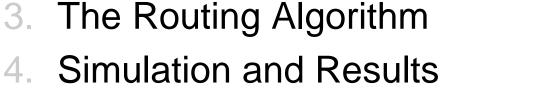
Ad-hoc On-Demand Distance Vector Routing

Charles E. Perkins


Sun Microsystems Laboratories Advanced Development Group Menlo Park, CA

Elizabeth M. Royer

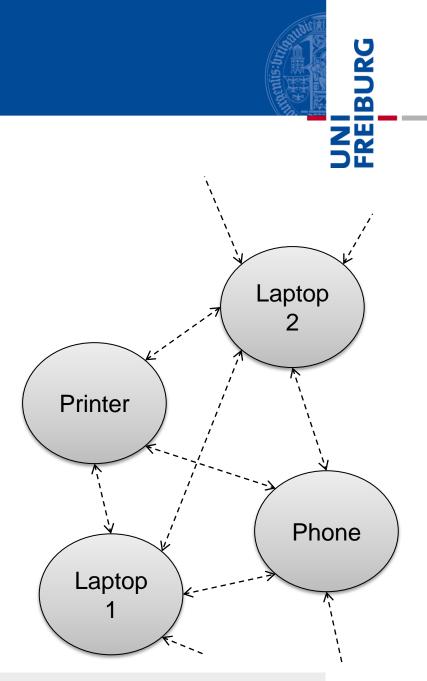
Dept. of Electrical and Computer Engineering University of California, Santa Barbara, CA

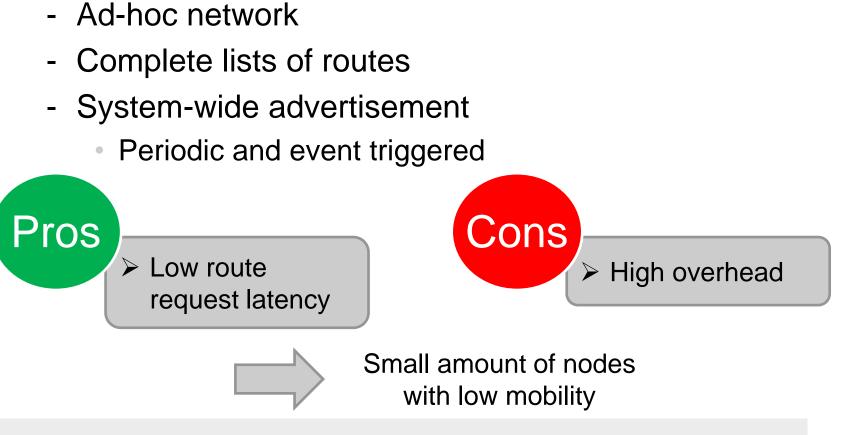
Albert-Ludwigs-Universität Freiburg

Proseminar: Lecturer: Speaker: Term: Algorithms for Computer Networks Prof. Dr. Christian Schindelhauer Nikolas Simon, ESE SS 2012

2. Concept – What is AODV Routing?

- 5. Conclusion
- 6. References


1. Motivation


Structure

1. Motivation

- Technological progress
 - Wireless networks
 - Increasing amount of nodes
- On-the-fly ad-hoc networks
- Research groups
 - Algorithmic complexity
 - New routing solutions

Destination-Sequenced Distance

Vector (DSDV)

2

1. Motivation

Goals

Ad-hoc On-Demand Distance Vector Routing

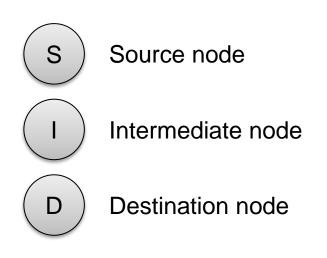
- Scalable to large networks
- Few and only local

