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Abstract Teams of multiple mobile robots may com-

municate with each-other using a wireless ad-hoc net-
work. Fault-tolerance in communication can be achieved

by making the communication network bi-connected.

We present the first localized protocol for constructing

a fault-tolerant bi-connected robotic network topology

from a connected network, in such a way that the total
movement of robots is minimized. The proposed dis-

tributed algorithm uses p-hop neighbor information to

identify critical head robots that can direct two neigh-

bors to move toward each other and bi-connect their
neighborhood. Simulation results show that the total

distance of movement of robots decreases significantly

(e.g. about 2.5 times for networks with density 10) with

our localized algorithm when compared to the existing

globalized one. Proposed localized algorithm does not
guarantee bi-connectivity, may partition the network,

and may even stop at connected but not bi-connected

stage. However, our algorithm achieved 100% success

on all networks with average degrees ≥ 10, and over
70% success on sparse networks with average degrees

≥ 5.
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1 Introduction

With significant advancements in robotics technology

and the emergence of a large number of applications

for multi-robot systems, the problem of coordinating

between a group of autonomous robots has become an
issue of great importance. In such robot systems, coor-

dination between individual robots is essentially accom-

plished through a wireless ad hoc network. For exam-

ple, coordination of robotic relay stations was studied
in [5] to maintain communication between an explorer

and a base station. Application of mobile robotics is

vast. Potential applications include military missions,

unmanned space exploration, and data collection in sen-

sor fields. But for such applications, coordination of
a robot team in pursuit of common task is essential.

Existing algorithms for mobile robots coordination are

suitable for robots with no or very low failure rates.

However, when robots are susceptible to failures, as in
many applications, it is critical for robotic networks

to incorporate the ability to sustain faults and oper-

ate normally. Communication faults in robot networks

can be caused by hardware damage, energy depletion,

harsh environment conditions and malicious attacks. A
fault in a robot can cause stopping transmission tasks

to others as well as relaying data to sink. Data sent by a

robot will be lost if the receiving robot fails. So, a com-

munication link failure on a route requires data to be
re-routed. That is, in order to handle general communi-

cation faults, there should be at least two node-disjoint

paths between each pair of robots in the network. A
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network is defined to be bi-connected if there exist

two node-disjointed paths between any pair of nodes

in the network, i.e., the removal of any node from the

network leaves the network still connected. Therefore,

bi-connectivity is the basic requirement for design of
fault-tolerant networks [9].

In this paper, we focus on mobile robot networks

and study movement control of robots to establish a

fault-tolerant bi-connected network. The robot network
is assumed to be connected, but not necessarily bi-

connected. Achieving connectivity in a disconnected net-

work is difficult due to the lack of communication be-

tween the disconnected parts. However, if the network

is already connected, we can make it bi-connected (and
thus fault-tolerant) by movement of selected robots. Re-

cent work in [2] has shown that fault tolerance can be

achieved through globalized robot movement control al-

gorithm. It is a centralized algorithm that assumes one
of robots or a base station has global information of the

network. We focus on the localized version of movement

control algorithm for building a fault-tolerant robot

network. To the best our knowledge, this is the first

work on localized movement control for fault tolerance
of mobile robot networks.

The rest of the paper is organized as follows. Related

work is introduced in Section 2. We propose a localized

movement control algorithm to construct bi-connected
mobile robot networks in Section 3. Results obtained

from extensive simulations are provided in Section 5

to show the effectiveness of our algorithm. Finally we

conclude our work in Section 6.

2 Related Work

Many topology control algorithms have been proposed

to achieve network reliability in static networks. These

algorithms cope with preserving fault tolerance by se-
lecting certain links to neighbors in an already well con-

nected network. The problem of adjusting the transmit

power of nodes to create a desired topology in mul-

tiple wireless networks was studied in [10]. For static
networks, two centralized algorithms were proposed to

construct connected and bi-connected networks while

minimizing the maximal transmission power of nodes.

