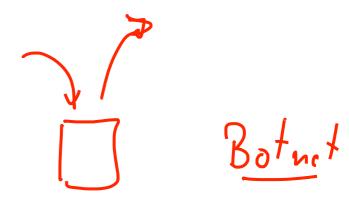

Systeme II

4. Die Vermittlungsschicht

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 07.06.2016

Firewalls



Typen von Firewalls

- Host-Firewall
- Netzwerk-Firewall

Netzwerk-Firewall

- unterscheidet
 - Externes Netz (Internet - feindselig)
 - Internes Netz _(LAN - vertrauenswürdig)
 - Demilitarisierte Zone (vom externen Netz erreichbare Server)

DDOS

Host-Firewall

- z.B. Personal Firewall
- kontrolliert den gesamten Datenverkehr eines Rechners
- Schutz vor Attacken von außerhalb und von innen (Trojanern)

Firewalls - Methoden

Irasportsch

Paketfilter

- Sperren von Ports oder IP-Adressen
- Content-Filter
- Filtern von SPAM-Mails, Viren, ActiveX oder JavaScript aus HTML-Seiten

Proxy

- Transparente (extern sichtbare) Hosts
- Kanalisierung der Kommunikation und möglicher Attacken auf gesicherte Rechner

NAT, PAT

- Network Address Translation
- Port Address Translation
- Bastion Host
- Proxy

Firewalls: Begriffe

- (Network) Firewall
 - beschränkt den Zugriff auf ein geschütztes Netzwerk aus dem Internet
- Paket-Filter
 - wählen Pakete aus dem Datenfluss in oder aus dem Netzwerk aus
 - Zweck des Eingangsfilter:
 - z.B. Verletzung der Zugriffskontrolle
 - Zweck des Ausgangsfilter:
 - z.B. Trojaner
- Bastion Host
 - ist ein Rechner an der Peripherie, der besonderen Gefahren ausgesetzt ist
 - und daher besonders geschützt ist
- Dual-homed host
 - Normaler Rechner mit zwei Interfaces (verbindet zwei Netzwerke)

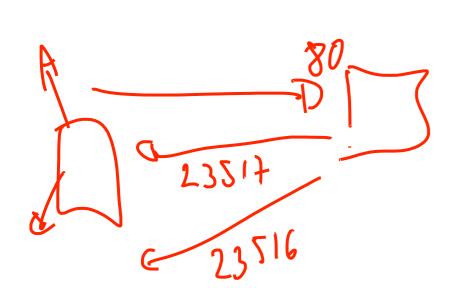
Firewalls: Begriffe

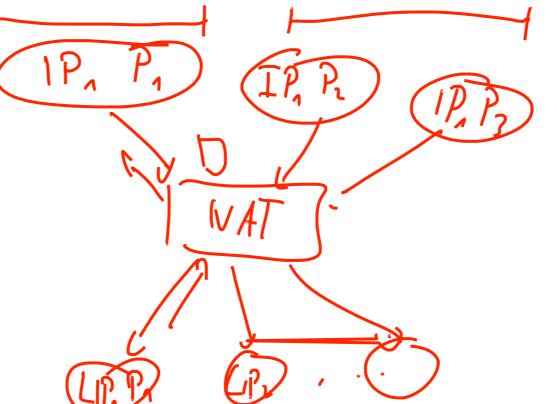
Proxy (Stellvertreter)

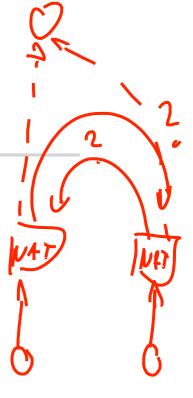
- Spezieller Rechner, über den Anfragen umgeleitet werden
- Anfragen und Antworten werden über den Proxy geleitet
- Vorteil
 - Nur dort müssen Abwehrmaßnahmen getroffen werden

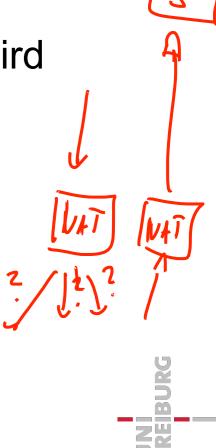
Perimeter Network:

- Ein Teilnetzwerk, das zwischen gesicherter und ungesichter Zone eine zusätzliche Schutzschicht bietet
- Synonym demilitarisierte Zone (DMZ)

