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Abstract. Unlike traditional multihop forwarding among homogeneous
static sensor nodes, use of mobile devices for data collection in wireless
sensor networks has recently been gathering more attention. It is known
that the use of mobility significantly reduces the energy consumption
at each sensor, elongating the functional lifetime of the network, in ex-
change for increased data delivery latency. However, in previous work,
mobility and communication capabilities are often underutilized, result-
ing in suboptimal solutions incurring unnecessarily large latency. In this
paper, we focus on the problem of finding an optimal path of a mobile
device, which we call “data mule,” to achieve the smallest data delivery
latency in the case of minimum energy consumption at each sensor, i.e.,
each sensor only sends its data directly to the data mule. We formally de-
fine the path selection problem and show the problem is NP-hard. Then
we present an approximation algorithm and analyze its approximation
factor. Numerical experiments demonstrate that our approximation algo-
rithm successfully finds the paths that result in 10%-50% shorter latency
compared to previously proposed methods, suggesting that controlled
mobility can be exploited much more effectively.

1 Introduction

Exploiting mobility is gaining popularity as a means to solve several issues in
traditional multihop forwarding approach in wireless sensor networks and mo-
bile ad-hoc networks. Studies have shown that mobility significantly reduces
energy consumption at each node, thus prolongs the network lifetime [1][2][3][4].
Controlled mobility, as opposed to random or predictable mobility by the classi-
fication in [5], refers to the case that the observers have the control on the motion
of mobile devices, and has the biggest potential for improving the performance
of the network. We focus on data collection application in sensor networks and
use the term “data mules” to refer to such mobile devices from now on. There
are some recent applications that employ data mules for data collection in sensor
networks, e.g., a robot in underwater environmental monitoring [6] and a UAV
(unmanned aerial vehicle) in structural health monitoring [7].
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There are some studies that analyze the use of data mules in terms of energy
efficiency [2][5][8][9]. However, in these studies, mobility and communication ca-
pabilities are often underestimated, leading to suboptimal solutions that incur
unnecessarily large latency. Some of the underestimations are: the data mule can
only move at a constant speed, the data mule needs to go to each node’s exact lo-
cation to collect data from it, the data mule needs to stop during communication
with each node, etc.

In this paper, we are interested in improving the data delivery latency in data
collection using a data mule. We achieve this through a better formulation of
the problem and an efficient approximation algorithm that finds near-optimal
solutions. To capture the mobility capability precisely, we assume that the data
mule can select the path to traverse the sensor field and also can change its speed
under a predefined acceleration constraint. As for the communication capability,
we assume that each node can send the data to the data mule when it is within
its communication range, regardless of whether the data mule is stopped or
moving. With all these assumptions together, we can formulate the problem as
a scheduling problem that has both time and location constraints. We focus on
the path selection problem in this paper. A heuristic algorithm for optimal speed
control and job scheduling can be found in [10].

Our contributions in this paper are:

– Formulating the path selection problem for data collection in sensor networks
with a data mule such that the mobility and communication capabilities are
precisely captured,

– An efficient approximation algorithm that produces near-optimal paths that
enable faster data delivery, and

– Demonstrating the validity and effectiveness of the formulation and the ap-
proximation algorithm through numerical experiments by comparing the
data delivery latency with previous approaches.

This paper is structured as follows. In Section 2 we introduce the data mule
scheduling problem and the related work. In Section 3 we give a formal definition
of the path selection problem and describe the preliminary experiments to choose
an appropriate cost metric. In Section 4 we present an approximation algorithm
and analyze its computational complexity and approximation factor. Section 5
shows some results from numerical experiments and Section 6 concludes the
paper.

