Johannes Garimort

Institut für Informatik Albert-Ludwigs-Universität Freiburg

5. Februar 2008

Wozu ein Domain Name System?

• IP-Adressen sind unanschaulich und schlecht merkbar

Wozu ein Domain Name System?

- IP-Adressen sind unanschaulich und schlecht merkbar
- Beispiel: www.spiegel.de. lässt sich besser handhaben als 195.71.11.67

Wozu ein Domain Name System?

- IP-Adressen sind unanschaulich und schlecht merkbar
- Beispiel: www.spiegel.de. lässt sich besser handhaben als 195.71.11.67
- benötigen System, dass lesbare Namen in IP-Adressen umwandelt

HOST-Dateien

- HOST-Dateien
- Network Information Center (NIC) verwaltet Domain Namen

- HOST-Dateien
- Network Information Center (NIC) verwaltet Domain Namen
- durch wachsende Anzahl von Internetteilnehmern

- HOST-Dateien
- Network Information Center (NIC) verwaltet Domain Namen
- durch wachsende Anzahl von Internetteilnehmern
 - zentraler Verwaltungsstelle überfordert

- HOST-Dateien
- Network Information Center (NIC) verwaltet Domain Namen
- durch wachsende Anzahl von Internetteilnehmern
 - zentraler Verwaltungsstelle überfordert
 - administrativer und technischer Aufwand zu groß

- Einführung
- 2 Domain Name System

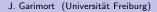
DNS

Domain Namensraum Name Server

3 Datenformate des DNS

Resource Records

- DNS Nachricht
- Funktionen des DNS


Domain Name Resolution Caching

Inverse Mapping

Sicherheit

6 Ausblick und Zusammenfassung

• 1983 von Paul Mockapetris entworfen

- 1983 von Paul Mockapetris entworfen
- beschrieben in den RFCs 882 und 883

- 1983 von Paul Mockapetris entworfen
- beschrieben in den RFCs 882 und 883
- abgelöst und erweitert durch die RFCs 1034 und 1035

• Übersetzung von (Domain-)Namen in IP-Adressen: "forward lookup"

- Übersetzung von (Domain-)Namen in IP-Adressen: "forward lookup"
- umgekehrte Auflösung: "reverse lookup"

- Übersetzung von (Domain-)Namen in IP-Adressen: "forward lookup"
- umgekehrte Auflösung: "reverse lookup"
- Vorteile:

- Übersetzung von (Domain-)Namen in IP-Adressen: "forward lookup"
- umgekehrte Auflösung: "reverse lookup"
- Vorteile:
 - zuverlässig und flexibel

- Übersetzung von (Domain-)Namen in IP-Adressen: "forward lookup"
- umgekehrte Auflösung: "reverse lookup"
- Vorteile:
 - · zuverlässig und flexibel
 - Änderung interner Netzwerkstrukturen leichter durchführbar

- Übersetzung von (Domain-)Namen in IP-Adressen: "forward lookup"
- umgekehrte Auflösung: "reverse lookup"
- Vorteile:
 - · zuverlässig und flexibel
 - Änderung interner Netzwerkstrukturen leichter durchführbar
 - kann in verschiedenen Strukturen verwendet werden (z.B. Firmen)

- Übersetzung von (Domain-)Namen in IP-Adressen: "forward lookup"
- umgekehrte Auflösung: "reverse lookup"
- Vorteile:
 - zuverlässig und flexibel
 - Anderung interner Netzwerkstrukturen leichter durchführbar
 - kann in verschiedenen Strukturen verwendet werden (z.B. Firmen)
 - ermöglicht eine rudimentäre Lastenverteilung

- Einführung
- 2 Domain Name System

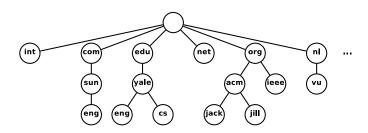
DNS

Domain Namensraum

Name Server

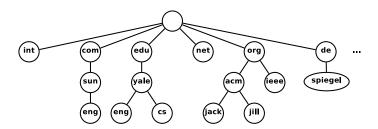
3 Datenformate des DNS

Resource Records


DING INACIIIICIIC

4 Funktionen des DNS Domain Name Resolution Caching Inverse Mapping

6 Ausblick und Zusammenfassung


Internet Domain Name Tree

- hierarchisch strukturierter Namensraum
- oberster Knoten: root
- erste Ebene: Top Level Domains
- Knoten und Blätter heißen Labels