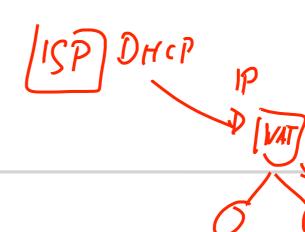



NAT und PAT


- NAT (Network Address Translation)
- Basic NAT (Static NAT)
 - Jede interne IP wird durch eine externe IP ersetzt
- Hiding NAT = PAT (Port Address Translation) = NAPT (Network Address Port Translation)


- Das Socket-Paar (IP-Addresse und Port-Nummer) wird

umkodiert



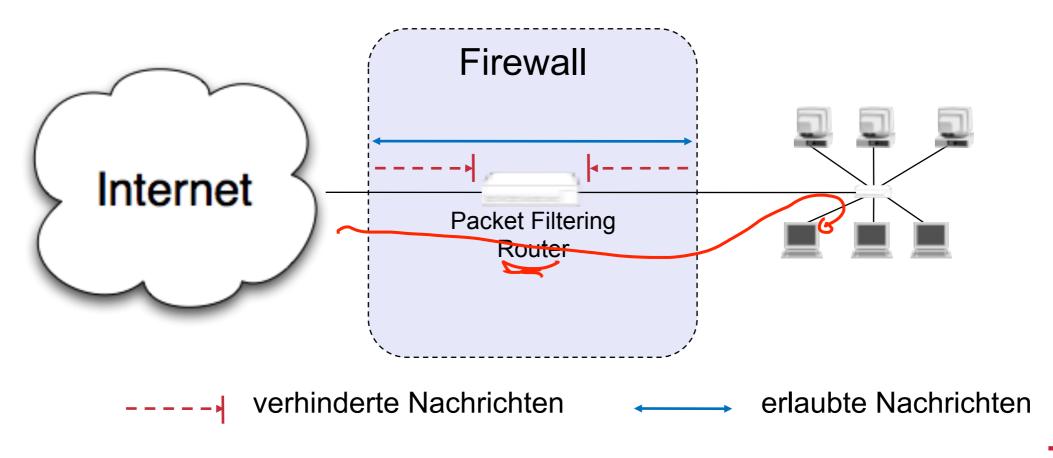
NAT und PAT

Verfahren

- Die verschiedenen lokalen Rechner werden in den Ports kodiert
- Diese werden im Router an der Verbindung zum WAN dann geeignet kodiert
- Bei ausgehenden Paketen wird die LAN-IP-Adresse und ein kodierter Port als Quelle angegeben
- Bei eingehenden Paketen (mit der LAN-IP-Adresse als Ziel), kann dann aus dem kodierten Port der lokale Rechner und der passende Port aus einer Tabelle zurückgerechnet werden

Sicherheitsvorteile

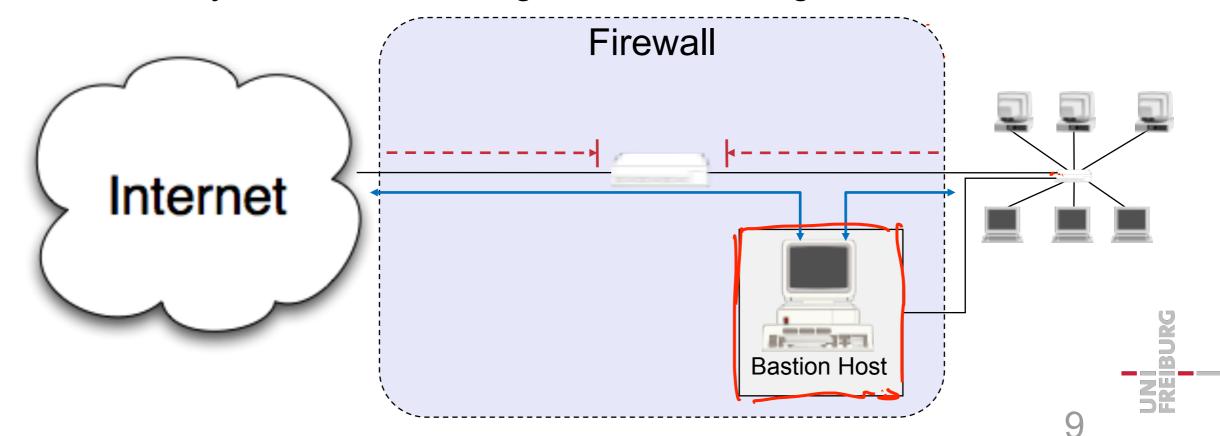
- Rechner im lokalen Netzwerk können nicht direkt angesprochen werden
- Löst auch das Problem knapper IPv4-Adressen
 - NAT nicht üblich für IPv6
- Lokale Rechner können nicht als Server dienen
- DHCP (Dynamic Host Configuration Protocol)
 - bringt ähnliche Vorteile