2 Data Mule Scheduling

The Data Mule Scheduling (DMS) problem is how to control a data mule so
that it can collect data from the sensors in a sensor field in the shortest amount
of time. As shown in Figure 1, we can decompose the DMS problem into the
following three subproblems:

1. Path selection: determines the trajectory of the data mule; produces a set of
location jobs
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Fig. 1. Subproblems of the data mule scheduling (DMS) problem

2. Speed control: determines how the data mule changes the speed; produces a
set of jobs

3. Job scheduling: determines the schedule of data collection jobs from individ-
ual sensors

The focus of this paper is on the path selection problem. The other two problems
have been formulated as the 1-D DMS problem and we have presented an efficient
heuristic algorithm that yields near-optimal solutions [10].

Path selection is to determine the trajectory of the data mule in the sensor
field. To collect data from each sensor node, the data mule needs to go within the
node’s communication range at least once. Depending on the mobility capability
of data mule, there can be some constraints on the path, such as the minimum
turning radius.

2.1 Why Do We Minimize the Latency?

As mentioned earlier, data mules can be used as an alternative to multihop for-
warding in sensor networks. The use of data mules in collecting data introduces
the trade-off between energy consumption and data delivery latency. Our objec-
tive is to optimize this trade-off, so that energy consumption is minimized under
some latency constraint or vice versa.

Protocol designers have tried to optimize the multihop forwarding in both
energy and latency through sophisticated MAC protocols [11][12][13]. Data mule,
or its combination with multihop forwarding, is a relatively nascent area. In this
paper, we focus on the pure data mule approach, in which each node uses only
direct communication with the data mule and no multihop forwarding. Energy
consumption related to communication is already minimized in this case, since
each node only sends its own data and does not forward others’ data. Naturally,
our objective is to minimize the data delivery latency by minimizing the travel
time of the data mule.
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2.2 Example Application: SHM with UAV

Our problem formulation is based on our experience with the example applica-
tion described in [7]. It is a structural health monitoring (SHM) application to
do post-event (e.g., earthquakes) assessments for large-scale civil infrastructure
such as bridges. Automated damage assessment using sensor systems is much
more efficient and reliable than human visual inspections.

In this application, the sensor nodes operate completely passively and do not
carry batteries, for the sake of long-term measurement and higher maintainabil-
ity. Upon data collection, an external mobile element provides energy to each
node via microwave transmission, wakes it up, and collects data from it. The
prototype system uses a radio-controlled helicopter as the mobile element that
is either remotely-piloted or GPS-programmed. Each sensor node is equipped
with ATmega128L microcontroller, a 2.4GHz XBee radio, antennas for trans-
mission/reception, and a supercapacitor to store the energy. Each node has two
types of sensors. One is a piezoelectric sensing element integrated with nuts and
washers to check if the bolt has loosened. The other is capacitive-based sensors
for measuring peak displacement and bolt preload. Since the size of data from
these sensors are small, communication time is almost negligible; however, it
takes a few minutes to charge a supercapacitor through microwave transmission
in the current prototype. The team is currently investigating a new design to
improve the charging time down to tens of seconds.

The data collected by the UAV is brought back to the base station and an-
alyzed by researchers using statistical techniques for damage existence and its
location/type. Since the primary purpose of this application is to assess the
safety of large civil structures after a disaster such as an earthquake, every pro-
cess including data collection and analysis needs to be as quick as possible for
prompt recovery. Furthermore, shorter travel time is required in view of the
limited fuel on the helicopter.

Thus the goal of our formulation is to achieve data collection from spatially
distributed wireless sensors in the minimum amount of time. It also provides
another reason for using controlled mobility instead of multihop forwarding ap-
proach: simply because the SHM sensors are not capable of doing multihop
communication. Furthermore, use of UAVs implies the need for more precise
mobility model that takes acceleration constraint into consideration, as opposed
to the simple “move or stop“ model used in majority of the related work.

2.3 Related Work

The term “data mule” was coined by Shah et al. in their paper in 2003 [3]. They
proposed a three-tier architecture having mobile entities called Data MULEs
(Mobile Ubiquitous LAN Extensions) in the middle tier on top of stationary
sensors under wired access points. As we have also assumed, Data MULEs collect
data from sensor nodes when they are in close proximity and deposit it at the
wired access points. The difference is that they assumed Data MULEs are not
controllable and move randomly, so their routing scheme is rather optimistic.