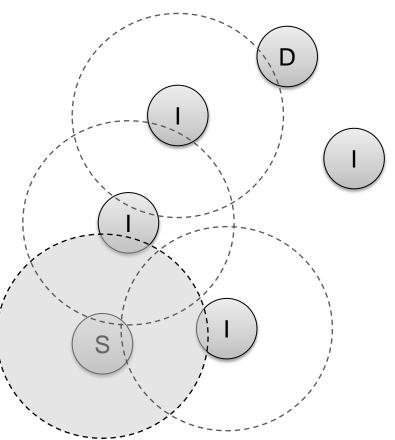
broadcasts

Quick adaption to network

changes

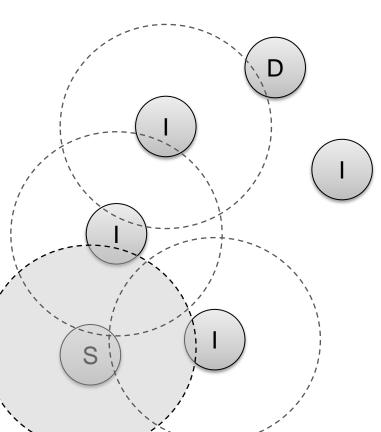
Acceptable route


acquisition latency


m

2. Concept of AODV Routing

UNI FREIBURG


- Specialized routers
 - Local broadcasts
- Distance Vector Algorithm
- Route discovery cycle

2. Concept of AODV Routing

- Create routes on demand
 - Dynamic lists
- Maintain only active routes
- Sequence numbers
 - Ensure loop-free routes
 - Freshness of routes and information

3. The Routing Algorithm

- Path Discovery
 - Reverse Path Setup
 - Forward Path Setup
- Path Maintenance
- Local Connectivity Management

11.07.2012

Path Discovery

- Two nodes need to communicate, no information in its table
- Local broadcast
 - Route Request ->

Hop Count

Broadcast ID

Destination IP Address

Destination Sequence Number

Source IP Address

Source Sequence Number

Ν

BUR

11.07.2012

Ad-hoc On-Demand Distance Vector Routing

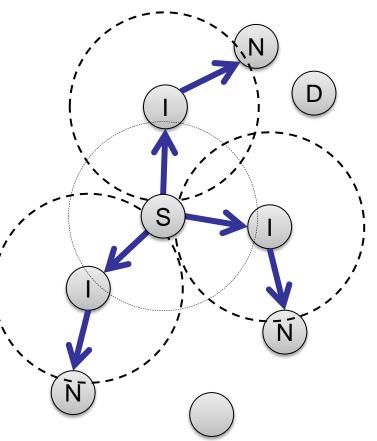
Path Discovery

- Two options for neighbors:
 - 1. Rebroadcast request and keep information
 - Check DSN

Route table entry

Broadcast ID

Source IP Address


Destination IP Address

Source node's sequence number

Expiration time

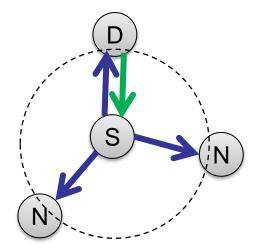
UNI FREIBURG

11.07.2012

Path Discovery

- Two options for neighbors:
 - 2. Satisfy request and send a Route Reply

Route Reply

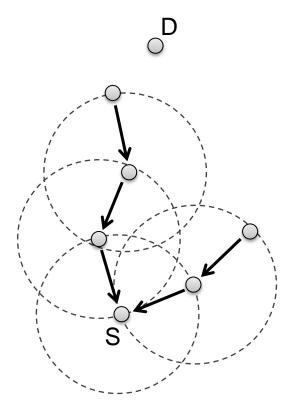

Hop Count

Destination IP Address

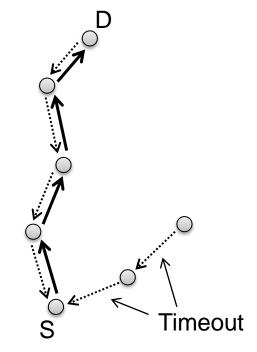
Destination Sequence Number

Source IP Address

Lifetime



Path Discovery – Reverse Path Setup


- RREQ: Source → various Destinations
- Set up reverse path to source
- Destination sequence number
 - Freshness of route to destination
 - Loop-free routes
- Source sequence number
 - Freshness of information about the route to source

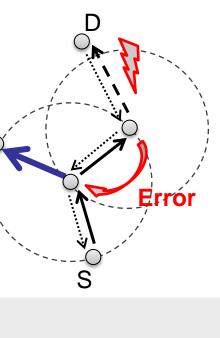
m

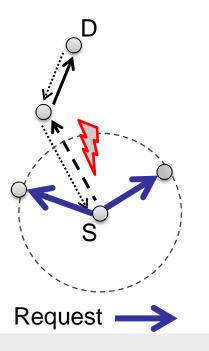
Path Discovery – Forward Path Setup

- Arrival at destination or node with current route to the destination
- Unicast Reply to the source node
 - Check destination sequence number
 - If equal check Hop Count
- Each node:
 - Sets up forward pointer
 - Update its timeout information
 - Records latest DSN
- Timeout: Delete reverse pointers