Two distributed heuristics were further proposed for

mobile networks. The basic idea is to adaptively adjust
node transmit power according to topological changes

and attempt to maintain a connected topology with the

minimum power. A more general case for k-vertex con-

nectivity of wireless networks was studied in [7]. Both
a centralized algorithm and a localized algorithm were

proposed. Both above works assumed that nodes have

uniform transmission range. That is, they focused on

homogenous networks. Topology control in heteroge-

neous wireless networks was discussed in [7]. Two lo-

calized algorithms were proposed. It was proved that

the topologies generated by the proposed algorithms

preserve bi-connectivity of networks. An extension of
cone-based topology control algorithm was proposed

in [1]. Each node decides its own power based on lo-

cal information about relative angle of its neighbors. It

showed that a fault-tolerant network topology is achiev-
able and transmission power of each node is minimized

to some extent. The proposed algorithm can be ex-

tended to 3-dimensions. All these works on topology

control to construct fault-tolerant networks by adjust-

ing transmit power of nodes. Movement of nodes is not
a controllable parameter even in the works where mo-

bile networks are considered.

Significant amount of work has been done in coordi-

nating teams of mobile robots or actors. However, little
attention was paid to incorporate fault tolerance into

these robotic networks. For example, Dynia et al. [5]

studied the problem of maintaining communication be-

tween an explorer robot and base station by moving

other robots along the path.

Mobile robot network can be represented as a graph,

where each node is a mobile robot and each edge de-

notes a communication link between a pair of robots.

In a connected graph, a node is called a critical node

if the graph is disconnected without the node. There

are no critical nodes in a bi-connected graph. So, criti-

cal nodes are important in designing movement control

algorithms to achieve bi-connected networks. Jorgic et

al. [6] proposed an approach for localized p-hop criti-
cal node detection. To find if a node is critical in the

network, a sub-graph of p-hop neighbors of the node

is considered. From this sub-graph, the node itself and

all its incident edges are excluded. If this resulting sub-
graph of p-hop neighbors of a node is disconnected by

excluding the node, then the node is critical. Since only

local topological information is used, it is specified as

p-hop critical node as it may not be globally critical.

However, all the globally critical nodes are always p-
hop critical for any value of p. As seen in Figure 1, the

nodes A, B, and C are 2-hop critical nodes in the given

network. We can also notice that nodes A and B in

Figure 1 are only 2-hop critical nodes and are not glob-
ally critical. However, node C is globally critical in the

network and is also 2-hop critical. Experiments showed

that over 80% of locally estimated critical nodes and

links are indeed globally critical [6].

Our problem is most related to the problem dis-
cussed by Basu and Redi [2], where movement control

algorithms for fault-tolerant robot networks were pro-

posed. In these algorithms, each mobile robot was as-
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Fig. 1 An example of a network containing critical nodes.

sumed to be aware of global network topology. Based on

the topological information, robots decide on their new
position, which would thereby create a fault-tolerant

network. The goal of these algorithms was to minimize

the total distance travelled by all the robots. The au-

thors further proposed an approximation algorithm for
two dimensional cases. The basic idea was to divide

a network into bi-connected blocks. The network is a

block tree of these blocks. A block with maximum num-

ber of robots acts as the root of the tree. Algorithm

works iteratively merging the blocks to form a single
bi-connected block. Merging of the blocks is performed

by block movement where each leaf block is moved to-

wards its parent. If parent block is empty then leaf block

is moved towards a critical node. After each iteration,
robot connectivity is recalculated and block tree is re-

constructed as well. However, the proposed algorithms

require accurate and global information of entire net-

work. It is applicable to only small size networks. For

large scale networks, not only is global network infor-
mation hard to obtain and maintain, but also the total

distance of movements and the communication over-

head on robots increase rapidly.

3 Localized Movement Control

In this section, we propose a localized movement control

algorithm for fault tolerance of mobile robot networks.
To the best of our knowledge, it is the first localized

movement control algorithm to achieve bi-connected

network topologies. For simplicity, we use a node to

denote a mobile robot for the rest of paper. We assume

that all nodes in the network have a common commu-
nication range r. We further assume that each node has

information of its p-hop neighbors. It can be achieved

by exchanging or relaying HELLO messages periodi-

cally within p-hops. To reduce exchange packets and
collisions, we assume there is no RTS / CTS mecha-

nism for transmissions of control packets. The network

is assumed to be connected but not bi-connected. The

problem of our concern is to control movement of nodes,

such that the network becomes bi-connected. The ob-

jective is to minimize the total distance moved.

