
Congestion Avoidance and Control

Ricardo Sexauer

4th Semester B.Sc. in Computer Science

Summary of Van Jacobson and Michael J. Karels 1988s paper.[1]

Proseminar Algorithms for Computer Networks

Prof. Dr. Christian Schindelhauer

Johannes Wendeberg

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 2

Autors

 Van Jacobson is a primary contributor to technological foundation of
today´s Internet.[2][3][4]

- Renowned for pioneering achievements in network performance and scaling.

- Enabled Internet to expand to support increasing demands of speed & size.

- Received 2001 ACM Sigcomm Award for Lifetime Achievement.

 Michael J. Karels is one of the key people in the history of BSD.[5][6]

- Information Week magazine:
4.3BSD the "Greatest Software Ever Written" (Aug. 2006).[7]

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 3

Motivation

Why is this paper so important?
- Strategy to handle TCP congestion used in 90 % of hosts today.

- Helped the Internet to survive a major traffic surge (1988-89) without
collapsing.

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 4

Overview

 Introduction

 Getting to equilibrium.

 Conservation at equilibrium.

 Adapting to the path.

 Summary.

 Future work.

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 5

Introduction

 Explosive growth of computer networks in the 80´s led to severe
congestion problems.

- E.g. buffer overflow in gateways, 10 % of packets dropped common.

 “Obvious” implementations of window-based transport protocols resulted
in wrong behavior on congestion.

 October 1986: first “congestion collapse” of the Internet:
- Data throughput from LBL to UCB (two IMP hops, 300 m) dropped from 32

Kbps to 40 bps.

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 6

Introduction

 Why had things gotten so bad?
- Was the 4.3 BSD TCP implementation mis-behaving?

- Could it be tuned to work under abysmal network conditions?

 The solution: Congestion Avoidance and Control.
- New extensions to the TCP Protocol to achieve network stability, based on

“packet conservation” principle.

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 7

Introduction

 Seven new extensions to the TCP Protocol:

i. Round-trip-time variance estimation.

ii. Exponential retransmit timer backof.f

iii. Slow-start.

iv. More aggressive receiver acknowledgments (ACKs) policy.

v. Dynamic window sizing on congestion.

vi. Karn´s clamped retransmit backoff. (recently developed)

vii. Fast retransmit. (soon-to-be-published RFC1122)

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 8

Introduction

 “Conservation of packets” principle: connection is “in equilibrium”.
- No new packet is put into network until an old packet leaves.

 Reasons for packet conservation to fail:

(1) Connection does not get to equilibrium.

(2) Sender injects new packet before old packet leaves.

(3) Equilibrium can not be reached due to resource limits.

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 9

Getting to equilibrium: slow-start

 Connection starting or restarting.

 Conservation property: use ACKs as clock to send new packets.
- Receiver cannot generate acks faster than packets get through network.

 Window Flow control “Self clocking”:

[1]

Bandwidth

Time

Packet spacing on slowest link

Packet spacing unchanged

ACKs spacing

ACKs spacing

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 10

Getting to equilibrium: slow-start

 Packets sent only in response to ACKs:
- Sender´s packet spacing matches packet time on slowest link in path

(bottleneck).

 Self-clocking systems:
- Automatic adjust to bandwidth and delay variations, wide dynamic range.

- Stable when running, hard to start: need ACKs to clock out data, need data
to get ACKs...

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 11

Getting to equilibrium: slow-start

 Start the clock : Slow-start.

 Generate two packets
for each ACK:

- one for the ACK
(packet has left the system).

- one to open up
congestion window
by one packet.

[1]

ACK

Packets

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 12

Getting to equilibrium: slow-start

 Subtle algorithm, trivial implementation:
- Add a congestion window, cwnd, to per-connection state.

- When starting or restarting: cwnd = 1.

- On each ACK: cwnd ← cwnd + 1.

- When sending: send minimum of receiver´s advertised window and cwnd.

 Window increase: R ∙ log W
- R : round-trip-time.

- W : window size.

 Guarantee: connection sources data at most twice max. possible on path.

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 13

 Startup behavior of TCP without slow-start:

 Burst of packets puts connection into persistent failure mode of
continuous retransmissions.

- Only 35 % used (7 KBps), rest wasted on retransmits.

- Almost everything retransmitted. Data from 54 to 58 KB: sent five times!

Getting to equilibrium: slow-start

[1]

Available Bandwidth of 20 KBps

Packet Sequence Number (KB)
Dots: 512-byte packets

Time packet sent (sec.)