Internet Domain Name Tree

- maximal 255 Zeichen pro Domainname
- maximal 63 Zeichen pro Label
- Domain setzt sich aus Labels zusammen
- Labels stehen weiter rechts umso h\u00f6her sie im Baum stehen Beispiel: spiegel.de. (inklusive Punkt: Fully Qualified Domain-Name (FQDN))
- (Sub-)domains werden von darüberliegenden Domains kontrolliert

- Einführung
- 2 Domain Name System

DNS

Domain Namensraum

Name Server

Rosolvar

Datenformate des DNS

Resource Records

4 Funktionen des DNS

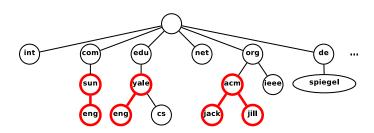
Domain Name Resolution

aching

Inverse Mapping

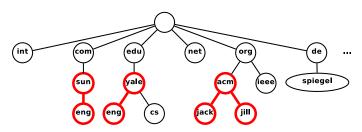
Sicherheit

6 Ausblick und Zusammenfassung

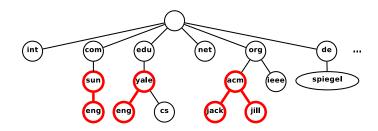

• Name Server sind Programme

- Name Server sind Programme
 - die Informationen über Teile des Namensraums speichern

- Name Server sind Programme
 - die Informationen über Teile des Namensraums speichern
 - die Fragen zum Namensraum bearbeiten oder weiterleiten


- Name Server sind Programme
 - die Informationen über Teile des Namensraums speichern
 - die Fragen zum Namensraum bearbeiten oder weiterleiten
- Name Server kennen mindestens einen Server aus höherer Ebene

- autoritative Name Server
 - verantwortlich f
 ür eine bestimmte Zone
 - kennen Name Server der darunterliegenden Bereiche
- nicht-autoritative Name Server
 - nicht dieser Zone zugeordnet sind
 - Informationen über Zone gelten als ungesichert



Teile des Domain-Baumes die durch gleiche Name Server verwaltet werden, nennt man Zone

- für jede Zone Primary Name Server
- Informationen werden in der Zonendatei gespeichert

- Name Server werden oft als Server-Cluster angelegt
- weitere Server: Secondary Name Server
- Zonendateien identisch auf allen autoritativen Servern
- Synchronisation per Zonentransfer

- Einführung
- 2 Domain Name System

DNS
Domain Namensraum
Name Server
Resolver

Opposite des DNS
Opposite des DNS

Resource Records

- DNS Nacilient
- Funktionen des DNS Domain Name Resolution Caching Inverse Mapping
- 6 Ausblick und Zusammenfassung

• Schnittstelle zwischen Name Servern und Anwendungen

- Schnittstelle zwischen Name Servern und Anwendungen
- einfach aufgebaute Software-Module

- Schnittstelle zwischen Name Servern und Anwendungen
- einfach aufgebaute Software-Module
- können Informationen von DNS-Servern abfragen

- Schnittstelle zwischen Name Servern und Anwendungen
- einfach aufgebaute Software-Module
- können Informationen von DNS-Servern abfragen
- rekursive oder iterative Anfragen

- Einführung
- 2 Domain Name System

DNS Domain Namensraum Name Server

3 Datenformate des DNS

Resource Records

DNS Nachricht

4 Funktionen des DNS

Domain Name Resolution

Caching Inverse Map

Sicherheit

6 Ausblick und Zusammenfassung

Resource Record:

<NAME> [<TTL>] [<CLASS>] <TYPE> <RDATA>

Resource Record:

• NAME - Domainname zu dem der Resource Records gehört

```
<NAME> [<TTL>] [<CLASS>] <TYPE> <RDATA>
```

- NAME Domainname zu dem der Resource Records gehört
- **TYPE** Typ des Resource Records

```
<NAME> [<TTL>] [<CLASS>] <TYPE> <RDATA>
```

- NAME Domainname zu dem der Resource Records gehört
- **TYPE** Typ des Resource Records
- CLASS Protokollgruppe des Resource Records (optional)

```
<NAME> [<TTL>] [<CLASS>] <TYPE> <RDATA>
```