390 R. Sugihara and R.K. Gupta

The use of controlled mobility in sensor networks has been studied in several
papers. Kansal et al. [5] analyzed the case in which a data mule (which is called
“mobile router” in the paper) periodically travels across the sensor field along
a fixed path. Jea et al. [14] used similar assumptions but further assumed mul-
tiple data mules are simultaneously on the sensor field. In their models, they
can only change the speed of data mule and path selection is out of scope. Path
selection problem has been considered in several different problem settings. So-
masundara et al. [8] studied path selection problem, assuming that each sensor
generates data at a certain rate and that the data mule needs to collect data
before the buffer of each sensor overflows. Gu et al. [15] presented an improved
algorithm for the same problem settings. Xing et al. [9] presented path selection
algorithms for rendezvous based approach. In these work, it is assumed that
data mule needs to go to the sensor node’s exact location to collect data (i.e.,
no remote communication)1. Although this assumption facilitates TSP-like for-
mulation of the problem, the communication capability is underutilized, since
the data mule can actually collect data from nodes without visiting their exact
locations via wireless communications. Ma and Yang [2] also discussed the path
selection problem but under different assumptions. They consider remote wire-
less communication and also multihop communication among nodes. However,
they assumed the data transmission time is negligible. In a recent paper from
the authors [16], they consider constant bit rate case, but they also assume the
data mule stops during the communication, whereas we allow communication
while in motion.

There are a number of studies on exploiting mobility also in mobile ad-hoc
networks (MANETs) area. Among these, our work is most analogous to Message
Ferrying [17]. They assume a controllable mobile node (called “ferry”) that me-
diates communications between sparsely deployed stationary nodes. The speed
of ferry is basically constant but can be reduced when it is necessary to com-
municate more data with a node. Further, they consider the extent of wireless
communication range to optimize the movement. In our work, we employ a more
precise mobility model with acceleration constraint and also realize a more op-
timized path selection where the data mule only needs to visit subset of nodes
as long as it travels inside the communication ranges of all nodes.

3 Path Selection Problem

In this section we give a formal definition of the path selection problem. To make
the problem tractable, we first simplify the problem, where the path consists of
the line segments between the nodes. The problem is to find a minimum-cost
path that intersects with the communication ranges of all nodes. We prove the
problem is still NP-hard. Then we do a preliminary experiment to choose an
appropriate cost metric before proceeding to solve the problem.
1 In [9], remote communication is used for gathering data at rendezvous points via

multihop forwarding, but it is assumed that data mule needs to go to the exact
location of these rendezvous points.
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Fig. 2. Simplifying the path selection problem using a labeled graph representation:
(a) Instance of path selection problem. (b) Corresponding labeled graph.

3.1 Problem Description

As we have discussed in the previous section, the ultimate objective of the path
selection problem is to find a path such that the shortest travel time (= latency)
can be realized in the corresponding 1-D DMS problem. However, it is not clear
which path results in shorter travel time when there is an acceleration constraint.
For example, even if the path length is short, the travel time would be long if
the intersections of the path and communication range of each node are short,
because the data mule needs to slow down to collect all the data and then
accelerate again. Moreover, it is also difficult to search an optimal path in a
brute-force manner when the data mule can freely move around within the space.

To deal with these issues, we simplify the path selection problem. To reduce
the solution space, we consider a complete graph having vertices at sensor nodes’
locations and assume the data mule moves between vertices along a straight line.
Each edge is associated with a cost and a set of labels, where the latter represents
the set of nodes whose communication ranges intersect with this edge. In other
words, the data mule can collect data from these nodes while traveling along
this edge. We want to find a minimum-cost tour that the data mule can collect
data from all the nodes. We discuss later how we assign the cost to each edge so
that a tour with smaller cost results in shorter travel time.

