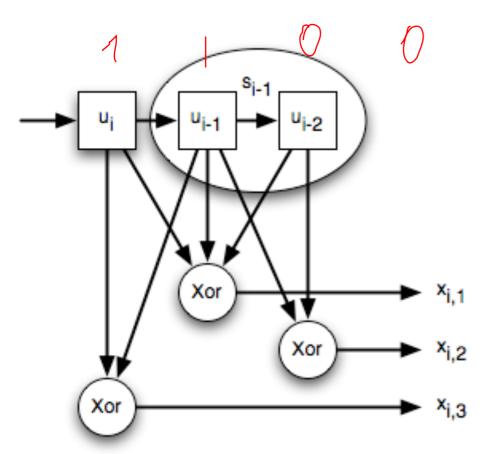


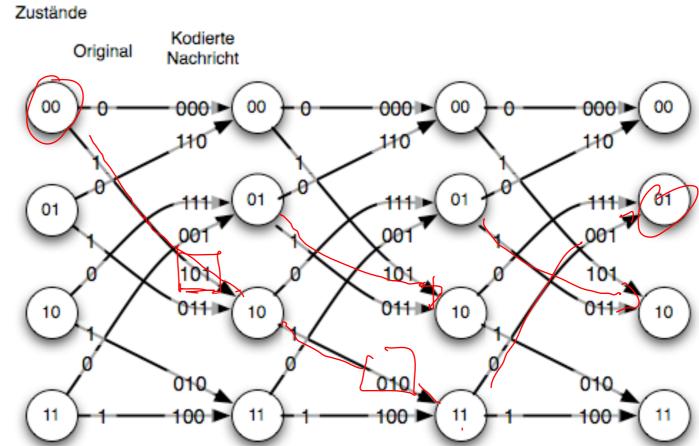
Beispiel (a 496) & c



Faltungs-Kodierer

Trellis-Diagramm

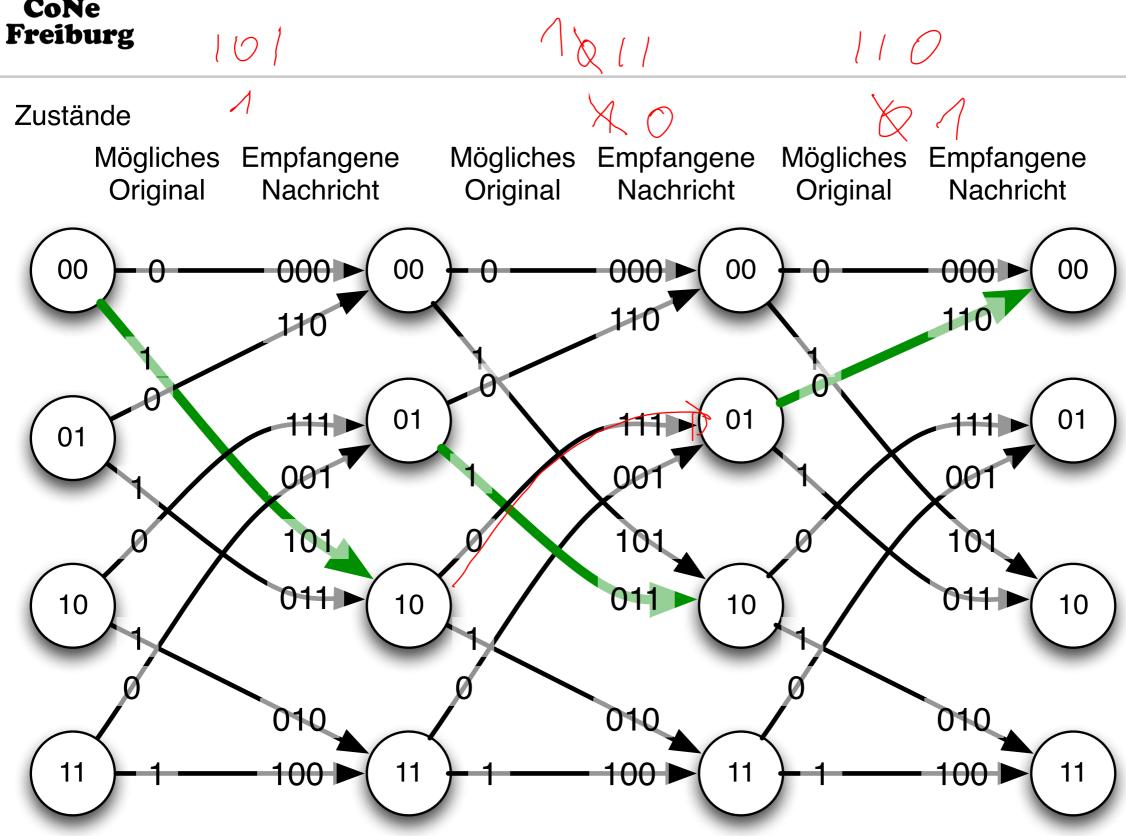




Dekodierung der Faltungs-Codes: Algorithmus von Viterbi

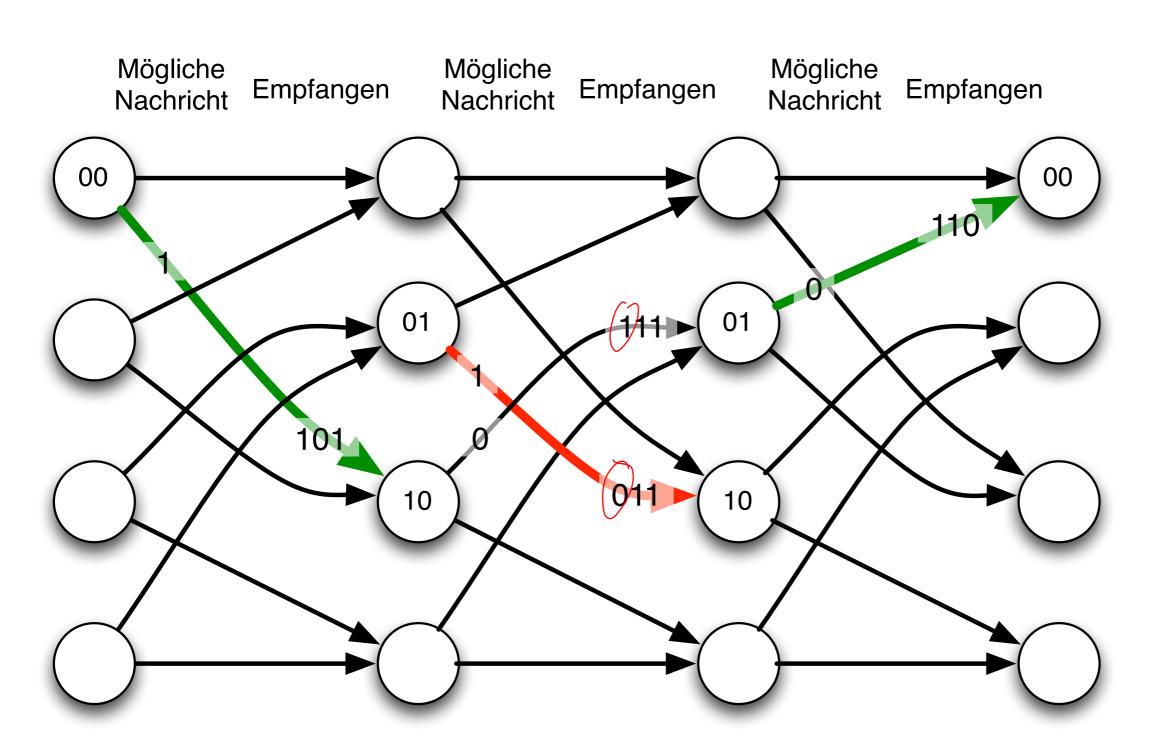
- Dynamische Programmierung
- Zwei notwendige Voraussetzungen für Dekodierung
 - (für den Empfänger) unbekannte Folge von Zuständen
 - beobachtete Folge von empfangenen Bits (möglicherweise mit Fehler)
- Der Algorithmus von Viterbi bestimmt die warscheinlichste Folge von Zuständen, welches die empfangenen Bits erklärt
 - Hardware-Implementation möglich

Dekodierung (I)