The distributed algorithm is executed at each node

and starts as follows. At initialization stage, each node

checks whether it is a p-hop critical node [6]. We define

the p-hop sub-graph of a node as the graph which

contains all nodes that are within p-hops from the node
and all corresponding links. A node is said to be a p-

hop critical node if and only if its p-hop sub-graph

is disconnected without the node. Since each node is

assumed to have knowledge of its p-hop sub-graph, it is
able to determine whether it is a p-hop critical node. If

a node finds itself a p-hop critical node, it broadcasts a

critical announcement packet to all its direct neighbors.

To make the network bi-connected, all critical nodes

should become non-critical by movement of nodes. Note

that the movement of a node may create new neighbors,

but it may also break some existing links. Since a criti-

cal node is the node that leaves its p-hop sub-graph dis-
connected without itself, breaking some current links of

a critical node may cause disconnection of the network.

However, for a non-critical node, the network remains

connected if one of its current links is broken. Our ba-
sic idea of movement control is to move non-critical

nodes while keeping critical nodes static (these nodes

may later become non-critical). Depending on the num-

ber of critical neighbors of a critical node, we have the

following three cases:

1. A critical node that does not have any critical neigh-

bors.

2. A critical node that has exactly one critical neighbor
3. A critical node that has two or more critical neigh-

bors.

We now consider each of these cases separately and

describe the behavior of our algorithm in each scenario.

3.1 Case I: Critical node without critical neighbors

In this case, a node finds itself a p-hop critical node

and does not receive any critical announcement packet

from its neighbors. Since it is a critical node, its p-hop

sub-graph can be divided into two (or more) discon-

nected sets (when the node is excluded from the graph).
The basic idea is to select two neighbors from two such

disjoint sets and move them towards each other until

they become neighbors. Suppose distance between the

two neighbors is d. Each node should move (d − r)/2
directly towards the other node to reach each other.

To minimize the total distance of movement of nodes,

two neighbors with the minimum distance d among all
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possible pairs in the two sets are selected. The criti-

cal node sends these two neighbors a movement control

packet containing their new locations. The two neigh-

bors move to their new locations once the movement

control packet is received. Note that a non-critical node
may have several critical neighbors and it may receive

multiple movement control packets from different crit-

ical nodes. Node IDs are used to assign priorities to

critical nodes. Therefore, if a non-critical node receives
more than one movement control packets, it always fol-

lows direction of the critical node having the largest

ID. Note that there is no RTS/CTS mechanism in the

network. The critical nodes with smaller IDs do not

know and have no need to track the movement of their
non-critical neighbors after sending movement control

packets.

After movement of nodes, any node that loses a cur-

rent neighbor, or finds a new neighbor, broadcasts a
topology updated packet to its neighbors. This packet

will be relayed hop by hop to reach p-hops neighbors

of the sender. Each node receiving a topology update

packet updates its p-hop sub-graph and checks its new

status. A new iteration of movement control begins.
The movement control algorithm for case 3.1 is illus-

trated with the following example.
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Fig. 2 Critical node without critical neighbor.

Consider the example shown in Figure 2, where node

3 in grey color is critical node and nodes 1, 2, 4, 5, 6, 7,
8 in white color are non-critical nodes. Suppose p = 2

in this example. Since node 3 is critical, its 2-hop sub-

graph is divided into two disjointed sets A = {1, 2, 4, 5}

and B = {6, 7, 8}. Suppose distance of node 5 and 8 is
the minimum among all possible pairs in these two sets,

i.e. d(5, 8) ≤ d(x, y), ∀x ∈ A, y ∈ B. Node 3 computes

new locations of node 5 and node 8 and sends movement

control packets to them. Final locations of node 5 and

node 8 are shown in Figure 2.

3.2 Case II: Critical node with one critical neighbor

In this case, there are two adjacent critical nodes and

each critical node has only one critical neighbor. Note

that, in such case, both nodes have non-critical neigh-

bors, since otherwise node without any non-critical neigh-

bor will be left with a single neighbor (the other critical

node), which means that it will not be critical in the

first place, according to the definition (which requires
the existence of two disconnected components of neigh-

bors after the node is removed).

Suppose the two adjacent critical nodes are node 4

and node 5, and ID of node 5 is larger than ID of node 4.
Our basic idea is to let the critical node with larger ID,

node 5 in this case, select one of its non-critical neigh-

bors to move towards the other critical node, node 4.