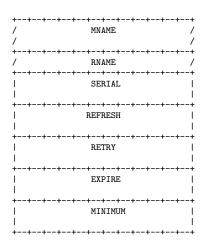
- NAME Domainname zu dem der Resource Records gehört
- TYPE Typ des Resource Records
- CLASS Protokollgruppe des Resource Records (optional)
- TTL time to live (in Sekunden): Gültigkeit des Resource Records (optional)

```
<NAME> [<TTL>] [<CLASS>] <TYPE> <RDATA>
```

- NAME Domainname zu dem der Resource Records gehört
- TYPE Typ des Resource Records
- CLASS Protokollgruppe des Resource Records (optional)
- TTL time to live (in Sekunden): Gültigkeit des Resource Records (optional)
- LENGTH Länge des RDATA-Feldes

```
<NAME> [<TTL>] [<CLASS>] <TYPE> <RDATA>
```

- NAME Domainname zu dem der Resource Records gehört
- **TYPE** Typ des Resource Records
- CLASS Protokollgruppe des Resource Records (optional)
- TTL time to live (in Sekunden): Gültigkeit des Resource Records (optional)
- LENGTH Länge des RDATA-Feldes
- RDATA Daten entsprechend dem Typ und der Klasse des Resource Records


Resource Record Typen

Тур	Bedeutung	Inhalt	
Α	IPv4 Host Address	32-bit IP-Adresse	
NS	Name Server	Name des autoritativen Servers der Domain	
SOA	Start of Authority	Bestandteil der Zonendatei; enthält Angaben zur Verwaltung und Zonentransfer	
CNAME	Canonical Name	Alias zu einem vorhandenen DNS-Namen	
MX	Mail Exchanger	Mailserver der Domain	
PTR	Pointer	Domain Name Pointer (vergleichbar mit symbolischem Links)	
TXT	Text	frei definierbarer Text	
AAAA	IPv6 Host Address	128-bit IP-Adresse	

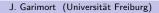
• Beispiele für Resource Records

NAME	TTL	CLASS	TYPE	RDATA
uni-freiburg.de. www.spiegel.de.	42250 36383	IN IN	A A	132.230.2.100 195.71.11.67
whitehouse.gov.	7172	IN	MX	100 mailhub-wh2.white house.gov
www.uni-freiburg.de. www.ruf.uni-freiburg.de. wwwneu.uni-freiburg.de.	1 1 1	IN IN IN	CNAME CNAME A	www.ruf.uni-freiburg.de wwwneu.uni-freiburg.de 132.260.6.74
wwwneu.uni-freiburg.de.	1	IN	Α	132.260.6.75

SOA RDATA Format

Domain Name des Primary Name Server

Mailadresse


Zeitabstand bis zur nächsten Nachfrage, ob Veränderungen vorliegen

Zeitabstand, in dem ein Slave Nachfrage wiederholt, wenn Master nicht antwortet $\ensuremath{\mathsf{N}}$

Reagiert Master nicht, deaktiviert Slave nach der angegebenen Zeitspanne die Zone

Zonendatei

• Liste von Resource Records

Zonendatei

- Liste von Resource Records
- besteht mindestens aus einem SOA- und einem NS-Resource Record

- Einführung
- 2 Domain Name System

Datenformate des DNS

DNS Nachricht

Funktionen des DNS

6 Ausblick und Zusammenfassung

Identification (16)	Parameter (16)	
Number of Questions (16)	Number of Answers (16)	
Number of Authority (16)	Number of Additional (16)	
Question Section		
Answer Section		
Authority Section		
Additional Information Section		

Parameter

Bit of PARAMETER field	Meaning
0	Operation:
	0 Query
	1 Response
1-4	Query Type:
	0 Standard
	1 Inverse
	2 Server status request
	4 Notify
	5 Update
5	Set if answer authoritative
6	Set if message truncated
7	Set if recursion desired
8	Set if recursion available
9	Set if Data is authenticated
10	Set if checking is disabled
11	Reserved

Parameter

Bit des PARAMETER Felds	Bedeutung
12-15	Response Type
	0 No error
	1 Format error in query
	2 Server failure
	3 Name does not exist
	5 Refused
	6 Name exists when it should not
	7 RR set exsist
	8 RR set that should exist does not
	9 Server not authoritative for the zone
	10 Name not contained in zone