Figure 2 is an example that depicts the basic idea of the formulation.
Figure 2(a) shows five nodes and their communication ranges, in addition to
the starting point (shown as “s”). From this input, we construct a labeled undi-
rected complete graph as shown in Figure 2(b). Each edge e has a set of labels
L(e) ⊆ L and cost c(e), where L = {l1, ..., ln} is the set of all labels and n is
the number of sensor nodes. We determine L(e) as follows: li ∈ L(e) if node i’s
communication range intersects edge e. Intuitively, by moving along edge e, the
data mule can collect data from the nodes whose labels are in L(e).

Now we define the problem formally as follows:

LABEL-COVERING TOUR. Given an undirected complete graph
G = (V, E) where each vertex in V = {x0, x1, ..., xn} is a point in R2, a
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cost function on edges c : E → Q+
0 , a set L = {l1, ..., ln} of labels, and

a constant r. Each edge eij ∈ E is associated with subset Lij ⊆ L. For
k = 1, ..., n, lk ∈ Lij iff the Euclidean distance between xk and an edge
eij is equal to or less than r. A tour T is a list of points that starts and
ends with x0, allowing multiple visits to each point. A tour T is “label-
covering” when it satisfies at least one of the followings for k = 1, ..., n: 1)
∃eij ∈ T (E), lk ∈ Lij , where T (E) is the set of edges traversed by T , or
2) dist(x0, xk) ≤ r, where dist(xi, xj) is the Euclidean distance between
xi and xj . Find a label-covering tour T that minimizes the total cost∑

eij∈T (E) cij .

Unfortunately, this simplified problem is still NP-hard.

Theorem 1. LABEL-COVERING TOUR is NP-hard.

Proof. We show metric TSP is a special case. First we choose the cost function
c to satisfy the triangle inequality (e.g., Euclidean distance). For a given set of
points V = {x0, ..., xn}, by choosing a small r, we can make dist(x0, xi) > r for
all i > 0, Lij = {li, lj} for all i, j > 0, and L0j = {lj} for all j > 0 For such r,
any label-covering tour must visit all the points. An optimal label-covering tour
does not visit any point multiple times except x0 at the start and the end of
the tour, since in such cases, we can construct another label-covering tour with
smaller total cost by “shortcutting”. Therefore, an optimal label-covering tour
is an optimal TSP tour for V . ��

3.2 Choice of Cost Metric

In the definition of LABEL-COVERING TOUR, the cost cij is a critical pa-
rameter. In a restricted scenario, in which the data mule can either move at a
constant speed or stop and no remote communication is used, Euclidean distance
is the optimal cost metric in the sense that the shortest travel time is realized
when the total path length is minimum. However, it is not clear for the general
case in which the speed is variable under an acceleration constraint.

Since we minimize the total cost, and also we want to choose a tour that we can
achieve the shortest travel time, a good cost metric should be strongly correlated
with the travel time. Therefore we measure the goodness of cost metric by the
correlation coefficient between cost and total travel time in the corresponding
1-D DMS problem. When the correlation is high, smaller cost implies shorter
total travel time, and thus finding a minimum cost tour makes more sense.

We compare three different cost metrics that seem reasonable:

– Number of edges: cij = 1
– Euclidean distance: cij = dist(xi, xj)
– Uncovered distance: cij =

∑
s⊆eij ,∀k,dist(xk,s)>r |s|, i.e., total length of in-

tervals in edge eij that are not within the communication ranges of any
nodes.