Similar to case 3.1, node 5 divides its p-hop sub-graph

into two disjointed sets. Node 4 is contained in one of
the two sets. Node 5 searches the other set and selects

one of its non-critical neighbors that is the nearest to

node 4. Suppose distance between the selected neighbor

and node 4 is d. The selected neighbor should move dis-
tance d− r to reach node 4 since critical nodes are not

allowed to move, to avoid disconnection of networks.

Node 5 computes new location of its moving neighbor

and sends it a movement control packet. The neighbor

moves to its new location after receiving the movement

control packet. Similar to case 3.1, node ID’s are used

to break the tie when a non-critical node receives mul-

tiple movement control packets. After this move, one of

critical nodes may become non-critical, and in the next
iteration the movement control algorithm for case 3.1

may be applied. Similar to case 3.1, topology update

and checking status operations will start after move-

ment of nodes. The algorithm for case 3.2 is illustrated

with the following example.
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Fig. 3 A critical node with only one critical neighbor.

Consider the example in Figure 3, where nodes 4

and 5 in grey color are critical nodes and nodes 1, 2, 3,
6, 7, 8 in white color are non-critical nodes. Since ID of

node 5 is larger than ID of node 4, node 5 leads move-

ment control. Suppose p = 2 again. Node 5 divides its

2-hop sub-graph into two disjoint sets A = {1, 2, 3, 4, 6}
and B = {7, 8}. Suppose distance of node 4 and 7

is the minimum among all neighbors in B. That is,

d(4, 7) ≤ d(4, x), ∀x ∈ B. Node 5 computes new loca-
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tion of node 7, and sends it a movement control packet.

Final location of node 7 is shown in figure 3.

Note that this movement may not resolve the prob-

lem completely. For example, in this case node 8 may

become disconnected from node 7. However, this will
be further considered in the next iteration of the same

algorithm.

3.3 Case III: Critical node with several critical
neighbors

In this case, some critical nodes have more than one

critical neighbor. Note that each node sends a critical

announcement packet to all its direct neighbors if it

finds itself to be a p-hop critical node. After that, all

nodes in the network know the status of their neigh-
bors. We say that a critical node is available if it

has non-critical neighbors and is non-available oth-

erwise. Thus available critical nodes have non-critical

neighbors that are able to move without causing parti-
tioning. An available/non-available critical node broad-

casts an available/non-available announcement packet

to its neighbors. A critical node declares itself a criti-

cal head if and only if it is available and its ID is larger

than the ID of any available critical neighbor, or has no
available critical neighbors. Our basic idea for general

cases is to use the pair wise merging strategy. Simula-

tion results show that this strategy can efficiently and

quickly construct a bi-connected network. Each critical
head selects one of its critical neighbors to pair with.

Any criterion for selecting will work. To be determin-

istic, we decide that available critical neighbor (if any)

with largest ID is selected, or otherwise non-available

critical neighbor with the largest ID. Then the move-
ment control algorithm for case 3.2 is called for each

pair to compute the new topology.

5 4 32 1

6

Fig. 4 Critical node with several critical neighbors.

Consider the example in figure 4, nodes 1, 2, 3, 4,
5, 6 in grey color are critical nodes (dashed block with

a node is sub-graph of this node). Among these criti-

cal nodes, only nodes 1, 5, 6 are critical heads. Node 1

becomes a critical head since node 3 is non-available. Fi-

nally, there are three pairs: (1,3), (5,4) and (6,4), dom-

inated by nodes 1, 5, and 6, respectively. Each critical

head in a pair calls the movement control algorithm for

case 3.2 to merge the pair. Note that some nodes may
receive several new neighbors at once, like node 4 in

this example.

One can expect that the network density would in-

crease after merging. Pair-wise merging continues until
all critical nodes become non-critical, i.e., the network

becomes bi-connected. Note that a critical head domi-

nates a pair to merge at each time. No action will be

taken if there are no critical heads in the network. So

the question that we need to answer is, whether there al-
ways exist critical heads in a network that is connected

but not bi-connected.

2G

3G

1G

v 1 v 0

Fig. 5 Node v1 partitions the graph into two disjoint compo-
nents, one of which must be strictly smaller than G1.

Lemma 1 Any globally connected network has globally

non-critical nodes.