Query

• Format eines Queries

Query Domain Name (32)		
Query Type (16)	Query Class (16)	

Reply

 Format der Felder Answer Section, Authoriy Section und Additional Information Section

Resource Domain Name		
•••		
Туре (16)	Class (16)	
TTL (16)	Resource Data Length (16)	
Resource Data		
•••		

Reply

 Format der Felder Answer Section, Authoriy Section und Additional Information Section

Resource Domain Name		
•••		
Туре (16)	Class (16)	
TTL (16)	Resource Data Length (16)	
Resource Data		
•••		

Tabelle: Douglas E. Comer. Internetworking with TCP/IP, Seite 435

• Queries der Anfrage in jeder Antwortnachricht mit enhalten

- Einführung
- 2 Domain Name System

DNS
Domain Namensraum
Name Server

3 Datenformate des DNS Resource Records

DNS Nachricht

4 Funktionen des DNS

Domain Name Resolution

Caching Inverse Mapping Sicherheit

6 Ausblick und Zusammenfassung

• Resolver schickt Query und fordert Auflösung an

- Resolver schickt Query und fordert Auflösung an

- Resolver schickt Query und fordert Auflösung an
- Name Server prüft, ob angeforderte Domain in seiner Zone liegt
- falls nicht-autoritativ, gibt es zwei Möglichkeiten zur Auflösung:

- Resolver schickt Query und fordert Auflösung an
- Name Server prüft, ob angeforderte Domain in seiner Zone liegt
- falls nicht-autoritativ, gibt es zwei Möglichkeiten zur Auflösung:
 - man hangelt sich von Name Server zu Name Server bis zur gewünschten Ressource (iterative Anfrage)

- Resolver schickt Query und fordert Auflösung an
- Name Server prüft, ob angeforderte Domain in seiner Zone liegt
- falls nicht-autoritativ, gibt es zwei Möglichkeiten zur Auflösung:
 - man hangelt sich von Name Server zu Name Server bis zur gewünschten Ressource (iterative Anfrage)
 - man lässt DNS-Server die Namensübersetzung machen (rekursive Anfrage)

• Resolver sendet Query und fordert entweder iterative oder rekursive Auflösung

- Resolver sendet Query und fordert entweder iterative oder rekursive Auflösung
- iterative Auflösung

- Resolver sendet Query und fordert entweder iterative oder rekursive Auflösung
- iterative Auflösung
 - Name Server übermittelt Adressen, die der Client als nächstes kontaktieren kann

- Resolver sendet Query und fordert entweder iterative oder rekursive Auflösung
- iterative Auflösung
 - Name Server übermittelt Adressen, die der Client als nächstes kontaktieren kann
- rekursive Auflösung

- Resolver sendet Query und fordert entweder iterative oder rekursive Auflösung
- iterative Auflösung
 - Name Server übermittelt Adressen, die der Client als nächstes kontaktieren kann
- rekursive Auflösung
 - Name Server übernimmt die Rolle des Resolvers und kontaktiert andere Name Server

- Resolver sendet Query und fordert entweder iterative oder rekursive Auflösung
- iterative Auflösung
 - Name Server übermittelt Adressen, die der Client als nächstes kontaktieren kann
- rekursive Auflösung
 - Name Server übernimmt die Rolle des Resolvers und kontaktiert andere Name Server
 - Name wird entweder aufgelöst oder Error zurückgegeben

- Resolver sendet Query und fordert entweder iterative oder rekursive Auflösung
- iterative Auflösung
 - Name Server übermittelt Adressen, die der Client als nächstes kontaktieren kann
- rekursive Auflösung
 - Name Server übernimmt die Rolle des Resolvers und kontaktiert andere Name Server
 - Name wird entweder aufgelöst oder Error zurückgegeben
 - rekursive Auflösung ist optional und wird nicht von allen Servern unterstützt

- Resolver sendet Query und fordert entweder iterative oder rekursive Auflösung
- iterative Auflösung
 - Name Server übermittelt Adressen, die der Client als nächstes kontaktieren kann
- rekursive Auflösung
 - Name Server übernimmt die Rolle des Resolvers und kontaktiert andere Name Server
 - Name wird entweder aufgelöst oder Error zurückgegeben
 - rekursive Auflösung ist optional und wird nicht von allen Servern unterstützt
 - meistens rekursive Auflösung