Firewall-Architektur Einfacher Paketfilter

Realisiert durch

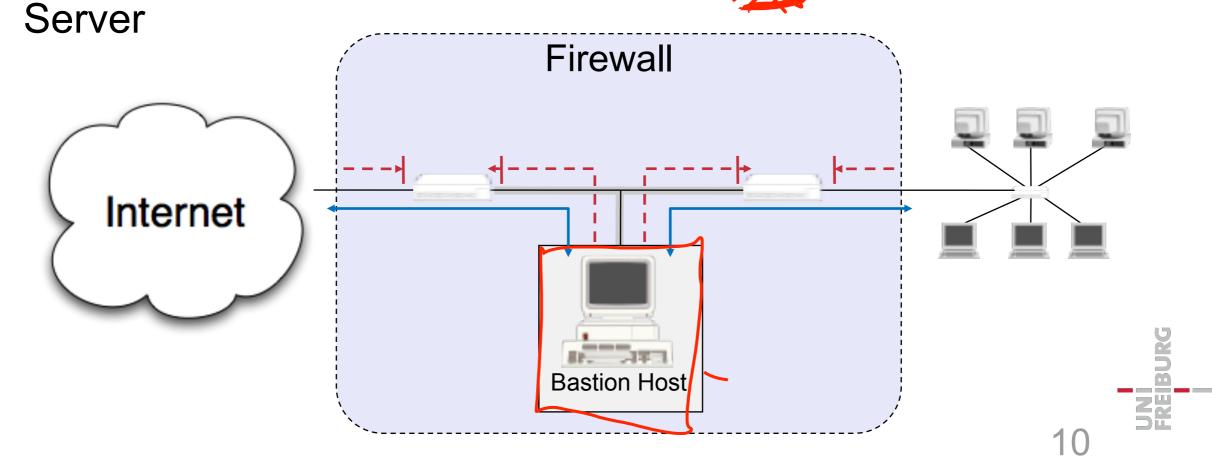
- Eine Standard-Workstation (e.g. Linux PC) mit zwei Netzwerk-Interfaces und Filter-Software oder
- Spezielles Router-Gerät mit Filterfähigkeiten



Firewall-Architektur Screened Host

- Screened Host
- Der Paketfilter

- erlaubt nur Verkehr zwischen Internet und dem Bastion Host und
- Bastion Host und geschützten Netzwerk
- Der Screened Host bietet sich als Proxy an
 - Der Proxy Host hat die Fähigkeiten selbst Angriffe abzuwehren



Firewall-Architektur Screened Subnet

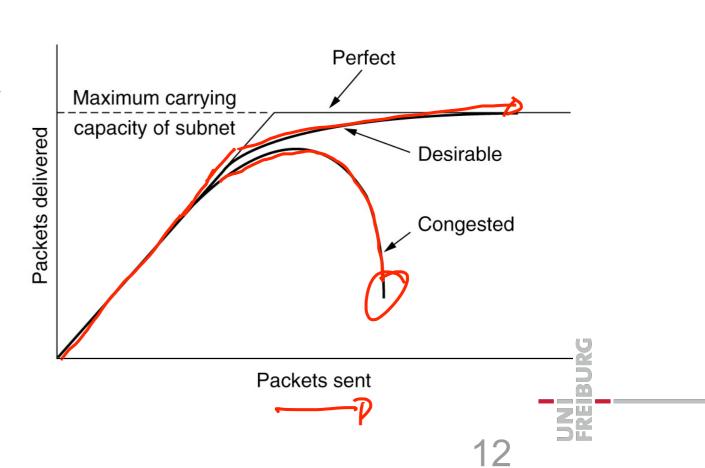
- Perimeter network zwischen Paketfiltern
- Der innere Paketfilter schützt das innere Netzwerk, falls das Perimeter-Network in Schwierigkeiten kommt
 - Ein gehackter Bastion Host kann so das Netzwerk nicht ausspionieren