Proof The proof is by contradiction. Let us assume, on

the contrary, that all nodes in the connected graph G

are globally critical nodes. Thus, for any node v of graph
G, the removal of v partitions G into at least two dis-

joint components. We define N(v, G) as the number of

nodes in the smallest component by removing v from

graph G. Suppose v0 is the node whose removal results
in the smallest component, i.e. N(v0, G) ≤ N(v, G) for

any v ∈ G. Let G1 denote the smallest component after

removing v0 (see Figure 5). That is, N(v0, G) = |G1|.

We arbitrarily select one of v0’s neighbors in G1, say v1.

Note that v1 is critical node. Removing v1 results in at
least two disjoint components. One of these components

that contains v0 is guaranteed to contain all nodes in

(G\G1). It is because G1 and ((G\G1)\ {v0}) are two

disjoint components, and there is no edge between v1

and any node in G \ G1 \ {v0}. Therefore, the number

of nodes in the component that contains v0 is at least

|G \G1|. It means that any other component that does
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not contain v0 has a size smaller than |G1|. That is,

N(v1, G) < |G\ (G\G1)| = |G1| = N(v0, G). It contra-

dicts the assumption that N(v0, G) ≤ N(v, G) for any

v ∈ G.

Note that this theorem is not valid if applied to p-

hop criticality. That is, there are connected networks
without any p-hop non-critical nodes. Consider a large

ring for example. All nodes in this ring are globally non-

critical. However, for small p (less than half ring size),

all nodes are critical, and thus such rings do not have
p-hop non-critical nodes.

Theorem 1 If the network is globally connected but

not bi-connected then it has a p-hop critical head for

sufficiently large p.

Proof Since the network is not bi-connected, it has glob-

ally critical nodes. Each globally critical node v has

N(v, G) as defined in the proof of Lemma 1. Let v0

be such a node which minimizes N(v, G). Let G1 de-

note the smallest component after removing v0 (see Fig-

ure 5). We arbitrarily select one of v0’s neighbors in G1,

say v1. We observe that v1 is not a globally critical node.

Otherwise, following the proof of Lemma 1, we will get
a contradiction. Therefore v1 is globally non-critical-

node, and thus p-hop non-critical for sufficiently large

p. Then v0 is p-hop critical head and theorem is proven.

Note that, however, Theorem 1 may not be true

when p is a fixed small number. Consider, for example,

two large rings with a single common node v0. The net-
work is not bi-connected because of node v0. However

all nodes are p-hop critical and therefore none of them is

available, and the network does not have critical heads.

3.4 An example

We now present a concrete example to illustrate the

proposed algorithm. For this example, we use a small

field of size 20m x 20m with only 12 mobile nodes. The

nodes were placed randomly, until we obtained a con-
nected but not bi-connected network. The initial loca-

tions of the robots is shown in Figure 6(a). Notice that

there are three critical nodes (marked with a darker

color) in this example, nodes 0, 4 and 9. Each of these

nodes has only non-critical neighbors (i.e. Case I applies
here). Thus, according to our algorithm, each of these

critical nodes asks some of their neighbors to move to

new locations. Node 0 asks node 5 and node 7 to move

towards each-other, node 4 asks nodes 3 and 10 to move
towards each other, and node 9 asks nodes 2 and 11 to

move towards each other. Thus, after the first itera-

tion, nodes 4 and 9 are no longer critical, but node 5

becomes critical due to its movement (see Figure 6(b)).

At this stage, there are two critical nodes (nodes 0 and

5) connected to each other. In the next iteration, node

5 (which is the larger one in the pair) asks one of its

neighbors (node 1) to move toward node 0 converting
it into a non-critical node (Figure 6(c)). Finally in the

third iteration, the only remaining critical node (node

0) asks its two non-critical neighbors (nodes 6 and 7)

to move towards each other, and now the network be-
comes fully bi-connected as shown in Figure 6(d). Thus,

the algorithm achieves bi-connectivity in only three it-

erations (in this example) and in each iteration only a

few nodes are moved.

4 Maintaining Connectivity

As seen in the example from the last section, the move-

ment of robots may sometimes break existing links in

the network. The important question is whether such
movements can cause the network to become discon-

nected. Notice that, in our algorithm, we move only

non-critical. Controlled movement of a single non-critical

node will never cause disconnection of the network.

However, the network may be disconnected when multi-
ple non-critical nodes move concurrently. For example

consider the network represented by the graph G in

Figure 7.

G’

2

1 3

5

4

6

(p−1) hops

Fig. 7 The simultaneous movement of node-1 and node-2 dis-

connects the graph G.