- Resolver sendet Query und fordert entweder iterative oder rekursive Auflösung
- iterative Auflösung
 - Name Server übermittelt Adressen, die der Client als nächstes kontaktieren kann
- rekursive Auflösung
 - Name Server übernimmt die Rolle des Resolvers und kontaktiert andere Name Server
 - Name wird entweder aufgelöst oder Error zurückgegeben
 - rekursive Auflösung ist optional und wird nicht von allen Servern unterstützt
 - meistens rekursive Auflösung
 - DNS-Root-Server unterstützen nur iterative Anfragen

- Einführung
- 2 Domain Name System

Datenformate des DNS

Funktionen des DNS

Caching

6 Ausblick und Zusammenfassung

 nicht-autoritative Name Server können Namen nur über den Namensbaum auflösen

- nicht-autoritative Name Server können Namen nur über den Namensbaum auflösen
- ständiges ablaufen des Baumes ist ineffizient:

- nicht-autoritative Name Server können Namen nur über den Namensbaum auflösen
- ständiges ablaufen des Baumes ist ineffizient:
 - Überbelastung der DNS Root Server

- nicht-autoritative Name Server können Namen nur über den Namensbaum auflösen
- ständiges ablaufen des Baumes ist ineffizient:
 - Überbelastung der DNS Root Server
 - viele Anfragen beziehen sich auf Name Server, die sich im gleichen Unterbaum befinden (Lokalität)

• nicht-autoritative Name Server speichern daher Informationen zu Anfragen

• nicht-autoritative Name Server speichern daher Informationen zu Anfragen

Caching

• TTL bestimmt Gültigkeitsdauer

• nicht-autoritative Name Server speichern daher Informationen zu Anfragen

- TTL bestimmt Gültigkeitsdauer
- TTL wird von autoritativen Servern gesetzt

• nicht-autoritative Name Server speichern daher Informationen zu Anfragen

- TTL bestimmt Gültigkeitsdauer
- TTL wird von autoritativen Servern gesetzt
- Caching funktioniert, da sich IP-Adressen von Server i.d.R. selten ändern

nicht-autoritative Name Server speichern daher Informationen zu Anfragen

- TTL bestimmt Gültigkeitsdauer
- TTL wird von autoritativen Servern gesetzt
- Caching funktioniert, da sich IP-Adressen von Server i.d.R. selten ändern
- Spezialfall: Caching only Name Server sind für keine Zone verantwortlich und müssen Anfragen über gespeicherte Informationen oder Namensauflösung heantworten

Negative Caching

• Name Server merkt sich Namen, die er nicht auflösen konnte

Negative Caching

- Name Server merkt sich Namen, die er nicht auflösen konnte
- kann auf Anfragen schneller antworten

- Einführung
- 2 Domain Name System

DNS
Domain Namensraum
Name Server

3 Datenformate des DNS

Resource Records

4 Funktionen des DNS

Domain Name Resolution

Caching

Inverse Mapping

Sicherheit

6 Ausblick und Zusammenfassung

• ein "reverse lookup" liefert zu einer IP-Adresse wenn möglich die entsprechende Domain

- ein "reverse lookup" liefert zu einer IP-Adresse wenn möglich die entsprechende Domain
- Suche nach der IP-Adresse im Serverbaum wäre ineffizient

- ein "reverse lookup" liefert zu einer IP-Adresse wenn möglich die entsprechende Domain
- Suche nach der IP-Adresse im Serverbaum wäre ineffizient
- spezielle Domain IN-ADDR.ARPA

- ein "reverse lookup" liefert zu einer IP-Adresse wenn möglich die entsprechende Domain
- Suche nach der IP-Adresse im Serverbaum wäre ineffizient
- spezielle Domain IN-ADDR.ARPA
 - unterhalb existieren lediglich drei Subdomain-Ebenen

- ein "reverse lookup" liefert zu einer IP-Adresse wenn möglich die entsprechende Domain
- Suche nach der IP-Adresse im Serverbaum wäre ineffizient
- spezielle Domain IN-ADDR.ARPA
 - unterhalb existieren lediglich drei Subdomain-Ebenen
 - Labels bestehen aus Zahlen zwischen 0 und 255