2

3. The Routing Algorithm


- Path Discovery
 - Reverse Path Setup
 - Forward Path Setup
- Path Maintenance
- Local Connectivity Management


B

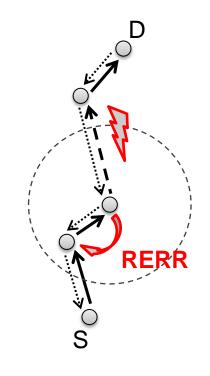
Path Maintenance

- Two cases for rebuilding:
 - 1. Source node moves 2. Destination or inter-
 - Route discovery procedure

- Destination or intermediate node moves
 - Error to source nodes
 - Route discovery procedure

Path Maintenance

- Detect link failures
 - Hello messages
 - Next hop unreachable
- Route Error Message


Route Error (RERR)

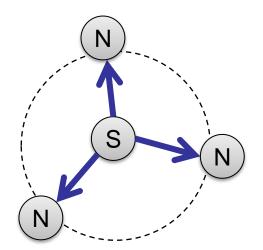
Unreachable Destination IP

Unreachable DSN

Destination Count

ß
BUI

3. The Routing Algorithm


- Path Discovery
 - Reverse Path Setup
 - Forward Path Setup
- Path Maintenance
- Local Connectivity Management

Local Connectivity Management

- Nodes learn of their neighbors in two ways
 - Hello messages
 - Receiving broadcasts

Hello Message				
Source IP	TTL			
Source Sequence Number				

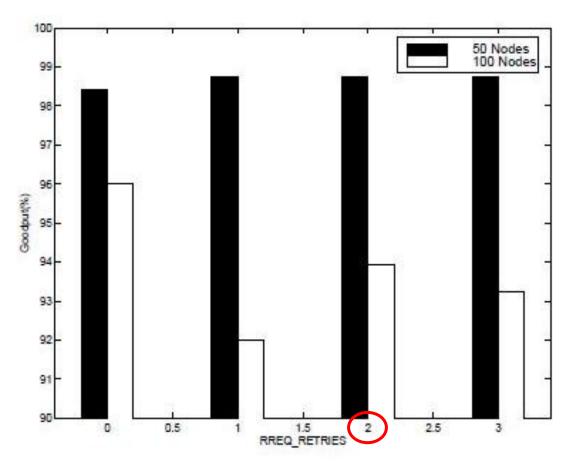
m

Objectives	
-Scales well to large networks	
Quick and accurate route establishing	
Determining optimal values for parameters	