Uncovered distance is apparently a reasonable cost metric because it represents
the total distance that the data mule “wastes”, i.e., travels without communi-
cating with any nodes.
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Table 1. Correlation coefficients between total cost and total travel time for different
cost metrics: 20 nodes, amax = 1, vmax = 10

Radius (d) 150 500
Comm. range (r) 10 100 10 100
Exec. time (e) 2 20 2 20 2 20 2 20

Num. edge 0.992 0.987 0.982 0.850 0.984 0.982 0.988 0.988
Euclidean dist. 0.997 0.996 0.990 0.835 0.999 0.999 0.999 0.999
Uncovered dist. 0.992 0.993 — — 0.999 0.999 0.935 0.935

Experimental Methods. We assume nodes are deployed in the circular area
of radius d that has a start (i.e., point x0) in the center. We randomly place
other nodes within the circle so that they are uniformly distributed. For each
edge connecting a pair of nodes, we assign a set of labels by calculating the
distance from the line segment and each node.

For each of the node deployments, we randomly generate label-covering tours.
A tour is generated by random walk which, at each point, chooses next point
randomly, repeats this until all the labels are covered, and goes back to x0. We
measure the cost of the tour in three different cost metrics as listed above.

Using the tour, we transform the original problem to 1-D DMS problem and
find a near-optimal latency by using the heuristic algorithm presented in [10]. We
assume that each node has the same execution time e and the communication
range r, and also that the speed of data mule needs to be zero at each point
where it changes the direction2. For each node deployment, the cost and the
total travel time are normalized among different random tours so that the mean
is zero and standard deviation is one. For the collective set of data for same d, r,
and e, we calculate the correlation coefficient between the normalized cost and
the normalized total travel time for each cost metric.

For each (d, r, e), we generate 1000 examples, which consist of 20 random
tours for each of 50 node deployments. We use d = 150, 500 and r = 10, 100 for
LABEL-COVERING TOUR. For 1-D DMS, we use the execution time e = 2, 20,
the maximum absolute acceleration amax = 1, and the maximum speed vmax =
10. These parameter values roughly simulate data collection by a helicopter as in
[7] by assigning units as follows: meters for d and r, seconds for e, m/s2 for amax,
and m/s for vmax. Also the values of r are chosen to simulate the communication
ranges of IEEE 802.15.4 and 802.11, respectively.

Results. Table 1 shows the correlation coefficients. Except one case, both num-
ber of edges and Euclidean distance had correlation coefficient above 0.98, and
Euclidean distance had higher correlation than number of edges. In the excep-
tional case (d, r, e) = (150, 100, 20), the correlation was weaker than other cases.
This is most likely because the travel time is more influenced by the execution
time rather than the moving time, since the deployment area is small relative to
2 Otherwise, it would require infinite acceleration, since we assume a path consists of

only line segments and not curves.
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– Make a TSP tour T using an exact or approximation algorithm for metric TSP
– Initialize d[0] ← 0, d[1...n] ← +∞, tour[0] ← {T (0)}, and tour[1...n] ← ∅.
– For i = 0 to n − 1 do

• For j = i + 1 to n do
∗ Check if the line segment T (i)T (j) is within the distance r from each of

the nodes T (i + 1), ..., T (j − 1).
∗ If yes and d[i] + |T (i)T (j)| < d[j], update the tables by d[j] ← d[i] +

|T (i)T (j)| and tour[j] ← append(tour[i], T (j)).
– Return tour[n].

Fig. 3. Approximation algorithm for LABEL-COVERING TOUR: T (i) is the i-th
vertex that the tour T visits. T (0) is the starting vertex.

the size of communication range and also the execution time is long. Uncovered
distance had similar results but had no data when (d, r, e) = (150, 100, 2) and
(d, r, e) = (150, 100, 20). These are the cases when the communication range is
so broad that the total cost measured by uncovered distance is always zero.

These results suggest that number of edges and Euclidean distance are both
appropriate metrics that precisely measure the goodness of paths. In the rest of
the paper, we use Euclidean distance as the cost metric.

4 Approximation Algorithm for the Path Selection
Problem

In the previous section we have formulated the path selection problem as
LABEL-COVERING TOUR and shown its NP-hardness. In this section, we
design an approximation algorithm for this problem.