Here node 3 and node 4 are connected by a path of

p− 1 hops (shown as a dashed line in the figure). Note

that nodes 3 and 4 are globally critical and thus would
be identified as p-hop critical nodes. For p ≥ 2, nodes

5 and 6 are identified as non-critical. For p ≥ 3, nodes

1 and 2 are also identified as non-critical. This may
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Fig. 6 An illustrative example

not be immediately evident, but can be easily verified.
Consider for example the p-hop neighborhood of node

1 (with p ≥ 3). Notice that there are two distinct paths

of length at most p from node 1 to node 4. In other

words, there are cycles within the p-hop neighborhood

subgraph of node 1. All the neighbors of node-1 are
part of some such cycle. Thus, node 1 identifies itself as

locally non-critical. A similar case holds for node 2.

Let us assume that p ≥ 3 and consider how our algo-

rithm behaves in this case. According to our algorithm,
node 3 which is critical will ask the non-critical nodes

1 and 5 to move towards each other. Similarly node 4

which is also critical may ask nodes 2 and 6 to move

towards each-other. Each of these movements in itself
will not cause disconnection of the network. However if

nodes 1 and 2 both move at the same time (i.e. in the

same iteration) then the links between the subgraph

G′ and these two nodes (nodes 1 and 2) would be si-

multaneously broken. Thus, the subgraph G′ would be
disconnected from the rest of the graph.

A cut in a connected graph G is a set of edges

C = {e1, e2, . . . , et} such that G \ C is disconnected.
To prevent the network from becoming disconnected,

we need to ensure that all edges belonging to a cut are

not simultaneously broken. Note that when the nodes

2G
1G

u

Fig. 8 The cut in the graph G divides it into subgraphs G1 and
G2.

have only p-hop information, it is not possible to iden-

tify the cuts in the network. A node can only identify
the local cuts in the p-hop subgraph. However, all local

cuts are not global cuts for the network.

Lemma 2 Any global cut in a graph includes at least

one p-hop local cut, for any value of p.

Proof Suppose G is graph having a global cut C =
{e1, e2, . . . , et} which divides the graph into two com-

ponents G1 and G2 (see Figure 8). Let u be a vertex

in G1 incident to edge e1. Consider the set Cu of edges
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in the p-hop neighborhood of u that belong to C. Note

that Cu forms a local cut in the p-hop neighborhood

subgraph of u i.e. Cu is a p-hop local cut. However, Cu

is a subset of C by definition. This proves the result of

the lemma.

Based on the above result, one approach to guar-

antee connectivity would be to ensure that no local

cuts are broken during the movement. Thus, whenever
a critical node decides to ask some robot to move, it

would first have to communicate and obtain a permis-

sion from all other nodes in the p-neighborhood before

asking any robot to move. For example, in Figure 7,

node 3 needs a permission from node 4 before asking
robot 1 to move. So, there would be a large communi-

cation overhead for each decision taken by a robot. For

instance, for a network of average degree 10 and p = 3,

a node needs to communicate with 1000 nodes before
reaching any decision. Further this approach does not

guarantee the progress of the algorithm. We thus use

a much simpler algorithm where each node takes a de-

cision based on the available local information with-

out any further communication. This algorithm does
not guarantee preservation of connectivity in all cases,

but it is much more efficient. In fact, it is hardly possi-

ble for any localized algorithm to maintain connectivity

while moving nodes, without incurring significant com-
munication costs. However, it is encouraging that, in

our simulations, the proposed localized algorithm was

always successful on construction of bi-connected net-

work topologies, provided that the initial network was

sufficiently dense.

5 Performance Analysis

We tested the performance of our algorithm in a sim-

ulated environment and analyzed its efficiency with re-

spect to the distance traveled metric. We also performed
comparisons with the existing algorithm that uses global

information [2] henceforth called the globalized algo-

rithm. In all our simulations, the proposed algorithm

was 100% successful, achieving bi-connectivity of the

network within a few iterations, in most cases.

