Seminar Ad Hoc Networks

Feasibility of an Aeronautical Mobile Ad Hoc Network Over the North Atlantic Corridor

Daniel Medina, Felix Hoffmann, Serkan Ayaz, (German Aerospace Center DLR) Carl-Herbert Rokitansky (University of Salzburg, Austria)

Konrad Meier - University of Freiburg

e-Mail: meierk@informatik.uni-freiburg.de

Seminar: Ad Hoc Networks - Konrad Meier

Overview

- 1. Introduction
 - basic idea / motivation
- 2. Setup
 - network model
 - greedy forwarding
 - link model
- 3. Analysis of the Network
- 4. Conclusion and Review

1. What is the idea?

Aircraft Ad Hoc Network in the North Atlantic Corridor

Seminar: Ad Hoc Networks - Konrad Meier

3

1. Motivation

- need for communication
 - information about the aircrafts
 - e.g. delay, connecting flights, fuel consumption
 - Internet access for passengers
 - phone calls
- today: possible only over a satellite link
 - expensive, high delay

Is an Ad Hoc Network between aircrafts possible?

- two elements in the network:
 - aircrafts and ground stations
- ground stations (IGWs) operate as gateways
- 2 scenarios
 - scenario A with two IGWs
 - scenario B with six IGWs

Scenario A

Seminar: Ad Hoc Networks - Konrad Meier

6

Scenario B

Seminar: Ad Hoc Networks - Konrad Meier

7

- IGW periodically sends advertisements (IGWADVs)
 - IP of IGW, Hop Count field
- aircraft creates a table from IGWADVs for routing
 - nearest IGW = lowest Hop Count
 - entries have limited lifetimes
- Routing via "Greedy Forwarding"
 - chooses the local optimum for the next hop
 - forwards a packet to the next hop which is closest to the target (IGW)
 - ---- problem: local maximum

- local maximum
 - packet is dropped
 - situation may stay the same
 - → connection problem
- solution exists
 - not considered in this paper
 - Greedy Perimeter
 Stateless Routing
 (GPSR)[1]

• Example

- requirements for greedy forwarding
 - positions: own, neighbors and IGW
 - own position: GPS (already on board)
 - neighbors: Automatic Dependent Surveillance Broadcast (ADS-B) planned be on board until 2012
 - IGW: updated and stored at the airport or included in the IGWADVs
 - IGW needs position of the aircraft
 - aircraft sends position updates
 - current position is interpolated by IGW

• transmission ranges are limited

$$t = \sqrt{(r+h)^2 - r^2} = \sqrt{2rh + h^2}$$

- ground to air:

$$t \approx 368,85 \, km = 199,1 \, nmi$$

- air to air:

 $2 * t \approx 737,7 \, km = 398,2 \, nmi$

- tested transmission ranges
 - 100 nmi
 - 200 nmi

r = 6371 km (Earth radius) h = 10,668 km (flight altitude)

h

t

۲

• realistic flight-data for simulation

number of aircrafts in the NAC

- number changes during the day
- peak while rush hour
- low point when the last aircrafts arrive in America or Europe

connectivity in the NAC

- 100 nmi is not sufficient
- 200 nmi provides connectivity to nearly all aircrafts
- Scenario B is slightly better
 - additional IGWs are to far away

 $C(t) = \frac{number of connected aircrafts}{total number of aircrafts}$

• connectivity in the NAC (2)

r	100 nmi	200 nmi
р	36%	63%

p = percentage of flights with
permanent connection to IGW

- Link Stability:
 - short-time links between eastbound and westbound aircrafts
 - long-lasting links between aircrafts flying in the same direction

r	100 nmi	200 nmi
d	25,8 min	42,6 min

d = average value of link duration

- Relay Traffic Load
 - Aircrafts near the coast are often chosen as forwarders.
 - up to 5 times the traffic load
 - bottleneck of the network
 - Scenario B slightly reduces the traffic at the coast.
- Greedy Forwarding
 - Performance is measured by
 - packet delivery ratio
 - average path length

- Greedy Forwarding (2)
 - Packet Delivery Ratio
 - Defined as percentage of transmitted packets which were successfully delivered.
 - Why do packets get lost?
 - old information in the routing table
 - path to destination exists, but packet is delivered to a local maximum
 - average percentage of delivered packets from all flights:

100 nmi	200 nmi
68%	89%

- Greedy Forwarding (3)
 - Average Path Length

		100 nmi	200 nmi
Scenario A	SP	5.92 hops	3.91 hops
	GF	6.00 hops	3.93 hops
Scenario B	SP	5.74 hops	3.61 hops
	GF	5.82 hops	3.63 hops

- Greedy forwarding is on average only 0.1 hops longer.
- Scenario B reduces the average path length only by a small amount.

4. Conclusion and Review

- With a communication range of 200 nmi most of the flights have permanent connectivity.
 - but: there are flights with weak or no connectivity
- Greedy forwarding doesn't delivers all packets
 is to be improved in future research
- Bottleneck at the coast
 - is to be improved in future research
- Average number of hops is smaller than 4.
- today: separation of westbound and eastbound aircrafts[2]; therefore the simulation is not realistic.

4. Conclusion and Review

- Many questions are still open :
 - which frequencies will be used
 - different laws worldwide
 - higher frequencies are absorbed by clouds
 - aircrafts can't be all equipped at the same time.
 - → poor or not connected network
 - unlikely that every aircraft will be equipped
 - lots of different companies.

Thank you for your attention! Questions?

Seminar: Ad Hoc Networks - Konrad Meier

- [1] B. Karp and H. T. Kung, GPSR: Greedy Perimeter Stateless Routing for Wireless Networks. In Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom 2000).
- [2] Eurocontrol/FAA, Communications Operating Concept and Requirements for the Future Radio System (COCR), version 2.0, May 2007.