Perimeter Netzwerke sind besonders geeignet für die Bereitstellung öffentlicher Dienste, z.B., oder WWW-

Firewall und Paketfilter

- Fähigkeiten von Paketfilter
 - Erkennung von Typ möglich (Demultiplexing-Information)
- Verkehrskontrolle durch
 - Source IP Address
 - Destination IP Address
 - Transport protocol
 - Source/destination application port
- Grenzen von Paketfiltern (und Firewalls)
 - Tunnel-Algorithmen sind aber mitunter nicht erkennbar
 - Möglich ist aber auch Eindringen über andere Verbindungen
 - z.B. Laptops, UMTS, GSM, Memory Sticks

Congestion Control Stauvermeidung



 Jedes Netzwerk hat eine eingeschränkte Übertragungs-Bandbreite Source 100-Mbps Ethernet Router 1.5-Mbps T1 link Destination

 Wenn mehr Daten in das Netzwerk eingeleitet werden, führt das zum

- Datenstau (congestion) oder gar
- Netzwerkzusammenbruch (congestive collapse)

Folge: Datenpakete werden nicht ausgeliefert

Schneeballeffekt

- Congestion control soll Schneeballeffekte vermeiden
 - Netzwerküberlast führt zu Paketverlust (Pufferüberlauf, ...)
 - Paketverlust führt zu Neuversand
 - Neuversand erhöht Netzwerklast
 - Höherer Paketverlust
 - Mehr neu versandte Pakete

- ...

Anforderungen an Congestion Control

Effizienz

- Verzögerung klein delay
 Durchsatz hoch + hrough put

Fairness

- Jeder Fluss bekommt einen fairen Anteil
- Priorisierung möglich
 - gemäß Anwendung
 - und Bedarf

Mittel der Stauvermeidung

Erhöhung der Kapazität

- Aktivierung weiterer Verbindungen, Router
- Benötigt Zeit und in der Regel den Eingriff der Systemadministration
- Reservierung und Zugangskontrolle
 - Verhinderung neuen Verkehrs an der Kapazitätsgrenze
 - Typisch für (Virtual) Circuit Switching
- Verringerung und Steuerung der Last
 - (Dezentrale) Verringerung der angeforderten Last bestehender Verbindungen
 - **9** Benötigt Feedback aus dem Netzwerk
 - Typisch für Packet Switching
 - wird in TCP verwendet

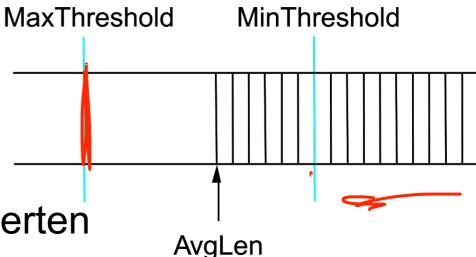
Orte und Maße

- Router- oder Host-orientiert
 - Messpunkt (wo wird der Stau bemerkt)
 - Steuerung (wo werden die Entscheidungen gefällt)
 - Aktion (wo werden Maßnahmen ergriffen)
- Fenster-basiert oder Raten-basiert
 - Rate: x Bytes pro Sekunde
 - Fenster: siehe Fenstermechanismen in der Sicherungsschicht
 - wird im Internet verwendet

Routeraktion: Paket löschen

- Bei Pufferüberlauf im Router
 - muss (mindestens) ein Paket gelöscht werden
- Das zuletzt angekommene Paket löschen (droptail queue)
 - Intuition: "Alte" Pakete sind wichtiger als neue (Wein)
 - z.B. für go-back-n-Strategie
- Ein älteres Paket im Puffer löschen
 - Intuition: Für Multimedia-Verkehr sind neue Pakete wichtiger als alte (Milch)

Paketverlust erzeugt implizites Feedback


- Paketverlust durch Pufferüberlauf im Router erzeugt Feedback in der Transportschicht beim Sender durch ausstehende Bestätigungen
 - Internet
- Annahme:
 - Paketverlust wird hauptsächlich durch Stau ausgelöst
- Maßnahme:
 - Transport-Protokoll passt Senderate an die neue Situation an

Proaktive Methoden

Rank Early Detroli-

- Pufferüberlauf deutet auf Netzwerküberlast hin
- Idee: Proaktives Feedback = Stauvermeidung (Congestion avoidance)

