16. February 2009

Selection and Navigation of Mobile Sensor Nodes

Seminar: Ad Hoc Networks

Martin Przyjaciel-Zablocki

Wintersemester 2008/2009 Albert-Ludwigs-Universität Freiburg Lehrstuhl für Rechnernetze und Telematik

Overview

1. Motivation

2. Introduction

- Hybrid Sensor Networks
- Problem Formulation
- 3. Selection
 - Weight Request Packet
 - Weight Computation
- 4. Navigation
 - Credit Based Navigation Field
 - Navigating of MSN
- 5. Review

Overview

- Simulation results
- Application fields
- Conclusion

1. Motivation

Ad-hoc networks

- Static and mobile sensor nodes ⇒ dynamic topology
- Wireless
- No base stations

Tasks:

- Environmental sensing,
- Communication, computation, ...

Conditions:

- Robustness, flexibility,
- System costs, energy consumption, ...
- Problem: Find approaches with suitable tradeoffs between such conditions

Overview

1. Motivation

2. Introduction

- Hybrid Sensor Networks
- Problem Formulation
- 3. Selection
 - Weight Request Packet
 - Weight Computation
- 4. Navigation
 - Credit Based Navigation Field
 - Navigating of MSN
- 5. Review

Overview

- Simulation results
- Application fields
- Conclusion

2. Introduction: Hybrid Sensor Networks

How does the network structure look like? What are the assumptions to it?

2. Introduction Hybrid Sensor Networks

Selection and Navigation of Mobile Sensor Nodes 5

Hybrid Sensor Network

- Static Sensor Nodes
 - Static environmental sensing
 - Communication and navigation capabilities
 - Fewer resources

 (e.g. power, sensor, computation)
 - Cheap
 ⇒ good coverage

Mobile Sensor Nodes

2. Introduction Hybrid Sensor Networks

Selection and Navigation of Mobile Sensor Nodes 6

Hybrid Sensor Network

Static Sensor Nodes

- Static environmental sensing
- Communication and navigation capabilities
- Fewer resources

 (e.g. power, sensor, computation)
- Cheap
 ⇒ good coverage

Mobile Sensor Nodes

- Reallocation of resources (e.g. sensing, networking, computing)
- Collect data
- More resources

 (e.g. power, sensors, computation)
- Expensive

2. Introduction Hybrid Sensor Networks

Hybrid Sensor Network (2)

Advantages of a mixture

- Reduces the costs
- Preserves the flexibility
- Remain powerful

Assumptions:

- No prior map of environment available
- Location of Mobile Sensor Nodes (MSN) not known
- Only sensors within transmission range can communicate

2. Introduction Hybrid Sensor Networks

Overview

1. Motivation

2. Introduction

- Hybrid Sensor Networks
- Problem Formulation
- 3. Selection
 - Weight Request Packet
 - Weight Computation
- 4. Navigation
 - Credit Based Navigation Field
 - Navigating of MSN
- 5. Review

Overview

- Simulation results
- Application fields
- Conclusion

2. Introduction: Problem Formulation

>>> What are the objectives?

2. Introduction Problem Formulation

Selection and Navigation of Mobile Sensor Nodes 10

Co-operative Tasks

- Main Task
 - Environmental sensing
- Problem
 - Static Sensor Node detect an event (⇒ phenomenon)
 - Additional or more powerful capabilities are needed
- Idea: Mobile Sensor Nodes can be moved to provide assistance
- Goals: 1. Select mobile node
 2. Navigate selected mobile node to point of event

2. Introduction Problem Formulation

Example – Network

Hybrid Sensor Network [1]

2. Introduction Problem Formulation

Example – Selection

Hybrid Sensor Network [1]

2. Introduction Problem Formulation

×

Example – Navigation

Hybrid Sensor Network [1]

2. Introduction Problem Formulation

Example – Navigation (2)

Hybrid Sensor Network [1]

2. Introduction **Problem Formulation**

×

Obstacle

Overview

- 1. Motivation
- 2. Introduction
 - Hybrid Sensor Networks
 - Problem Formulation
- 3. Selection
 - Weight Request Packet
 - Weight Computation
- 4. Navigation
 - Credit Based Navigation Field
 - Navigating of MSN
- 5. Review

Overview

- Simulation results
- Application fields
- Conclusion

3. Selection

>>> Which mobile node should be selected?

How to involve every MSN?

- Assumptions (*repetition*):
 - No prior map of environment available
 - Location of Mobile Sensor Nodes (MSN) not known
 - Sensors within transmission range can communicate

Idea: Broadcast a request

The Selecting Procedure

- 1. Sensors detect an event and elect a leader
- 2. Leader broadcasts a Weight Request Packet (WREQ) into network
- 3. Every reached available MSN computes his weight value (*later*)
- 4. MSNs reply the weight back by reversing the WREQ routes
- 5. Leader selects the MSN with the least weight

Example – WREQ

Hybrid Sensor Network [1]

Example – WREQ (2)

Hybrid Sensor Network [1]

Example – WREQ (3)

Hybrid Sensor Network [1]

2. Selection Weight Request Packet

Example – WREQ (4)

Hybrid Sensor Network [1]

Example – WREQ (5)

Hybrid Sensor Network [1]

2. Selection Weight Request Packet

How to compute the weight?