- ein "reverse lookup" liefert zu einer IP-Adresse wenn möglich die entsprechende Domain
- Suche nach der IP-Adresse im Serverbaum wäre ineffizient
- spezielle Domain IN-ADDR.ARPA
 - unterhalb existieren lediglich drei Subdomain-Ebenen
 - Labels bestehen aus Zahlen zwischen 0 und 255
 - jede Ebene im IN-ADDR.ARPA-Baum repräsentiert eine Komponente einer IP-Adresse in umgedrehter Reihenfolge

- ein "reverse lookup" liefert zu einer IP-Adresse wenn möglich die entsprechende Domain
- Suche nach der IP-Adresse im Serverbaum wäre ineffizient
- spezielle Domain IN-ADDR.ARPA
 - unterhalb existieren lediglich drei Subdomain-Ebenen
 - Labels bestehen aus Zahlen zwischen 0 und 255
 - jede Ebene im IN-ADDR.ARPA-Baum repräsentiert eine Komponente einer IP-Adresse in umgedrehter Reihenfolge
 - Auflösung nach einer IP-Adresse funktioniert wie im restlichen DNS

Funktionen des DNS

- ein "reverse lookup" liefert zu einer IP-Adresse wenn möglich die entsprechende Domain
- Suche nach der IP-Adresse im Serverbaum wäre ineffizient
- spezielle Domain IN-ADDR.ARPA
 - unterhalb existieren lediglich drei Subdomain-Ebenen
 - Labels bestehen aus Zahlen zwischen 0 und 255
 - jede Ebene im IN-ADDR.ARPA-Baum repräsentiert eine Komponente einer IP-Adresse in umgedrehter Reihenfolge
 - Auflösung nach einer IP-Adresse funktioniert wie im restlichen DNS
 - Einträge sind vom Resource Record Typ PTR

- ein "reverse lookup" liefert zu einer IP-Adresse wenn möglich die entsprechende Domain
- Suche nach der IP-Adresse im Serverbaum wäre ineffizient
- spezielle Domain IN-ADDR.ARPA
 - unterhalb existieren lediglich drei Subdomain-Ebenen
 - Labels bestehen aus Zahlen zwischen 0 und 255
 - jede Ebene im IN-ADDR.ARPA-Baum repräsentiert eine Komponente einer IP-Adresse in umgedrehter Reihenfolge
 - Auflösung nach einer IP-Adresse funktioniert wie im restlichen DNS
 - Einträge sind vom Resource Record Typ PTR
 - Auflösung nicht immer eindeutig

Beispiele:

• Uber 100.2.230.132.in-addr.arpa. lässt sich die Domain uni-freiburg.de. mit der IP-Adresse 132.230.2.100 auflösen.

Die entsprechene Resource Record im ARPA-Baum ist demnach:

100.2.230.132.in-addr.arpa. 84350 IN PTR uni-freiburg.de.

• Hingegen lässt sich die Domain www.spiegel.de. mit der IP-Adresse 195.71.11.67 nicht auflösen.

- Einführung
- 2 Domain Name System

Datenformate des DNS

Funktionen des DNS

Sicherheit

6 Ausblick und Zusammenfassung

• Distributed Denial of Service Angriffe auf Name Server

- Distributed Denial of Service Angriffe auf Name Server
 - Überlastung von Name Servern

- Distributed Denial of Service Angriffe auf Name Server
 - Überlastung von Name Servern
- DNS-Amplification-Angriff

- Distributed Denial of Service Angriffe auf Name Server
 - Überlastung von Name Servern
- DNS-Amplification-Angriff
- DNS-Spoofing

- Distributed Denial of Service Angriffe auf Name Server
 - Überlastung von Name Servern
- DNS-Amplification-Angriff
- DNS-Spoofing
- Cache Poising

• Authentizität von DNS-Nachrichten

- Authentizität von DNS-Nachrichten
- Datenintegrität

- Authentizität von DNS-Nachrichten
- Datenintegrität
- keine Verschlüsselung der DNS-Daten

- Authentizität von DNS-Nachrichten
- Datenintegrität
- keine Verschlüsselung der DNS-Daten
- asymmetrische Kryptosystem

- Authentizität von DNS-Nachrichten
- Datenintegrität
- keine Verschlüsselung der DNS-Daten
- asymmetrische Kryptosystem
 - öffentlicher Schlüssel wird in RR-Typ versendet

Ausblick und Zusammenfassung

Ausblick und Zusammenfassung

Vielen Dank für die Aufmerksamkeit!