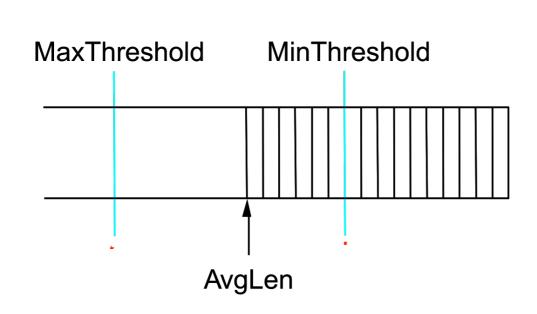
- Aktion bereits bei kritischen Anzeigewerten
- z.B. bei Überschreitung einer Puffergröße
- z.B. wenn kontinuierlich mehr Verkehr eingeht als ausgeliefert werden kann
- ...
- Router ist dann in einem Warn-Zustand

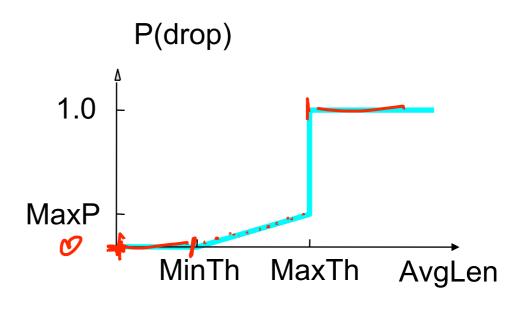
Proactive Aktion:

Pakete drosseln (Choke packets)

- Wenn der Router in dem Warnzustand ist:
 - Sendet er Choke-Pakete (Drossel-Pakete) zum Sender
- Choke-Pakete fordern den Sender auf die Sende-Rate zu verringern

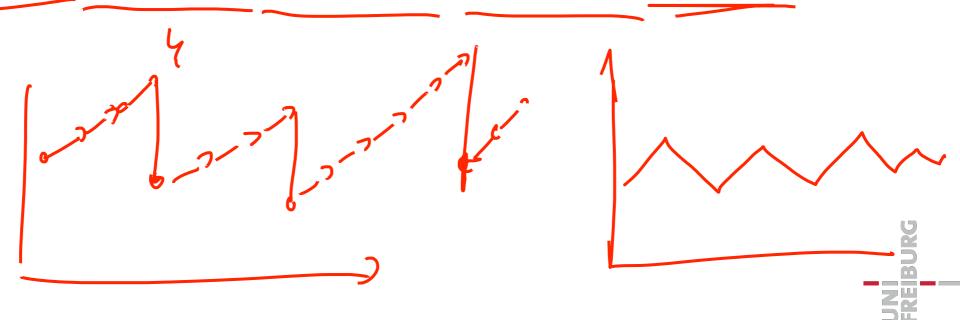
 Bis zur Reaktion beim Sender vergrößert sich das Problem


Proaktive Aktion: Warnbits


- Wenn der Router in dem Warnzustand ist:
 - Sendet er Warn-Bits in allen Paketen zum Ziel-Host
- Ziel-Host sendet diese Warn-Bits in den Bestätigungs-Bits zurück zum Sender
 - Quelle erhält Warnung und reduziert Sende-Rate

Proaktive Aktion: Random early detection (RED)

- Verlorene Pakete werden als Indiz aufgefasst
- Router löschen Pakete willkürlich im Warnzustand
- Löschrate kann mit der Puffergröße steigen



Reaktion des Senders

- Raten-basierte Protokolle
 - Reduzierung der Sende-Rate
 - Problem: Um wieviel?
- Fenster-basierte Protokolle:
 - Verringerung des Congestion-Fensters
 - z.B. mit AIMD (additive increase, multiplicative decrease)

