Improving the Data Delivery Latency in Sensor Networks with Controlled Mobility

Seminar: Ad-hoc networks Juri Lichtner 16.Feb 2009

Albert-Ludwigs-University of Freiburg Faculty of Applied Science Institute of Computer Science Department for Computer Networks and Telematics

Outline

- 1. Motivation
- 2. Path Selection Problem
- 3. Approximation Algorithm
- 4. Application Scenario
- 5. Experiments

Motivation

Motivation – Energy Problem

- □ Complex algorithms
- Continual data forwarding
- □ Long communication ranges

Solution: Mobile data collector (Data Mule)

Motivation – No Data Forwarding

Motivation – Short Communication Ranges

Path Selection Problem – Shortest Travel Time

Simplifying the Problem

Label-Covering Tour 2 3 5, 6, 7. 6

Definition:

- vertices are points in R² (static nodes)
- edges are possible paths
- labels on edges indicate possible communication of nodes
- cost for each edge to indicate travel time (not shown)

Problem:

Find a set of edges that covers all labels and minimizes the costs.

Choice of Cost Metric

Number of edges
Euclidean distance
Uncovered distance

3

5

5

Choice of Cost Metric

- Creation of different node deployments
- Simulation of a random walk
- Calculate correlation to the total travel time

Radius (d)	150				500			
Comm. range (r)	10		100		10		100	
Exec. time (e)	2	20	2	20	2	20	2	20
Num. edge	0.992	0.987	0.982	0.850	0.984	0.982	0.988	0.988
Euclidean dist.	0.997	0.996	0.990	0.835	0.999	0.999	0.999	0.999
Uncovered dist.	0.992	0.993			0.999	0.999	0.935	0.935

Label-Covering Tour is NP-Hard

Choose a small communication range

- → Max two labels on each edge
- → Label-Covering Tour must visit all nodes
- Problem is equivalent to TSP

Approximation Algorithm

Approximation Algorithm

Approximation Algorithm - Analysis

Costs of TSP depends on the algorithm

Costs of suggested Approx-Algorithm: O(n³)

 Finding Label-Covering Tour: C(TSP) + O(n³)

Example Application

Peak displacement sensor

802.11 g and Zigbee wireless communication

Control GUI and data acquisition

RF power delivery

On-board computing and RF source

Experiments

r = 1

r = 20

r = 50

r = 100

r = 200

r = 300

Comparison with Other Strategies

TSP-like

- Stop-and-collect
- Message-Ferrying

Comparison with Other Strategies

Conclusion

- Limited energy is a problem in sensor networks
- Mobility for data collection prolongs network lifetime
- Path selection is essential for data mules
- Approximation algorithm finds near-optimal solutions