5.1 Simulation Environment

The results presented in this paper are based on sim-

ulations performed at the application layer, assuming

an ideal MAC layer underneath, with no communica-
tion loss and instantaneous delivery of messages. In the

following, we use n to denote the size of the network

i.e. the number of nodes in the network. The network

density d is measured as the average degree of a node in

the network. It depends both on the network size and

on the area of the sensing field. For most of the exper-

iments, we maintained network density of d ≈ 10 (i.e.

an average of 10 neighbors per node). We performed
experiments varying the number of nodes in the sensor

field while scaling the sensor field size accordingly. We

considered sensor fields with an area from 300 m2 (for

n = 10) to 3000 m2 (for n = 100) and the communica-
tion range of all the nodes were set to 10m. Nodes were

placed randomly within the sensor fields, at the rate of

1 node per 30m2 which ensures an average of around 10

neighbors per sensor node. We also evaluated the per-

formance of our algorithm for various values of p, by
varying the knowledge range of the robots while keep-

ing the network size fixed. Finally we also performed

some simulations on networks of smaller densities. This

was done by scaling the area of the sensing field while
keeping the network size constant.

The networks used in the simulations were gener-

ated by randomly placing nodes within the sensing field.

From such randomly generated networks, we selected

the ones which were connected but not bi-connected
and this set of networks were used in our experiments.

For each experiment and each set of parameters, we ex-

ecuted the algorithm on 100 different networks and the

averaged results are presented below. We assumed that
each mobile robot has initial knowledge of its own po-

sition and can obtain information from its p-hop neigh-

bors. We also assumed that a robot can freely move

from one position to another within the sensor field

(i.e. there are no physical obstacles in the sensor field).

5.2 Effect of Knowledge Range

The value of p affects the performance of our algorithm

to a great extent. If p is small, each node has knowledge
about its immediate neighborhood only. Many nodes

which are not globally critical may be identified as crit-

ical nodes within the p-hop neighborhood.

This results in some unnecessary movement of robots
which may be avoided by increasing the knowledge range

(i.e. increasing p). We tested our algorithm for various

values of p ranging from 2 to 6, on networks obtained

using the method described above. Other parameters

were kept same as mentioned in section 5.1. Thus, we
used networks on size n = 10 to n = 100, keeping the

network density reasonably fixed at d ≈ 10.

The simulation results for various values of p are

shown in Figure 9. The figure also show the number of
nodes that were identified as critical at the beginning

of the algorithm. As expected, using a larger p-value

increases the efficiency of the algorithm because less
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Fig. 9 Total distance traveled and number of critical nodes of our protocol for various values of p and n, for d = 10

nodes are identified as critical (see Figure 9(b)) and

thus, the algorithm makes less movement. However no-
tice that the amount of communication between nodes

grows as a factor of ∆p as the value of p increases (where

∆ is the average degree of the network). Thus, we would

like to choose a value of p which is as small as possi-
ble, without compromising too much on the efficiency

of the algorithm in terms of the movement of robots.

The results obtained from simulations show that there

is large difference in efficiency of the algorithm when

using 2-hop information as compared to the case when
p ≥ 3. So, it is best to use the value of p = 3 to opti-

mize both the amount of movement and the amount of

communication performed during the algorithm.

5.3 Comparison with the Globalized Algorithm
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Fig. 11 Critical node identification by the two algorithms in
networks of various sizes

We now present results of comparison between the

performance of our algorithm with that of the global-
ized algorithm. For these set of experiments, we used

the value of p = 3 which gives the best results, as men-

tioned in the previous section. As before, we considered

networks of size n = 10 to n = 100, with constant net-
work density of 10. In each case, we executed both the

globalized algorithm and our localized algorithm (with

p set to 3) on the same set of networks obtained us-

ing the method described above. Figures 10 (a) and

(b) show the average and worst case behavior of the
two algorithms, in terms of the distance traveled met-

ric. Our proposed algorithm outperforms the globalized

algorithm significantly in all cases. In our algorithm,

in each iteration, individual nodes are moved towards
each other instead of moving blocks of nodes together

as in the case of the globalized algorithm. This results

in great performance improvement as can be seen from

the simulation results. Notice that, since our algorithm

uses only local information to identify the critical nodes,
it would identify more nodes as critical nodes as com-

pared to the globalized algorithm. Figure 11 shows the

average values for the number of nodes that were ini-

tially identified as critical by our localized algorithm us-
ing local information up to p = 3 hops. This compares

favorably with the actual number of critical nodes for

the same networks as computed by the globalized algo-

rithm. In other words, our localized algorithm did not

identify too many globally non-critical nodes as critical,
which suggests that using only local information is not

too harmful in general, for identifying critical nodes.
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Fig. 10 Comparison of the two algorithms in networks of various sizes (but constant network density d = 10). (a) Average case (b)
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Fig. 13 Comparison of the two algorithms in (a) networks of various densities (b) networks of high density only.
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5.4 Performance on sparse networks