- Three metrics are evaluated by MSNs:
 - Power of the MSN ⇒ battery lifetime
 - Distance between MSN and event ⇒ # hops
 - Provided coverage area by MSN ⇒ Voronoi Area

Weight = Voronoi_Area x Distance Power

How to compute the weight? (2)

- Computing Voronoi Area
 - 1. MSN broadcasts "Hello" messages with hop length
 - Recipients reply with location information (x,y)
 - 3. MSN calculates Voronoi Area

(a) MSN with 5 static sensor nodes

(c) MSN with 15 static sensor nodes

(d) MSN with 24 static sensor nodes

Voronoi Area for a MSN [1]

Selection and Navigation of Mobile Sensor Nodes 26

2. Selection Weight Computation

Overview

- 1. Motivation
- 2. Introduction
 - Hybrid Sensor Networks
 - Problem Formulation
- 3. Selection
 - Weight Request Packet
 - Weight Computation
- 4. Navigation
 - Credit Based Navigation Field
 - Navigating of MSN
- 5. Review

Overview

- Simulation results
- Application fields
- Conclusion

4. Navigation

How to guide a mobile node to an event?

4. Navigation Credit Based Navigation Field

Selection and Navigation of Mobile Sensor Nodes 28

How to navigate a mobile node?

Tasks:

- Selected mobile nodes should be guided to the point of event
- Obstacles should be avoided
- The moving distance should be as short as possible

• Assumption:

- The request packets form WREQ followed the shortest path
- Idea: Build a path along the WREQ route

Building up a Navigation Field

- Build a credit based navigation field from leader to selected mobile node
 - 1. Leader node's credit value C_1 is set as highest
 - 2. This node broadcasts an advertisement packet (ADV) with C_1
 - 3. Recipient nodes set their credit value C_2 such that $C_2 < C_1$
 - 4. From all recipients only nodes from WREQ route proceed broadcasting according to the leader node
 - 5. Process continues creating this credit hierarchy till ADV packet reaches the MSN

Example – Navigation Field

Leader node's credit value C_1 is set as highest

Shortest WREQ path

🇯 Mobile Sensor Node

Obstacle

Credit Navigation Field [1]

4. Navigation Credit Based Navigation Field

Example – Navigation Field (2)

Credit Navigation Field [1]

Example – Navigation Field (3)

Credit Navigation Field [1]

Example – Navigation Field (4)

Credit Navigation Field [1]

Example – Navigation Field (5)

Credit Navigation Field [1]

Example – Navigation Field (6)

Credit Navigation Field [1]

Example – Navigation Field (7)

Credit based Navigation Field complete

 $C_1 > C_2 > ... > C_6$

S Cro Na

Credit based Navigation Field

Shortest WREQ path

Mobile Sensor Node

Obstacle

Credit Navigation Field [1]

4. Navigation Credit Based Navigation Field

How can a MSN use the field?

- Guiding the MSN to the event with the credit based navigation field
 - 1. Broadcast a Navigation Request (NAV)
 - 2. Collect all credit field values and location information from neighbors
 - 3. Select node with max credit value and update value of MSN
 - 4. Compute the direction with the collected information and move
 - If value of MSN ≠ value of leader sensor node:
 ⇒ Return to step 1

Else:

⇒ Stop, point of event reached

4. Navigation Navigating of MSN

Example – Navigating of MSN

Credit Field Values:

$$C_1 > C_2 > ... > C_7$$

Calculated moving direction Information provided by the sensor nodes

Static Sensor Node with credit value

Mobile Sensor Node

4. Navigation Navigating of MSN

Overview

- 1. Motivation
- 2. Introduction
 - Hybrid Sensor Networks
 - Problem Formulation
- 3. Selection
 - Weight Request Packet
 - Weight Computation
- 4. Navigation
 - Credit Based Navigation Field
 - Navigating of MSN
- 5. Review
 - Simulation results
 - Application fields
 - Conclusion

Review

>>> What have been verified by the authors?

5. Review **Simulation Results**

Selection and Navigation of Mobile Sensor Nodes 41

Results

Simulation Results

- Hybrid sensor network tested in a simulation environment (*Network Simulator ns-2* [2])
 - a) Uniformly distributed sensor network ⇒ passed
 - b) Randomly distributed sensor network ⇒ passed
 - c) Sensor network with a coverage hole \Rightarrow passed

Application Fields

- Environment observation
 - Weather, Water level, Movement
- Habitat monitoring
 - Fire, Temperature, Health
- Military applications
 - Battlefield surveillance, Reconnaissance, Enemy tracking

Conclusion

- Credit Field approach can be used for navigating mobile sensor nodes thru a hybrid network of mobile and static sensors with:
 - No prior information about location or quantity of MSNs
 - No prior map of environment
- Only Obstacles less than the transmission range of sensor nodes are avoided
- Introduced techniques seems to provide a suitable tradeoff between flexibility, overall system costs and energy consumption
- Only simulation tests performed

5 Review

Conclusion

Thanks for your attention

Any questions?

- 1. Motivation
- 2. Introduction
 - Hybrid Sensor Networks
 - Problem Formulation
- 3. Selection
 - Weight Request Packet
 - Weight Computation

- 4. Navigation
 - Credit Based Navigation Field
 - Navigating of MSN
- 5. Review
 - Simulation results
 - Application fields
 - Conclusion

6. Thanks

Sources

[1] Selection and Navigation of Mobile Sensor Nodes Using a Sensor Network,

- Atul Verma, Hemjit Sawant and Jindong Tan,
- in the proceeding of IEEE Percom 2005.
- [2] Network Simulator ns-2
 - 2009.02.09: http://nsnam.isi.edu/nsnam/index.php/User_Information