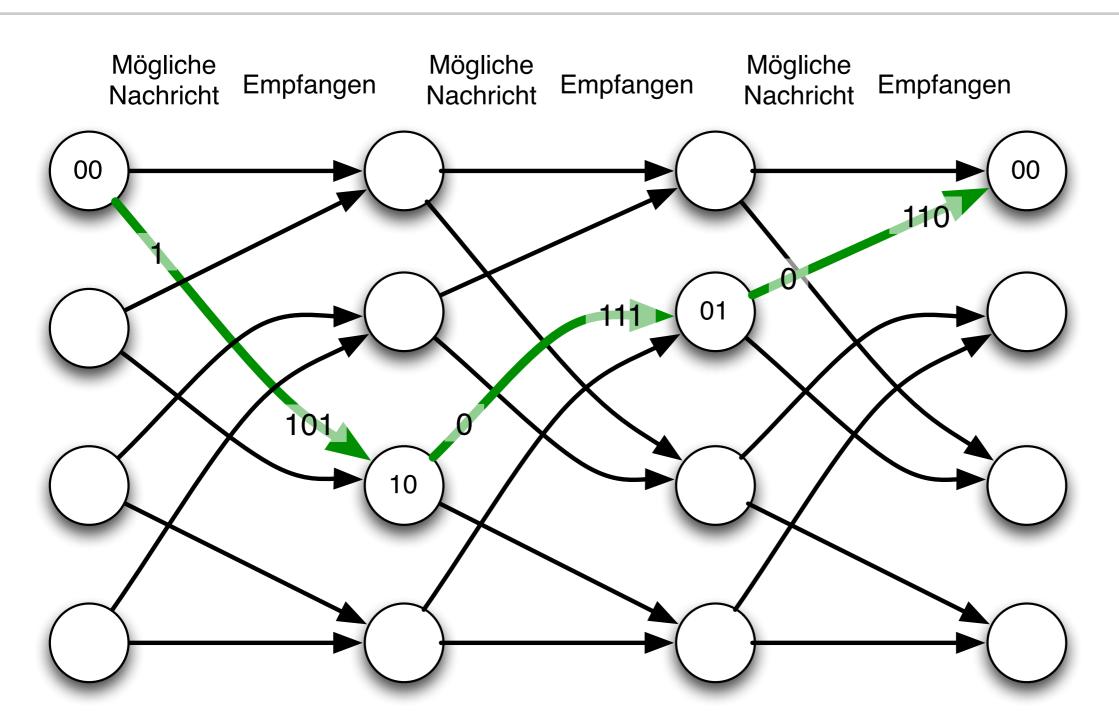


UNI FREIBURG

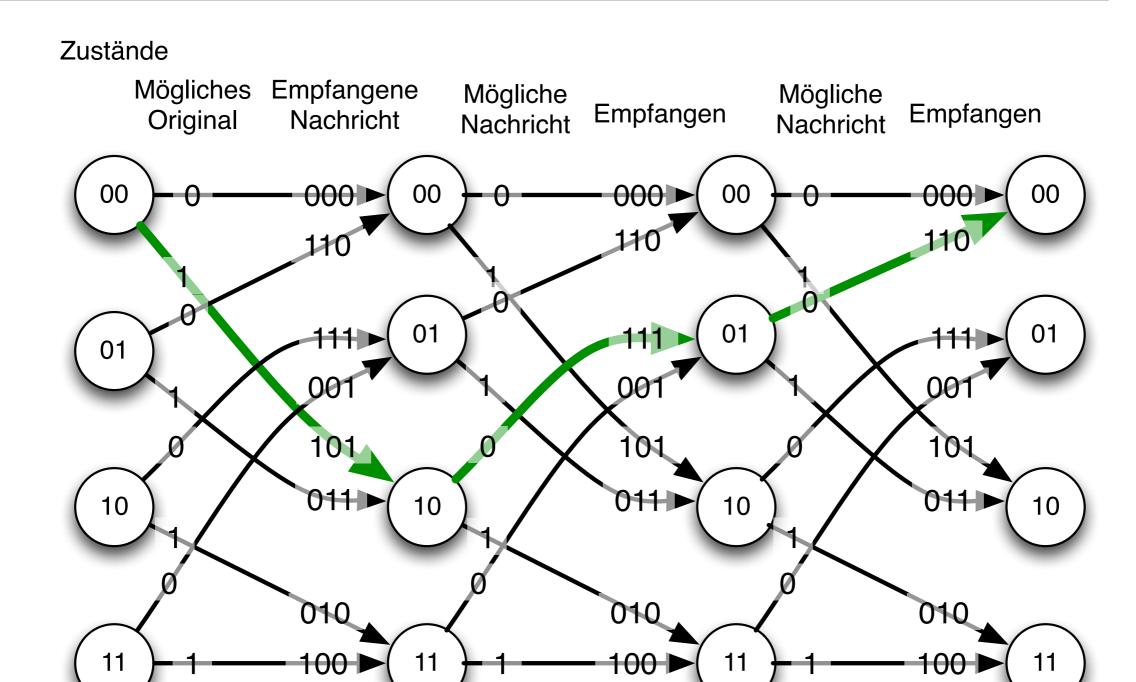
Dekodierung (II)



