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Autors

 Van Jacobson is a primary contributor to technological foundation of 
today´s Internet.[2][3][4]

- Renowned for pioneering achievements in network performance and scaling.

- Enabled Internet to expand to support increasing demands of speed & size.

- Received 2001 ACM Sigcomm Award for Lifetime Achievement.

 Michael J. Karels is one of the key people in the history of BSD.[5][6]

- Information Week magazine: 
4.3BSD the "Greatest Software Ever Written" (Aug. 2006).[7]
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Motivation

Why is this paper so important?
- Strategy to handle TCP congestion used in 90 % of hosts today.

- Helped the Internet to survive a major traffic surge (1988-89) without 
collapsing.



Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 4

Overview

 Introduction

 Getting to equilibrium.

 Conservation at equilibrium.

 Adapting to the path.

 Summary.

 Future work.
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Introduction

 Explosive growth of computer networks in the 80´s led to severe 
congestion problems.

- E.g. buffer overflow in gateways, 10 % of packets dropped common.

 “Obvious” implementations of window-based transport protocols resulted 
in wrong behavior on congestion.

 October 1986: first “congestion collapse” of the Internet:
- Data throughput from LBL to UCB (two IMP hops, 300 m) dropped from 32 

Kbps to 40 bps.
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Introduction

 Why had things gotten so bad?
- Was the 4.3 BSD TCP implementation mis-behaving?

- Could it be tuned to work under abysmal network conditions?

 The solution: Congestion Avoidance and Control.
- New extensions to the TCP Protocol to achieve network stability, based on 

“packet conservation” principle.
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Introduction

 Seven new extensions to the TCP Protocol:

i. Round-trip-time variance estimation.

ii. Exponential retransmit timer backof.f

iii. Slow-start.

iv. More aggressive receiver acknowledgments (ACKs) policy.

v. Dynamic window sizing on congestion.

vi. Karn´s clamped retransmit backoff. (recently developed)

vii. Fast retransmit. (soon-to-be-published RFC1122)
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Introduction

 “Conservation of packets” principle: connection is “in equilibrium”.
- No new packet is put into network until an old packet leaves.

 Reasons for packet conservation to fail:

(1) Connection does not get to equilibrium.

(2) Sender injects new packet before old packet leaves.

(3) Equilibrium can not be reached due to resource limits.
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Getting to equilibrium: slow-start

 Connection starting or restarting.

 Conservation property: use ACKs as clock to send new packets.
- Receiver cannot generate acks faster than packets get through network.

 Window Flow control “Self clocking”:

[1]

Bandwidth

Time

Packet spacing on slowest link

Packet spacing unchanged

ACKs spacing

ACKs spacing
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Getting to equilibrium: slow-start

 Packets sent only in response to ACKs:
- Sender´s packet spacing matches packet time on slowest link in path 

(bottleneck).

 Self-clocking systems:
- Automatic adjust to bandwidth and delay variations, wide dynamic range. 

- Stable when running, hard to start: need ACKs to clock out data, need data 
to get ACKs...
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Getting to equilibrium: slow-start

 Start the clock : Slow-start.

 Generate two packets
for each ACK:

- one for the ACK
(packet has left the system).

- one to open up
congestion window
by one packet.

[1]

ACK

Packets
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Getting to equilibrium: slow-start

 Subtle algorithm, trivial implementation:
- Add a congestion window, cwnd, to per-connection state.

- When starting or restarting: cwnd = 1.

- On each ACK: cwnd ← cwnd + 1.

- When sending: send minimum of receiver´s advertised window and cwnd.

 Window increase: R ∙ log W
- R : round-trip-time.

- W : window size.

 Guarantee: connection sources data at most twice max. possible on path.
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 Startup behavior of TCP without slow-start: 

 Burst of packets puts connection into persistent failure mode of 
continuous retransmissions.

- Only 35 % used (7 KBps), rest wasted on retransmits.

- Almost everything retransmitted. Data from 54 to 58 KB: sent five times!

Getting to equilibrium: slow-start

[1]

Available Bandwidth of 20 KBps

Packet Sequence Number (KB)
Dots: 512-byte packets

Time packet sent (sec.)
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 Startup behavior of TCP with slow-start: 

 No retransmits. Only 2 seconds spent on slow-start.

 Effective bandwidth: 16 KBps. After 1 minute: 19 KBps.

Getting to equilibrium: slow-start

[1]

Available Bandwidth of 20 KBps

Packet Sequence Number (KB)

Dots: 512-byte packets

Time packet sent (sec.)
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Conservation at equilibrium: round-trip timing

 After data flows reliably (and correct protocol implementation):
- Problem (2): sender injects new packet before old packet leaves

- Means failure of sender´s retransmit timer.

 Round trip time estimator: core of retransmit timer, frequently botched.

 TCP protocol specification (RFC-793): 
- Estimation of round trip time (RTT) and retransmission timeout interval (rto):

R ← α ∙ R + (1 - α) ∙ M ( α : filter gain = 0.9 )

rto = β ∙ R ( β = 2 fixed )

 β accounts for RTT variation.
- β = 2 can adapt to loads of at most 30 %
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Conservation at equilibrium: round-trip timing

 Problem: Average RTT R and variation in R σ increase quickly with load.
- Load : ρ  →  R and σ scale like  1 / ( 1 - ρ).

- Network at 75 % capacity: RTT to vary by factor of sixteen (-2σ to +2σ).

 Load above 30 %: retransmission of packets that have just been delayed.
- Network equivalent of pouring gasoline on a fire.

 Solution: estimate variation instead of using fixed β.
- Cheap method: use mean deviation mdev (average of | M - R |).