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 14

 Startup behavior of TCP with slow-start:

 No retransmits. Only 2 seconds spent on slow-start.

 Effective bandwidth: 16 KBps. After 1 minute: 19 KBps.

Getting to equilibrium: slow-start

[1]

Available Bandwidth of 20 KBps

Packet Sequence Number (KB)

Dots: 512-byte packets

Time packet sent (sec.)

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 15

Conservation at equilibrium: round-trip timing

 After data flows reliably (and correct protocol implementation):
- Problem (2): sender injects new packet before old packet leaves

- Means failure of sender´s retransmit timer.

 Round trip time estimator: core of retransmit timer, frequently botched.

 TCP protocol specification (RFC-793):
- Estimation of round trip time (RTT) and retransmission timeout interval (rto):

R ← α ∙ R + (1 - α) ∙ M (α : filter gain = 0.9)

rto = β ∙ R (β = 2 fixed)

 β accounts for RTT variation.
- β = 2 can adapt to loads of at most 30 %

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 16

Conservation at equilibrium: round-trip timing

 Problem: Average RTT R and variation in R σ increase quickly with load.
- Load : ρ → R and σ scale like 1 / (1 - ρ).

- Network at 75 % capacity: RTT to vary by factor of sixteen (-2σ to +2σ).

 Load above 30 %: retransmission of packets that have just been delayed.
- Network equivalent of pouring gasoline on a fire.

 Solution: estimate variation instead of using fixed β.
- Cheap method: use mean deviation mdev (average of | M - R |).

 Resulting timer:

R ← α ∙ R + (1 - α) ∙ M (α = 0.875 = 1 - 1/8)

mdev ← α ∙ mdev + (1 - α) ∙ | M - R | (1 - α = 0.125 = 1/4)

rto = R + 4 ∙ mdev

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 17

Conservation at equilibrium: round-trip timing

 Per packet RTT on well behaved Arpanet connection:

RFC-793 retransmit timer: Mean + Variance:

[1]

Elapsed Time from packet sent to ACK receiptPacket number

Behavior of retransmit timer

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 18

Conservation at equilibrium: round-trip timing

 Second most important timer mistake: backoff after restransmit.

 Packet to be retransmitted more than once: how to space retransmits?

 For transport endpoint embedded in network of
- unknown topology, unknown, unknowable and constantly changing

population of competing conversations.

 Only scheme with any hope of working: exponential backoff.

 Network as linear system (linear operators: delays, gain stages, etc.).
- Linear system theory: if system is stable, then stability is exponential.

- Unstable system: network subject to load shocks and congestion collapse.

- Stabilization: add exponential damping (exp. timer backoff) to primary
excitation (senders, traffic sources).

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 19

Adapting to the path: congestion avoidance

 If timers good in shape: timeout = lost packet.
- Lost packet: damaged in transit (<< 1%) or network is congested.

 Two components of “congestion avoidance” strategy:
- Signal of congestion (delivered automatically: lost packet!).

- Endnodes action: policy of decrease if signal received, policy of increase if
signal not received.

 Network model:
- Uncongested: Li = N

- On congestion: Li = N + δLi-1

Li+1 = N + δLi = N + δ(N + δLi-1)

- Queue lengths increase exponentially.

- Stabilization: traffic sources must throttle back as quick as queues grow!

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 20

Adapting to the path: congestion avoidance

 Endnode action on congestion:
- Multiplicative decrease of window size.

- Window adjustment: Wi = dWi-1 (d < 1) → (d = 2)

 Endnode action on no congestion:
- Increase bandwidth utilization to find out current limit.

- Best policy: small, constant changes (additive increase).

- Window adjustment: Wi = Wi-1 + u (u << Wmax) → (u = 1 Packet)

 Congestion control algorithm: additive increase, multiplicative decrease:

- On ACK: cwnd ← cwnd + 1/cwnd

- On timeout: cwnd ← cwnd/2

- When sending: send minimum of cwnd and receiver´s advertised window.

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 21

Adapting to the path: congestion avoidance

 Combined slow-start with congestion avoidance algorithm:
- slow-start / congestion window: cwnd

- threshold size: sstresh

- When sending: send min. of cwnd and receiver´s advertised window.