As discussed earlier, Euclidean distance is an appropriate cost metric. This
enables us to design an approximation algorithm by using known algorithms for
metric TSP where the triangle inequality holds. Figure 3 shows the approxi-
mation algorithm for LABEL-COVERING TOUR. It first finds a TSP tour T
by using any algorithm (exact or approximate) for TSP. Then, using dynamic
programming, it finds the shortest label-covering tour that can be obtained by
applying shortcutting to T . For the dynamic programming, we use two tables d[i]
and tour[i], where tour[i] is the shortest path that is obtained by shortcutting
T and covers the labels T (0), ..., T (i), and d[i] is the length of tour[i].

4.1 Analysis

Computation time of the algorithm is CTSP + O(n3), where CTSP denotes the
computation time of the algorithm used for solving TSP.

Next we analyze the approximation factor of the algorithm. Let TOPT , TAPP

denote the optimal label-covering tour and the approximate label-covering tour,
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Fig. 4. Constructing a TSP tour from the optimal label-covering tour TOPT : every
non-visited point is within distance r from TOPT

respectively. Total length of tour T is denoted as |T |. Also let α be the approxi-
mation factor of the TSP algorithm used in the first step of the approximation
algorithm. Then we have the following theorem:

Theorem 2. |TAPP | ≤ α(|TOPT | + 2nr)

Proof. Clearly |TAPP | ≤ α|TTSP |, where TTSP is the optimal TSP tour. We
give a lower bound to TOPT by constructing another TSP tour by modifying
TOPT . Figure 4 shows the idea of construction. The points A and B (shown
in filled circles) are visited by TOPT and other points in the figure (shown in
non-filled circles) are not. We call the former “visited points” and the latter
“non-visited points”. By the definition of label-covering tour, any non-visited
points are within distance r from either a traversed edge or a visited point of a
label-covering tour. For example in the figure, all of AC and DD’, ..., GG’ have
the length less than r. Then we can construct a “tour”3 that is identical to TOPT

but takes a detour to visit each non-visited point (e.g., ACAD’DD’...B). Since
there are at most n non-visited points, total length of detour is at most 2nr. This
“tour” is easily converted to a shorter TSP tour by skipping all additional points
(e.g., D’, E’, ...) and apply shortcutting so that each point is visited exactly once.
Therefore, we have |TOPT | + 2nr ≥ |TTSP |. The theorem follows by combining
this and |TAPP | ≤ α|TTSP |. ��

5 Performance Evaluation

We evaluate the performance of the approximation algorithm by numerical ex-
periments. We have implemented the algorithm in MATLAB. We use the same
method and parameters as in Section 3.2 for test case generation, and use Con-
corde TSP solver4 to find an optimal TSP tour. For each node deployment, we
obtain a label-covering tour by running the approximation algorithm. Using the
node deployment and the tour, we get a set of “location jobs”, which is the
3 This is not a tour in our definition because it does not consist of edges between the

nodes.
4 http://www.tsp.gatech.edu/concorde/index.html
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r = 1 r = 20 r = 50

r = 100 r = 200 r = 300

Fig. 5. Label-covering tours for different communication ranges: 40 nodes, d = 500;
Path of data mule is shown in bold line

input to 1-D DMS problem. A location job is the notion defined in [10], and is
intuitively understood as a real time job whose feasible interval is defined on
1-D location axis instead of time axis. Then we run the heuristic algorithm for
1-D DMS problem [10] and obtain the total travel time, which is near-optimal
for the given tour. We use the total travel time as the evaluation metric.

Figure 5 shows some examples of label-covering tours for a node deployment
with different communication ranges. As the communication range grows, the
number of visited points becomes less and the path length becomes shorter.

