

Real-Time deployment of Multihop Relays for Range Extension

-Michael R. Souryal, Johannes Geissbuehler, Leonard E. Miller, Nader Moayeri (Wireless Communications Tech Group NIST, USA)

> Of Computer networks and Telematics (Ad Hoc Networks – Block Seminar)

> > Under Prof. Dr. Christian Schindelhauer, Chia Ching Ooi

> > > By <u>Kiran</u> Kumar Telukunta (Last Name) (Master Student)

> > > > 16th February 2009

Outline

- Keywords
- Introduction
- Related work
- Relay Deployment Strategy
- Link Assessment
- Algorithm
- Prototype
- Experiments
- Conclusion

Keywords

- Deployment
- Multihop wireless networks
- First responders
- Breadcrumbs
- Sensors

23 February, 2009

Introduction

- Reliable communication
- Lose of radio communications
- Multihop wireless communication

Key Challenge

Related work

- UC Berkeley & Chicago Fire Department
- Virginia Tech & SAIC
- Fire WxNet Wildland's fire environment

Related work & Relations

UC Berkeley & Chicago Fire Department

- Wireless sensor network (Smoke Net)
- MICA2 mote

Picture from Crossbow

Contrast – No nodes

Related work & Relations

- Virginia Tech & SAIC (LMDS)
 - Wider incident area
 - LMDS (Local Multi point Distribution Service)
 - GIS (Geographic information service)
- Similar
 - Broadband channel
 - Temporal Characteristics and symmetry

Related work & Relations

- Fire WxNet Wildland's fire environment
 - Wireless sensor system (Channel probe and response protocol)
 - Verification
- Relation
 - Link charachterization studies
 - Local placement assistance

From the authors

- Relay Deployment Strategy
- Link Assessment
- Algorithm
- Prototype
- Experiments

Relay Deployment Strategy

- Expression
 - $p*_{s}(D/m^{*}) = e^{-1/n}$
 - p*_s packet success probability.
 - D Total distance.
 - m equal spaced hops.
- Observations
 - Optimum number of hops
 - Optimum probability

Link Assessment

RSS-Based Link Assessment

Receiver height

Link symmetry

23 February, 2009

RSS-Based Link Assessment

Test Experiment – in a floor

Link symmetry

RSS vs Packet Number in static environment

23 February, 2009

Algorithm

- Parameter Selection
- Adaptive probing
 - Threshold
- Local Placement Assistance
 - Human or robot
 - Backtracking

Parameter Selection

- Mobile Probe period 100ms
- RSS averaging filter length 20
- Threshold Signal strength -80 dBm
- RSS value for missed ACK's -100 dBm
- Link diversity order 1

Probing

Channel probing

Authors Paper

Prototype

Application Overview

Prototype Hardware

Routing Protocol

23 February, 2009

Application Overview

23 February, 2009

Prototype Hardware

Base Node

Base Node from Authors paper

23 February, 2009

Prototype Hardware

Mobile Node

From Authors Paper

Prototype Hardware

Relays

Suggestable Relay

	And I a	0
	ALC: NO	
BoHS		

From CrossBow Company

SUMPLY RINING	MICA 2	IRIS
Frequency Band	868-916 MHz	2405-2480 MHz
Receive Sensitivity	-98 dBm	-101 dBm
Outdoor Range	150 m	> 300m
Indoor Range		> 50 m
Programmable	Less	More
Antenna	Not Present	Present

Routing Protocol

- Destination Sequenced Distance Vector
 - Isolates
 - Routing table
 - Number of Hops
 - Latest Update
 - Number of week links
 - Route advertisement T_{adv}

Experiment Results

Experimental Trials

Message Delivery Rates for Hi-Rise Trials

Trial	Deploy	Stop			Return		
No.	Ping	Ping	Text \triangle	Text ∇	Ping		
With Local Placement Assistance							
1	99 %	100 %	100 %	80 %	95 %		
2	98 %	100 %	100 %	99 %	100 %		
3	96 %	99 %	100 %	100 %	98 %		
Without Local Placement Assistance							
4	90 %	99 %	100 %	99 %	100 %		
5	98 %	98 %	99 %	90 %	100 %		
6	55 %	35 %	28 %	36 %	71 %		

From Authors Paper

Wireless standards

Standards	802.11b(used)	802.11a	802.11g (Zigb ee – Juri Lichter)	802.11n
Cost	Low	Low	Costlier	Costliest
Speed (Ranking)	3	4	2	1
Penetration through interference (Ranking)	4	3	2	1
Signal Range (Ranking)	3	4	2	1
Best	3	3	2	1

* In all Rankings Highest is 1

Source: About.com

23 February, 2009

Example to estimate usability

- 9-11 Twin tower disaster
 - Each floor at an average 10ft+1.5ft
 - 16 floors got damaged

Conclusion

- Came up with deployment strategy
- Feasibility Automated deployment
- Mathematical calculations lacking
- Come up with Algorithm
 - Tests can be bettered
- Experimental Analysis
 - Better wireless standards
 - Better equipment
- Reach hard areas
 - Not sure of in some disaster situations break between nodes

Questions ??

23 February, 2009

Extra Slides

Chat communication

Application view in PDA

23 February, 2009