Systeme II

5. Die Transportschicht

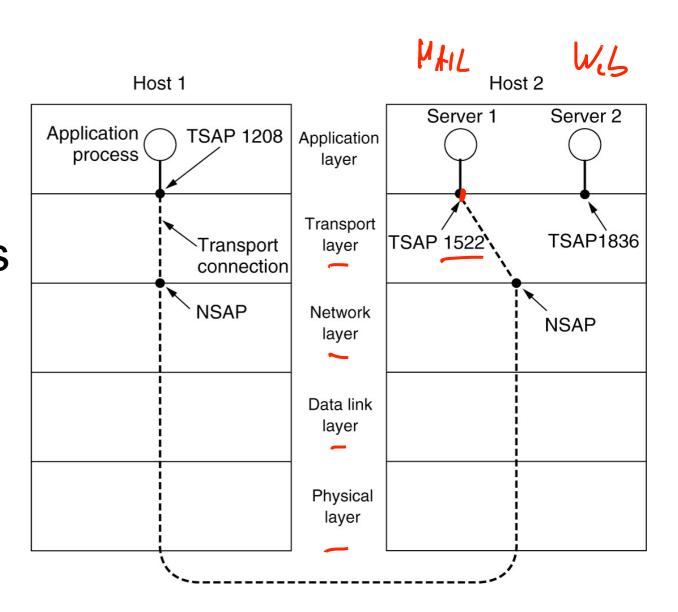
Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 15.06.2016

Dienste der Transportschicht

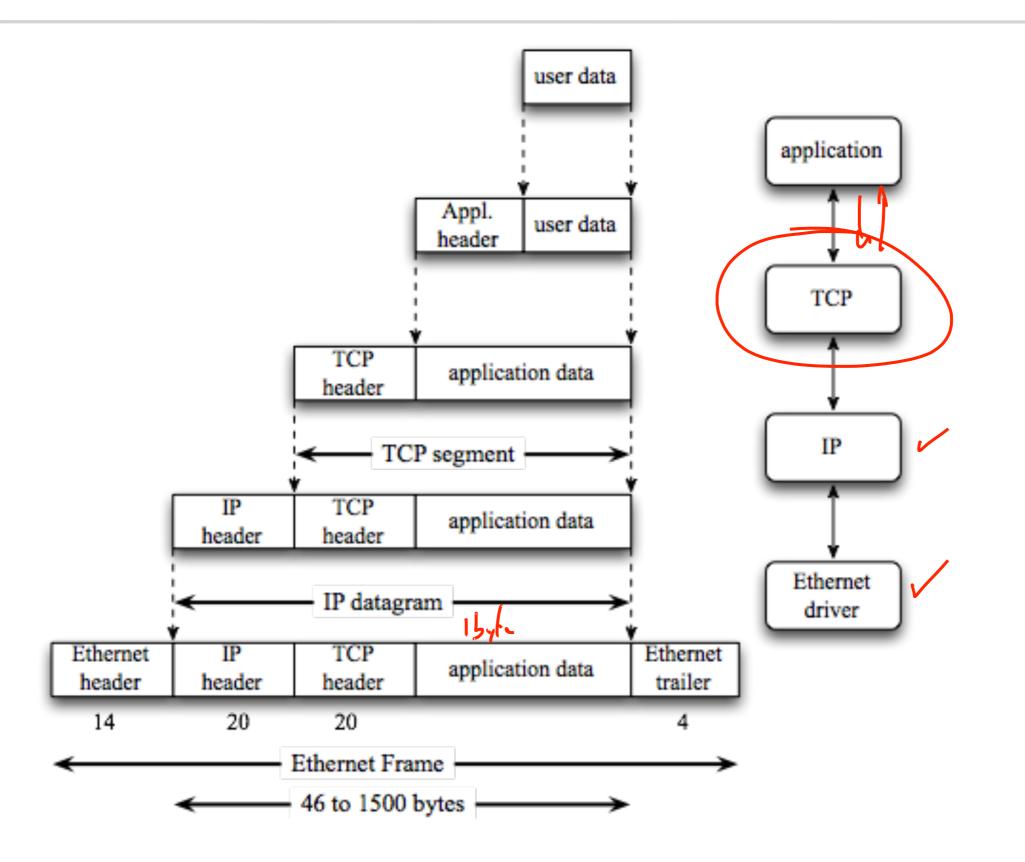
- Verbindungslos oder Verbindungsorientert
 - Beachte: Sitzungsschicht im ISO/OSI-Protokoll
- Zuverlässig oder unzuverlässig
 - Best effort oder Quality of Service 2
 - Fehlerkontrolle

- -A Realtiman Echt-last
- Mit oder ohne Congestion Control
- Möglichkeit verschiedener Punkt-zu-
- Punktverbindungen
 - Stichwort: Demultiplexen
- Interaktionsmodelle
 - Byte-Strom, Nachrichten, "Remote Procedure Call"