- Start: cwnd ← 1 Packet

sstresh ← receiver´s advertised window

- On timeout: sstresh ← cwnd / 2

cwnd ← 1 Packet

- On ACK: if (cwnd < sstresh)

cwnd += 1

else

cwnd += 1/cwnd

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 22

Adapting to the path: congestion avoidance

 Test setup to examine interaction of multiple, simultaneous TCP
conversations sharing a bottleneck link:

 Any two connections could overflow the available buffering.

 All four connections exceeded queue capacity by 160 %

[1]

1 MByte transfers

LBL UCB

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 23

Adapting to the path: congestion avoidance

 Simultaneous TCP conversations without congestion avoidance:

 1 MByte transfers, each initiated 3 sec. apart.

 4000 of 11000 packets sent were retransmissions.

 Link data bandwidth: 25 KBps (6 KBps vanished!).

[1]

Sequence
Number
(KB)

8 KBps

5 KBps

5 KBps

0.5 KBps

Time (sec.)

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 24

Adapting to the path: congestion avoidance

 Simultaneous TCP conversations with congestion avoidance:

 89 of 8291 packets sent were retransmissions (1 %).

 4,5 KBps: 4.3 BSD receivers. Loss rate: 1,8 %.

 8 KBps: 4.3+ BSD receivers. Loss rate: 0,5 %.

[1]

Sequence
Number
(KB)

8 KBps

4,5 KBps

Time (sec.)

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 25

Adapting to the path: congestion avoidance

 Total bandwidth used by old and new TCPs:

[1]

Relative
Bandwidth

Time (sec.)

Old TCPs

New TCPs

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 26

Adapting to the path: congestion avoidance

 Effective bandwidth used by old and new TCPs:

[1]

Relative
Bandwidth

Time (sec.)

New TCPs

Old TCPs

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 27

Adapting to the path: congestion avoidance

 Effective troughput for new TCPs. Window adjustment detail:

 When packet dropped: sender sends until window filled, then stops until rto.

 Receiver cannot ACK data beyond dropped packet.

 Spikes height: direct measure of sender´s window size (exponential decrease).

[1]

Relative
Bandwidth

Amplitude of sender´s window size

Time (sec.)

Receiver ACKs out-of-order data

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 28

Summary

 Getting to equilibrium.
- Self-clocking systems.

- Connection starting or restarting: slow-start.

 Conservation at equilibrium.
- Round-trip-timing: Mean + Variance timer.

- Backoff after retransmit: Exponential timer backoff.

 Adapting to the path.
- Congestion avoidance and control.

- Additive increase, multiplicative decrease.

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 29

4) Future work: the gateway side of congestion control

 TCP extensions at endpoints insure network capacity is not exceeded.
- Only in gateways: enough information to also insure fair sharing.

 Next big step: gateway “congestion detection” algorithm:
- Send signal to endnodes as early as possible (packet drops).

- Gateway “self-protection” from misbehaving hosts: drop hosts packets.

- Congestion reduced even without congestion avoidance at endnodes.

 Congestion grows exponentially.
- Early detection important. Otherwise massive adjustments necessary.

- Reliable detection non-trivial problem due to bursty nature of traffic.

- Use models for round-trip-time/queue length prediction as basis of detection.

Proseminar Algorithms for Computer Networks - Ricardo Sexauer - Congestion Avoidance and Control 30

5) References

[1] Van Jacobson. Congestion Avoidance and Control.
In ACM SIGCOMM Computer Communication Review, volume 18, pages 314-329. ACM, 1988

[2] "Van Jacobson: 2002 IEEE Koji Kobayashi Computers and Communications Award
Recipient"
http://www.ieee.org/about/awards/bios/kobayashi_recipients.html#sect10

[3] 2001 SIGCOMM Award for Lifetime Achievement to Van Jacobson
http://www.sigcomm.org/awards/sigcomm-awards

[4] 2012 Inductees, Internet Hall of Fame Innovator
http://www.internethalloffame.org/inductees/van-jacobson

[5] Berkeley Software Distribution
http://en.wikipedia.org/wiki/Berkeley_Software_Distribution#cite_note-iw-5

[6] Unix Guru Universe. Unix contributors: Mike Karels.
http://www.ugu.com/sui/ugu/showclassic?I=info.Mike_Karels&F=11uemijss&G=Y

[7] Babcock, Charles (2006-08-14).
"What's The Greatest Software Ever Written?". InformationWeek.
http://www.informationweek.com/shared/printableArticle.jhtml?articleID=191901844

http://www.ieee.org/about/awards/bios/kobayashi_recipients.html#sect10
http://www.sigcomm.org/awards/sigcomm-awards

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30