Dekodierung (III)

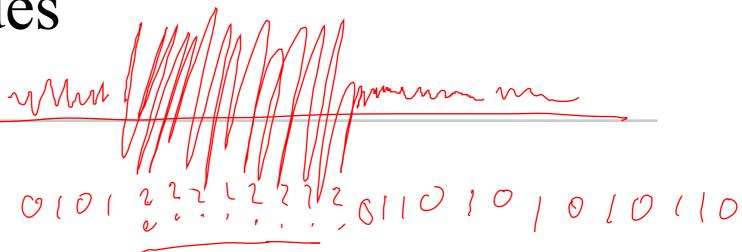


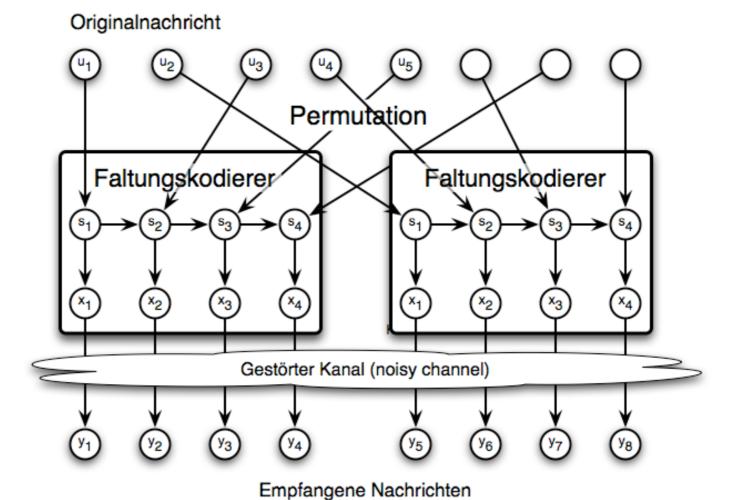
Dekodierung (IV)



Turbo-Codes

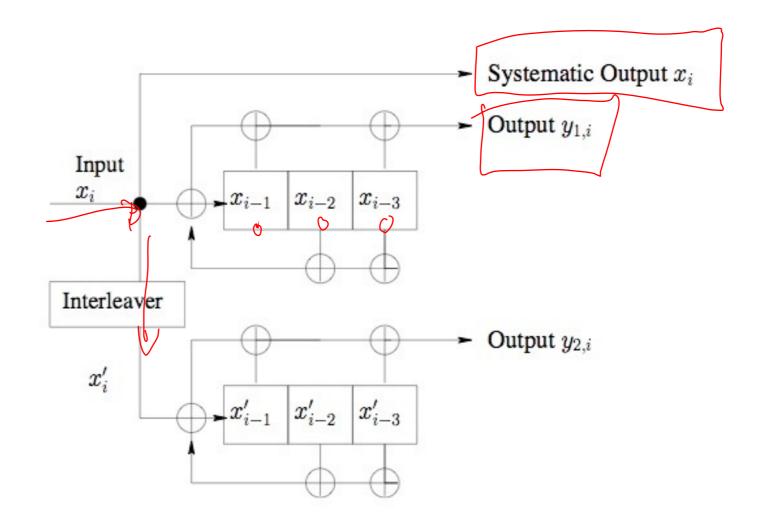
- Turbo-Codes sind wesentlich effizienter als Faltungs-Codes
 - bestehen aus zwei Faltungs-Codes welche abwechselnd mit der Eingabe versorgt werden.
 - Die Eingabe wird durch eine Permutation (Interleaver) im zweiten Faltungs-Code umsortiert





Turbo-Codes

- Beispiel:
 - UMTS Turbo-Kodierer
- Dekodierung von Turbo-Codes ist effizienter möglich als bei Faltungscodes
- Kompensation von Bursts