REIBURG

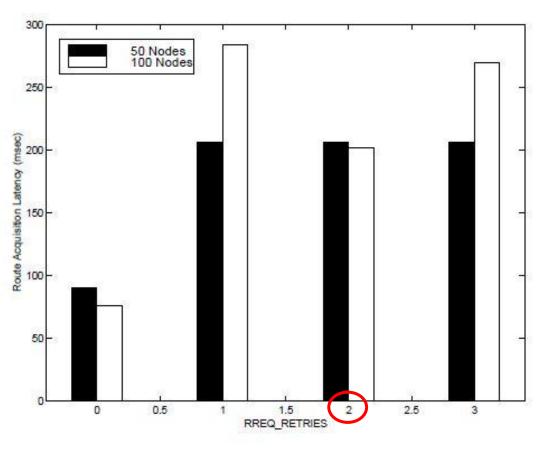
50, 100, 500 and 1000 nodes

- L x L, 0.4 to 0.8 m/s, $R_{max} = 10 m$


- Random session creation

Carrier sensing $\rightarrow max_retrans$

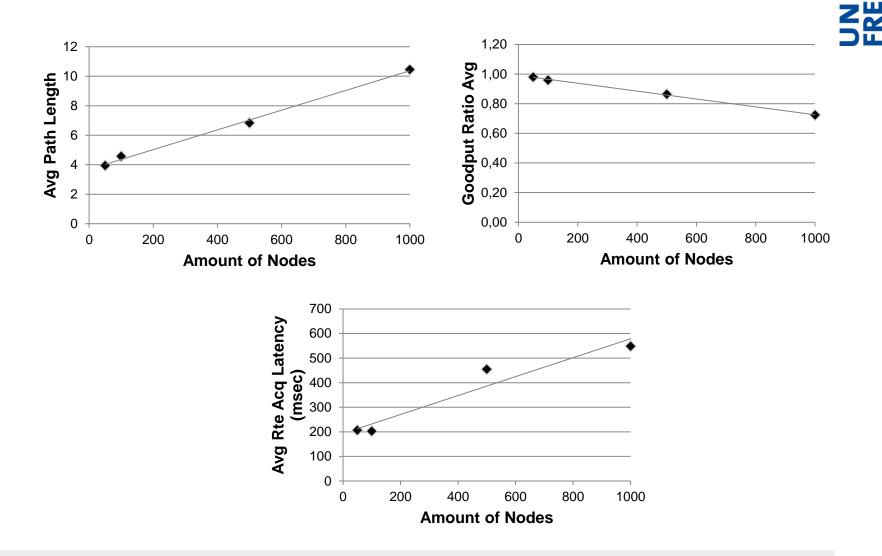
- S_DATA and VOICE_DATA



Achieved Goodput for varying rreq_retries [1]

IBURG

Route Acquisition Latency for varying rreq_retries[1]


Ad-hoc On-Demand Distance Vector Routing

UNI FREIBURG

Comparison of S_DATA Results [1]

# of Nodes	50	100	500	1000
Goodput Ratio avg	97,98 %	95,91 %	86,43 %	72,32 %
Avg Rte Acq Latency (msec)	206	202	454	548
Avg Path Length (hops)	3,94	4,57	6,83	10,45
Room Size (m)	50x50	50x50	100x100	150x150
Simulation Length (sec)	600	600	600	300
# Generated Sessions	24	62	172	263
# Completed Sessions	21	46	117	120
# Aborted Sessions	0	2	32	83

22

2

5. Conclusion

Pros

Nodes store only routes that are needed

- Fewer broadcasts needed
- Reduces memory requirements
- Quick response to link breakage in active routes
- Loop-free routes
- Scalable to large populations of nodes

Longer latency for route establishment

Cons

5. Conclusion

Future work

– Multicast

Combination with Table-driven Protocol

Elimination of Hello Messages

Ad-hoc On-Demand Distance Vector Routing

Thank you for your attention!

BURG

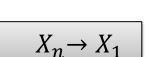
Albert-Ludwigs-Universität Freiburg

Proseminar:Algorithmen für RechnernetzeDozent:Prof. Dr. Christian SchindelhauerReferent:Nikolas Simon, ESESemester:SS 2012

- UNI FREIBURG
- [1] C. E. Perkins and E. M. Royer. Ad-hoc on demand distance vector routing. *Mobile Computing Systems and Application*, 1999
- [2] C. E. Perkins, E. Belding-Royer and S. Das. Ad-hoc on demand distance vector routing. *Experimental Memo*, 2003
- [3] E. M. Royer and C. Toh. A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks. *Personal Communications*, IEEE 1999
- [4] C. E. Perkins and P. Bhagwat. Highly Dynamic
 Destination-Sequenced Distance-Vector Routing (DSDV)
 for Mobile Computers. *Proceeding*, SIGCOMM 1994
- [5] http://de.wikipedia.org/wiki/Distanzvektoralgorithmus, 08.07.2012, 3.15 pm

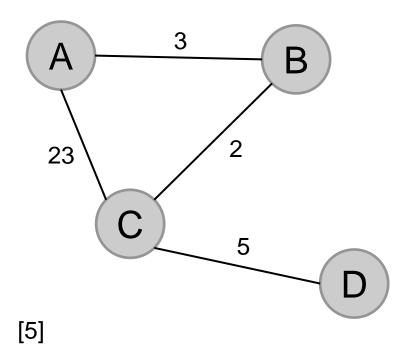
Loop-free routes

Assumption:


There is a loop in a route to destination Z

- Nodes in the loop: X_i i = 1, 2, ..., n $X_i \rightarrow X_{i+1}$
- T_i is the DSN for the route table entry of X_i to Z

$$\left. \begin{array}{ccc} T_i \leq T_{i+1} & for & X_i \rightarrow X_{i+1} \\ T_i \leq T_{i+1} \leq \dots & \leq T_n \leq T_1 \end{array} \right\} \quad T_i = T_{i+1}$$


Comparison of hop_counts m_i

$$\begin{array}{c} m_i = m_{i+1} + 1 \ for \ X_i \to X_{i+1} \\ m_1 = m_n + (n-1) \\ m_n = m_1 + 1 \end{array} \right\} \quad n=0$$

Count-to-infinity

A problem of Distance-vector routing protocols

- $C \rightarrow D$: expensive
- $A \rightarrow D$: ABCD $\rightarrow 10$
- $B \rightarrow D$: expensive
- $B \rightarrow D$: 13 BABCD
- $A \rightarrow D$: 16 ABABCD

m