5.1 Effect of Node Density and Network Size

Figure 6(a) shows the relation between the communication range and the total
travel time for different node density. To see how broader communication range
affects the travel time, we have normalized the total travel time by the one when
the communication range is zero. The graph shows that the total travel time is
reduced in all cases by up to 60% for this parameter set, suggesting the proposed
problem formulation and algorithm altogether successfully exploit the breadth
of communication range. The amount of reduction is bigger when the density
is higher (i.e., smaller d), except the case of d = 150 for large communication
ranges. This is because the total travel time is already very close to the lower
bound, which is the product of the execution time and the number of nodes.
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Figure 6(b) shows the effect of number of nodes, varied from n = 5 to n = 100.
We set d to 500 when n = 20, and changed d in proportion to

√
n so that the

density remains constant. The results show the reduction of total travel time
for large communication ranges, but no big difference for different number of
nodes.

5.2 Comparison with Other Strategies

Next we compare the travel time of our approximation algorithm with those of
other algorithms as listed below.

– TSP-like: Based on the model used in [8]. Data mule visits all nodes. It
stops at each node location to collect data and moves to the next node.
While moving, the speed is constant at vmax. We use optimal TSP tours.

– Stop-and-collect: Based on the model used in [16]. Data mule takes a label-
covering tour, as in our approximation algorithm. However, it stops to col-
lect data when it is in the communication range of each node. While moving,
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speed is constant at vmax. We find tours by using our approximation algo-
rithm with optimal TSP tours5.

– Message Ferrying: Based on the algorithm proposed in [17]. Data mule visits
all nodes as in the TSP-like algorithm, but communication is also done while
moving. Speed is variable between 0 and vmax. Speed and data collection
schedule are determined by solving a linear program such that the total
travel time is minimized. We use optimal TSP tours.

To allow direct comparison, we set amax = +∞ for our proposed approximation
algorithm, since all other algorithms assume data mule can change its speed
instantly. Note that when amax = +∞, we can obtain an exact solution for 1-D
DMS problem by solving a linear program (see [10] for details).

Figure 7 shows the results for a representative case for 40 nodes. When the
communication range is small, the travel time does not differ among the algo-
rithms. As the communication range grows, Message Ferrying and the proposed
algorithm show larger improvements than other two methods, and the proposed
algorithm gets gradually better than Message Ferrying. When the communica-
tion range is 150, the proposed algorithm is nearly 10% better than Message
Ferrying, 40% better than Stop-and-collect, and more than 50% better than
TSP-like method.

When there is an acceleration constraint (i.e., amax �= +∞), which none of
these studies has addressed, the gaps between the proposed algorithm and others
are expected to be larger. This is because all of these methods require the data
mule to stop more frequently than the proposed algorithm does.

These results suggest that the proposed algorithm effectively exploits broader
communication range for planning the path of the data mule.

6 Conclusions and Future Work

Controlled mobility for data collection in wireless sensor network provides flex-
ibility in the trade-off between energy consumption and data delivery latency.
With the goal of optimizing this trade-off, in this paper we focused on im-
proving the latency in the pure data mule approach with the minimum energy
consumption. The formulation of path selection problem, together with speed
control and job scheduling problems, enables us to capture two-dimensional data
mule scheduling problem under precise mobility and communication models. We
have designed an approximation algorithm for the problem and experimentally
demonstrated that it finds near-optimal paths and achieves much smaller latency
compared to previously proposed algorithms.

Our ongoing work includes design of a hybrid approach that optimizes the
energy-latency trade-off. The idea is to extend the problem framework shown
in Figure 1 by adding “forwarding” subproblem before the path selection. In
5 We could not use the path selection algorithm proposed in [16], since it has a restric-

tion on the configuration of data mule and deployment area. Specifically, it assumes
the data mule starts from the left end of the deployment area, travels toward the
right end, and comes back to the initial position.
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forwarding problem, we determine how each node forwards the data to other
nodes within given energy consumption limit. Then the data mule collects data
only from the nodes that have data after the forwarding. Since the results in this
paper suggest the problem formulation along with the approximation algorithm
allows significant reduction in latency, the hybrid approach is likely to achieve
better trade-off between energy and latency compared to previous work.
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