 Resulting timer:

R ← α ∙ R + (1 - α) ∙ M ( α = 0.875 = 1 - 1/8 )

mdev ← α ∙ mdev + (1 - α) ∙ | M - R | ( 1 - α = 0.125 = 1/4 )

rto = R + 4 ∙ mdev
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Conservation at equilibrium: round-trip timing

 Per packet RTT on well behaved Arpanet connection:

RFC-793 retransmit timer: Mean + Variance:

[1]

Elapsed Time from packet sent to ACK receiptPacket number

Behavior of retransmit timer
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Conservation at equilibrium: round-trip timing

 Second most important timer mistake: backoff after restransmit.

 Packet to be retransmitted more than once: how to space retransmits?

 For transport endpoint embedded in network of 
- unknown topology, unknown, unknowable and constantly changing 

population of competing conversations.

 Only scheme with any hope of working: exponential backoff.

 Network as linear system (linear operators: delays, gain stages, etc.).
- Linear system theory: if system is stable, then stability is exponential.

- Unstable system: network subject to load shocks and congestion collapse.

- Stabilization: add exponential damping (exp. timer backoff) to primary 
excitation (senders, traffic sources).
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Adapting to the path: congestion avoidance

 If timers good in shape: timeout = lost packet.
- Lost packet: damaged in transit (<< 1%) or network is congested.

 Two components of “congestion avoidance” strategy:
- Signal of congestion (delivered automatically: lost packet!).

- Endnodes action: policy of decrease if signal received, policy of increase if 
signal not received.

 Network model:
- Uncongested: Li = N

- On congestion: Li = N + δLi-1

Li+1 = N + δLi = N + δ(N + δLi-1)

- Queue lengths increase exponentially.

- Stabilization: traffic sources must throttle back as quick as queues grow!
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Adapting to the path: congestion avoidance

 Endnode action on congestion:
- Multiplicative decrease of window size.

- Window adjustment: Wi = dWi-1 (d < 1) → (d = 2)

 Endnode action on no congestion:
- Increase bandwidth utilization to find out current limit.

- Best policy: small, constant changes (additive increase).

- Window adjustment: Wi = Wi-1 + u        (u << Wmax) → (u = 1 Packet)

 Congestion control algorithm: additive increase, multiplicative decrease:

- On ACK: cwnd ← cwnd + 1/cwnd

- On timeout: cwnd ← cwnd/2

- When sending: send minimum of cwnd and receiver´s advertised window.



Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 21

Adapting to the path: congestion avoidance

 Combined slow-start with congestion avoidance algorithm:
- slow-start / congestion window: cwnd

- threshold size: sstresh

- When sending: send min. of cwnd and receiver´s advertised window.

- Start: cwnd ← 1 Packet

sstresh ← receiver´s advertised window

- On timeout: sstresh ← cwnd / 2

cwnd ← 1 Packet

- On ACK: if (cwnd < sstresh)

cwnd += 1

else

cwnd += 1/cwnd
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Adapting to the path: congestion avoidance

 Test setup to examine interaction of multiple, simultaneous TCP 
conversations sharing a bottleneck link:

 Any two connections could overflow the available buffering.

 All four connections exceeded queue capacity by 160 %

[1]

1 MByte transfers

LBL UCB
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Adapting to the path: congestion avoidance

 Simultaneous TCP conversations without congestion avoidance:

 1 MByte transfers, each initiated 3 sec. apart.

 4000 of 11000 packets sent were retransmissions.

 Link data bandwidth: 25 KBps (6 KBps vanished!).

[1]

Sequence 
Number 
(KB)

8 KBps

5 KBps

5 KBps

0.5 KBps

Time (sec.)
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Adapting to the path: congestion avoidance

 Simultaneous TCP conversations with congestion avoidance:

 89 of 8291 packets sent were retransmissions (1 %).

 4,5 KBps: 4.3 BSD receivers. Loss rate: 1,8 %.

 8 KBps: 4.3+ BSD receivers. Loss rate: 0,5 %.

[1]

Sequence 
Number 
(KB)

8 KBps

4,5 KBps

Time (sec.)
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Adapting to the path: congestion avoidance

 Total bandwidth used by old and new TCPs:

[1]

Relative 
Bandwidth

Time (sec.)

Old TCPs

New TCPs
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Adapting to the path: congestion avoidance

 Effective bandwidth used by old and new TCPs:

[1]

Relative 
Bandwidth

Time (sec.)

New TCPs

Old TCPs
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Adapting to the path: congestion avoidance

 Effective troughput for new TCPs. Window adjustment detail:

 When packet dropped: sender sends until window filled, then stops until rto.

 Receiver cannot ACK data beyond dropped packet.

 Spikes height: direct measure of sender´s window size (exponential decrease).

[1]

Relative 
Bandwidth

Amplitude of sender´s window size

Time (sec.)

Receiver ACKs out-of-order data
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Summary

 Getting to equilibrium.
- Self-clocking systems.

- Connection starting or restarting: slow-start.

 Conservation at equilibrium.
- Round-trip-timing: Mean + Variance timer.

- Backoff after retransmit: Exponential timer backoff.

 Adapting to the path.
- Congestion avoidance and control.

- Additive increase, multiplicative decrease.
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4) Future work: the gateway side of congestion control

 TCP extensions at endpoints insure network capacity is not exceeded.
- Only in gateways: enough information to also insure fair sharing.

 Next big step: gateway “congestion detection” algorithm:
- Send signal to endnodes as early as possible (packet drops).

- Gateway “self-protection” from misbehaving hosts: drop hosts packets.

- Congestion reduced even without congestion avoidance at endnodes.

 Congestion grows exponentially.
- Early detection important. Otherwise massive adjustments necessary.

- Reliable detection non-trivial problem due to bursty nature of traffic.

- Use models for round-trip-time/queue length prediction as basis of detection.
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