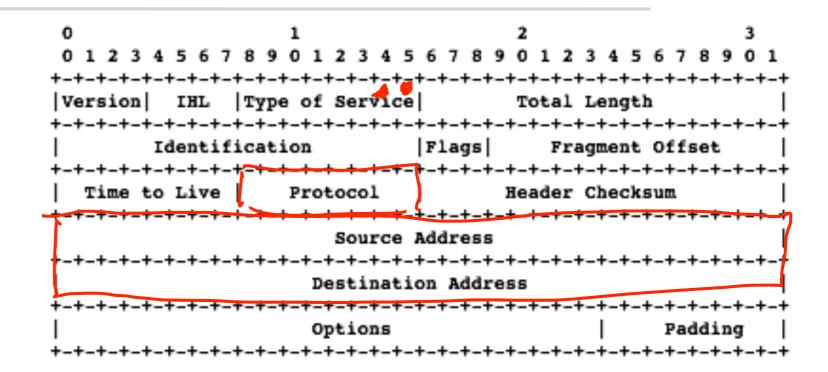
D->)



Multiplex in der Transportschicht


132.200.120.87:80

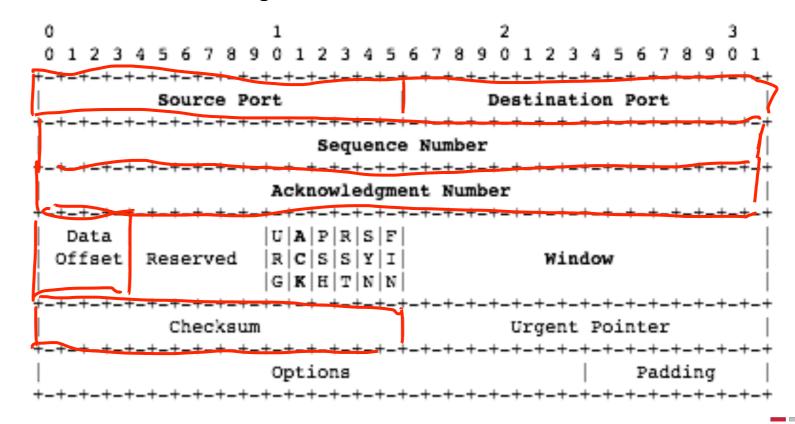
- Die Netzwerkschicht leitet Daten an die Transportschicht unkontrolliert weiter
- Die Transportschicht muss sie den verschiedenen
 Anwendungen zuordnen:
 - z.B. Web, Mail, FTP, ssh, ...
 - In TCP/UDP durch Port-Nummern
 - z.B. Port 80 für Web-Server


Datenkapselung

IP-Header (RFC 791)

- Version: 4 = IPv4
- IHL: Headerlänge
 - in 32 Bit-Wörter (>5)
- Type of Service
 - Optimiere delay, throughput, reliability, monetary cost

- Checksum (nur für IP-Header)
- Source and destination IP-address
- Protocol, identifiziert passendes Protokoll
 - Z.B. TCP, UDP, ICMP, IGMP
- Time to Live:
 - maximale Anzahl Hops


TCP-Header

Sequenznummer

- Nummer des ersten Bytes im Segment
- Jedes Datenbyte ist nummeriert modulo 2³²
- Bestätigungsnummer
 - Aktiviert durch ACK-Flag
 - Nummer des nächsten noch nicht bearbeiteten Datenbytes
 - = letzte Sequenznummer + letzte Datenmenge:

Port-Adressen

- Für parallele TCP-Verbindungen
- Ziel-Port-Nr.
- Absender-Port
- Headerlänge
 - data offset
- Prüfsumme
 - Für Header und Daten

Transportschicht (transport layer)

- TCP (transmission control protocol)
 - Erzeugt zuverlässigen Datenfluß zwischen zwei Rechnern
 - Unterteilt Datenströme aus Anwendungsschicht in Pakete
 - Gegenseite schickt Empfangsbestätigungen (Acknowledgments)
- UDP (user datagram protocol)
 - Einfacher unzuverlässiger Dienst zum Versand von einzelnen Päckchen
 - Wandelt Eingabe in ein Datagramm um
 - Anwendungsschicht bestimmt Paketgröße
- Versand durch Netzwerkschicht
- Kein Routing: End-to-End-Protokolle