Interleavers

- Fehler treten oftmals gehäuft auf (Bursts)
 - z.B.: Daten: 0123456789ABCDEF
 - mit Fehler: 0123 ? ? ? ? 9 A B C D E F
- Dann scheitern klassische Kodierer ohne Interleavers
 - Nach Fehlerkorrektur (zwei Zeichen in Folge reparierbar):

0 1 2 3 4 5 **? 7** 8 9 A B C D E F

- Interleaver:
 - Permutation der Eingabekodierung:

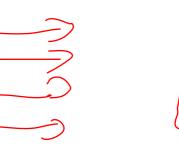
- z.B. Row-column Interleaver:

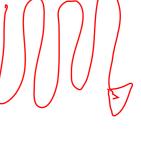
048C159D26AE37BF

- mit Fehler: 048C?????6AE37BF

- Rückpermutiert: 0 ? ? 3 4 ? 6 7 8 ? A B C D ? F

- nach FEC: 0123456789ABCDEF





Fehlererkennung: CRC

- Effiziente Fehlererkennung: Cyclic Redundancy Check (CRC)
- Praktisch häufig verwendeter Code
 - Hoher Fehlererkennungsrate
 - Effizient in Hardware umsetzbar
- Beruht auf Polynomarithmetik im Restklassenring Z₂
 - Zeichenketten sind Polynome
 - Bits sind Koeffizienten des Polynoms

Rechnen in Z₂

Rechnen modulo 2:

- Regeln:
 - Addition modulo 2 = Xor = Subtraktion modulo 2
 - Multiplikation modulo 2 = And

				=		
Α	В	A⊕B		Α	В	A - B
0	0	0		0	0	0
0	1	1	(==)	0	1	1
1	0	1		1	0	1
1	1	0		1	1	0

Α	В	A · B
0	0	0
0	1	0
1	0	0
1	1	1

- Beispiel: $0 + (1 \cdot 0) + 1 + (1 \cdot 1) = 0$

Polynomarithmetik modulo 2

- Betrachte Polynome über den Restklassenring Z₂
 - $p(x) = a_n x^n + ... + a_1 x^1 + a_0$
 - Koeffizienten a_i und Variable x sind aus ∈ {0,1}
 - Berechnung erfolgt modulo 2
- Addition, Subtraktion, Multiplikation, Division von Polynomen wie gehabt $\chi + \chi = (1+1)^{\circ} \chi = 0^{\circ}$

Zeichenketten und Polynomarithmetik

Idee:

- Betrachte Bitstring der Länge n als Variablen eines Polynoms
- Bit string: b_nb_{n-1}...b₁b₀

Polynom:
$$b_n x^n + ... + b_1 x^1 + b_0$$

- Bitstring mit (n+1) Bits entspricht Polynom des Grads n
- Beispiel

$$-A xor B = A(x) + B(x)$$

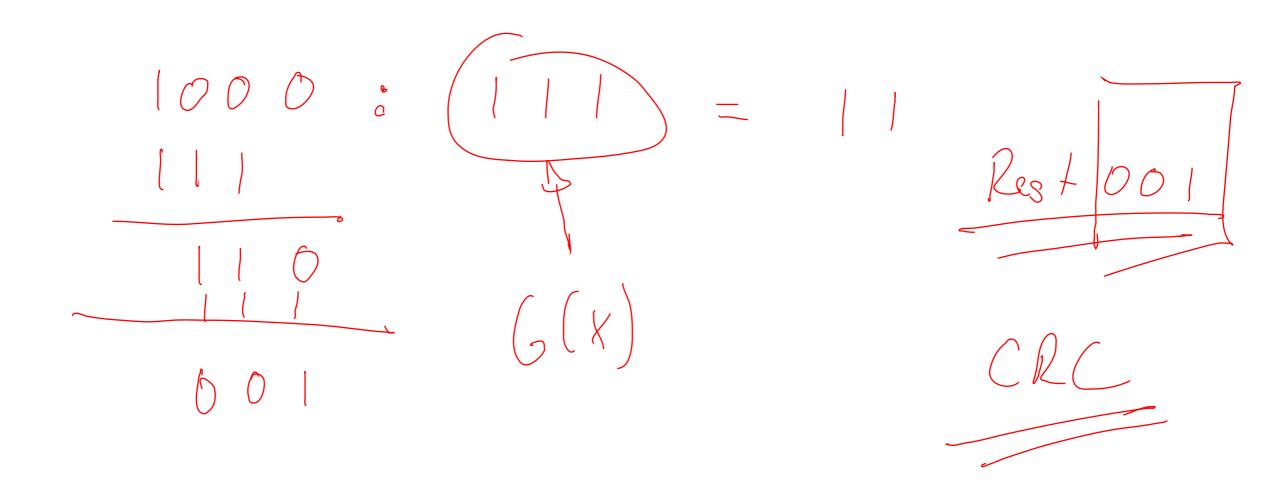
- Wenn man A um k Stellen nach links verschiebt, entspricht das