When the network is sparse, distances between the robots

are larger. So, robots are expected to move more for

sparser networks. We performed some experiments to
test how our algorithm scales to this situation. We cre-

ated networks of various densities ranging from 5 to 12

and compared the performance of the two algorithms

on these networks. For this set of experiments, the net-
work size was fixed at n = 100 and the area of the

sensor was scaled appropriately to obtain networks of

various densities. All other parameters were same as

before. The value of p was set to 3, as explained earlier.

Unfortunately our localized algorithm was not al-

ways successful for sparse networks (i.e. for networks
with average degree less than 10). Figure 12 shows the

success rate of our algorithm on networks of differ-

ent densities. The algorithm was tested on 100 ran-
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domly generated connected but non-bi-connected net-

works (for network densities d = 5 to 12) and we counted

the number of times our algorithm was successful in

achieving biconnectivity within 50 iterations. As shown

in the figure, the algorithm was successful for all test
runs on networks with average degree 10 or more. It is

encouraging to see that even for the sparsest networks

studied (d = 5), the algorithm succeeded in 74% of the

cases.
In terms of the distance traveled metric, our lo-

calized algorithm still outperforms the globalized al-

gorithm on the successful runs. Figure 13 shows the

distance traveled by the robots during successful execu-

tions of our algorithm as compared to those for the glob-
alized algorithm executed on the same set of networks.

As the network becomes sparser, the values for the dis-

tance traveled metric increases drastically as shown in

Figure 13(a). The same results are shown at a differ-
ent scale in Figure 13(b) to highlight the fact that dif-

ferences in performance of the two algorithms are still

significant if we consider only the dense networks (e.g.

for d=10, the globalized algorithm performs 2.5 times

worser than our localized algorithm). These experimen-
tal results show that our algorithm is more efficient than

the globalized algorithm in all cases (considering only

the successful runs). In fact for sparse networks (i.e.

network densities 5 or 6), there is a significant improve-
ment in the performance of our algorithm with respect

to the globalized algorithm.

6 Conclusions and Future Work

In this paper, we proposed a localized movement con-

trol algorithm to construct a fault-tolerant mobile robot

network. We presented simulations results to show the

effectiveness of our algorithm and its efficiency in terms

of success rate and the total distance traveled by the
robots. The simulations results for randomly generated

connected networks show that our localized movement

control algorithm significantly outperforms its global-

ized counterpart. It is interesting to note that, in most
cases, the use of local information (in fact, information

about 3-hop neighbors only) is sufficient to convert the

network to a bi-connected one in an efficient manner.

Thus, global information about the network is not nec-

essary to achieve bi-connectivity. The results shown in
this paper are for networks obtained by randomly scat-

tering robots on fixed region and then selecting those

which satisfy the condition of connectivity and non-bi-

connectivity. On this class of graphs, the proposed algo-
rithm was successful in the construction of bi-connected

topologies in most cases, while failing only for a few

sparse graphs.

In future, we would like to identify the classes of

networks for which our algorithm fails and propose im-

provements to deal with these difficult cases. An in-

teresting open problem is to determine if there exists

any localized algorithm that guarantees bi-connectivity
starting from any connected network.

The localized algorithm proposed in this paper achieves

fault-tolerance by converting a connected network to

bi-connected one. In case the original network is dis-
connected, the algorithm can be used to make each con-

nected component fault-tolerant. However, the problem

of constructing a connected and fault-tolerant network

starting from a disconnected network is much more dif-

ficult and would be considered in the future.

We are also investigating on applications of mobile

robots in (possibly heterogeneous) sensor networks, as

data collectors and actors. In these applications, sensor

field coverage is an important metric for the algorithm

and would be the topic for future work. In particu-
lar, both globalized and localized algorithms may suffer

from tendency of mobile robot to bi-connect by moving

toward the center of the network. This may leave bor-

der area in sensor networks unattended by any robot.
Therefore, another criterion will be added in the future

research, the preservation of area coverage and certain

functionalities, while attempting to bi-connect.
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