000 110 = 2+x

•
$$B(x) = A(x) x^{k}$$

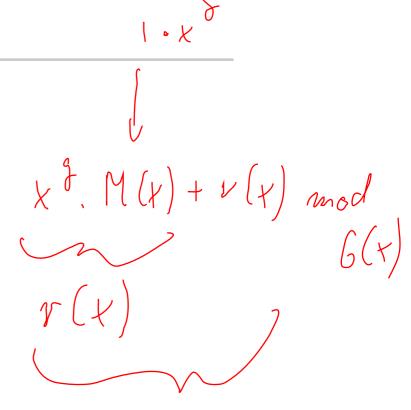
Mit diesem Isomorphismus kann man Bitstrings dividieren

$$\begin{array}{c} x^3 + x + 1 \\ \hline x^3 + 1 \end{array}$$



Polynome zur Erzeugung von Redundanz: CRC

- Definiere ein Generatorpolynom G(x) von Grad g
 - Dem Empfänger und Sender bekannt
 - Wir erzeugen g redundante Bits
- Gegeben:
 - Frame (Nachricht) M, als Polynom M(x)
- Sender
 - Berechne den Rest der Division $r(x) = x^g M(x) \mod G(x)$
 - Übertrage $T(x) = x^g M(x) + r(x)$
 - Beachte: x^g M(x) + r(x) ist ein Vielfaches von G(x)
- Empfänger
 - Empfängt m(x)
 - Berechnet den Rest: m(x) mod G(x)



CRC Übertragung und Empfang

101161010

Keine Fehler:

+ 00000 1000

- T(x) wird korrekt empfangen
- Bitfehler: T(x) hat veränderte Bits
 - Äquivalent zur Addition eines Fehlerpolynoms E(x)

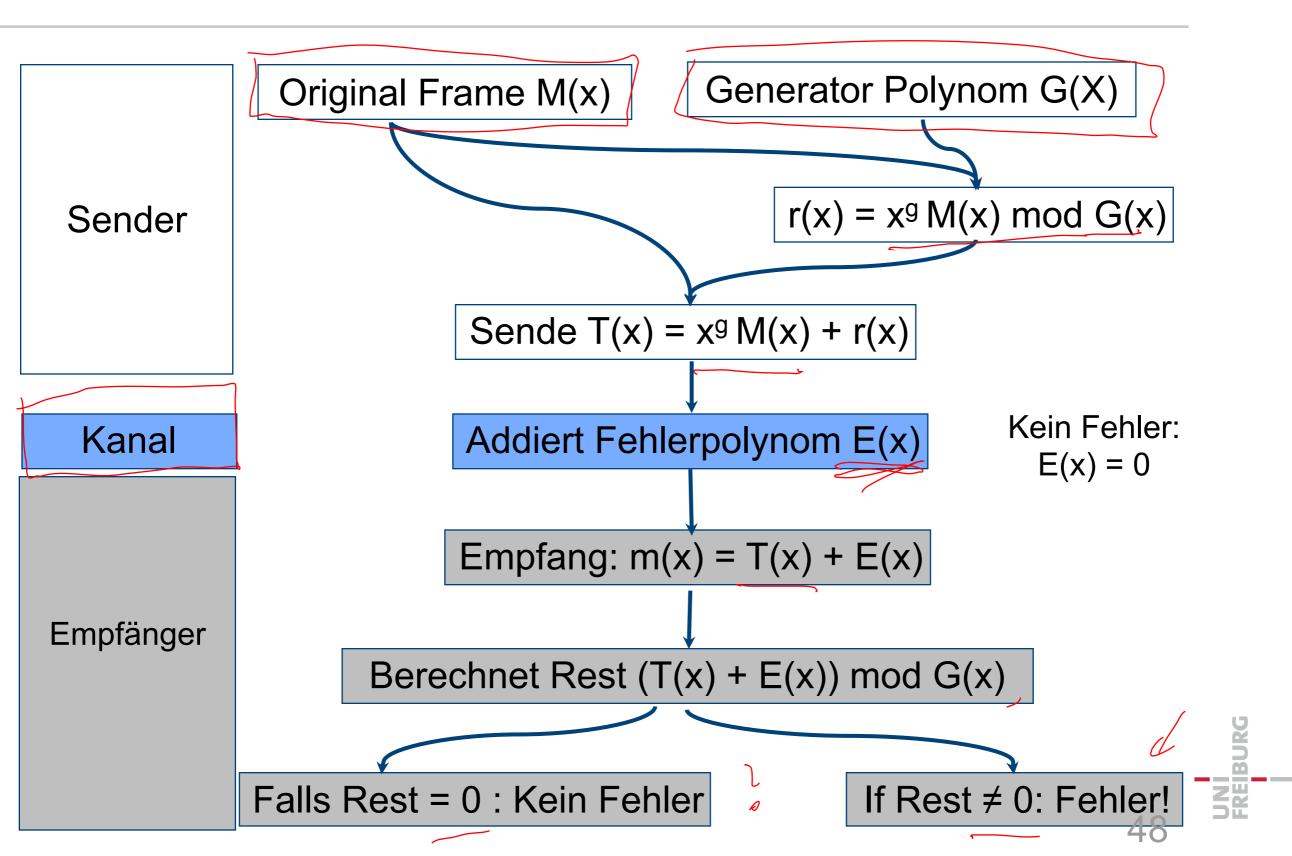
1+ / + / + / ...

- Beim Empfänger kommt T(x) + E(x) an
- Empfänger
 - Empfangen: m(x)
 - Berechnet Rest m(x) mod G(x)
 - Kein Fehler: m(x) = T(x),
 - dann ist der Rest 0
 - Bit errors: $m(x) \mod G(x) = (T(x) + E(x)) \mod G(x)$ = $T(x) \mod G(x) + E(x) \mod G(x)$

) Fehlerindikator

CoNe Freiburg

CRC – Überblick



10 (110 6 1110 10 = a+b=x) $\frac{1}{2} \left(\begin{array}{c} x + 1 & y \\ x + y \end{array} \right) + x$

Der Generator bestimmt die CRC-Eigenschaften

- Bit-Fehler werden nur übersehen, falls E(x) ein Vielfaches von G(x) ist
- Die Wahl von G(x) ist trickreich:
- Einzel-Bit-Fehler: E(x) = xⁱ für Fehler an Position i
 - G(x) hat mindestens zwei Summenterme, dann ist E(x) kein Vielfaches von G(x) ist
- Zwei-Bit-Fehler: $E(x) = x^i + x^j = x^j (x^{i-j} + 1)$ für i>j
 - G(x) darf nicht (x^k + 1) teilen für alle k bis zur maximalen Frame-Länge
- Ungerade Anzahl von Fehlern:
 - E(x) hat nicht (x+1) als Faktor
 - Gute Idee (?): Wähle (x+1) als Faktor von G(x)
 - Dann ist E(x) kein Vielfaches von G(x)
- Bei guter Wahl von G(x):
 - kann jede Folge von r Fehlern erfolgreich erkannt werden
- Häufig:
 - G(x) wird als irreduzibles Polynom gewählt, dass heißt es ist kein Vielfache eines anderen (kleineren) Polynoms

CRC in der Praxis

Verwendetes irreduzibles Polynom gemäß IEEE 802:

$$(x) = x^{32} + x^{23} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$$

- Achtung:
 - Fehler sind immer noch möglich
 - Insbesondere wenn der Bitfehler ein Vielfaches von G(x) ist.
- Implementation:
 - Für jedes Polynom x^i wird $r(x,i)=x^i$ mod G(x) berechnet
 - Ergebnis von B(x) mod G(x) ergibt sich aus
 - $b_0 r(x,0) + b_1 r(x,1) + b_2 r(x,2) + ... + b_{k-1} r(x,k-1)$
 - Einfache Xor-Operation

Systeme II

3. Die Datensicherungsschicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg