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Abstract— Disruption-tolerant networks (DTNs) differ from
other types of networks in that capacity is created by the
movements of network participants. This implies that under-
standing and influencing the participants’ motions can have a
significant impact on network performance. In this paper, we
introduce the routing protocol MORA, which learns structure
in the movement patterns of network participants and uses
it to enable informed message passing. We also propose the
introduction of autonomous agents as additional participants
in DTNs. These agents adapt their movements in response to
variations in network capacity and demand. We use multi-
objective control methods from robotics to generate motions
capable of optimizing multiple network performance metrics
simultaneously. We present experimental evidence that these
strategies, individually and in conjunction, result in significant
performance improvements in DTNs.

I. INTRODUCTION

Many routing protocols exist to support end-to-end mes-
saging in mobile ad hoc wireless networks. Such protocols
assume an end-to-end connection through a contemporaneous
set of links through intermediary peers [19], [27]. As a result,
if a path between two peers in a network does not exist,
communication is not possible, and the route creation process
fails.

A growing body of work is exploring techniques for
routing network traffic over asynchronous paths to adapt
to situations where routes cannot be created from contem-
poraneous links. Such networks have varied names: highly
partitioned networks [10], [17], message ferrying [41], [42],
delay-tolerant networks [12], and disruption-tolerant net-
works (DTNs) [11]. To enable end-to-end routing in a DTN
(the term we choose for this paper), network participants
are relied upon to carry and deliver messages of others.
Whenever two participants pass, they negotiate the exchange
of messages. A message may be passed between a number
of network participants before reaching its destination.

There are many scenarios in which DTNs are the most vi-
able routing solution for several reasons. First, it is challeng-
ing to deploy an unpartitioned network using mobile nodes
that roam a large geographic area. This can be the result
of relatively short radio ranges; obstructions can also curtail
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Fig. 1. Classification of routing methods for DTNs based on characteristics
of participants’ movement patterns.

the reach of devices, including buildings, trees, mountains,
or water for amphibious devices (as can happen in wildlife
monitoring [32]). Our own DTN, DieselNet [4] which is
deployed using 802.11 on 30 buses, spans an area of 150
sq. miles, beyond the range of WiMax and our area’s cellular
phone coverage. In underwater acoustic networks [1], [26],
DTNs are more critical as no fixed infrastructure exists and
less than ten expensive autonomous underwater vehicles may
roam an area hundreds of km in diameter carrying acous-
tics transducers that reach only 2–5 km. Second, battery-
powered devices may adhere to energy management schemes
that power down radios [31], [2], effectively decreasing the
population of the network. Finally, DTNs can arise naturally
from dense, infrastructure-based deployments. For example,
a municipal mesh that is deployed to support radios on
vehicles can provide robust, unpartitioned coverage. How-
ever, vehicles may leave the geographic coverage of the
mesh; a DTN can extend networking to an area beyond the
municipality’s mesh by taking advantage of opportunities for
transfer between vehicular nodes that arise intermittently.

The performance of disruption-tolerant networks depends
on many factors, including the number of network partici-
pants, their storage capacity, communication capabilities, and
movement patterns. In this paper, we focus on a performance
factor unique to DTNs, namely the movement patterns of
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participants. We examine how movements can be exploited
or controlled to improve performance in DTNs. We classify
movements of network participants according to two indepen-
dent properties: their inherent structure and their adaptiveness
to the demand in the network (see Figure 1). In this context,
structure refers to periodic patterns in peers’ movements that
can be exploited to estimate the probability of delivery for a
specific message and peer.

For purposes of illustration, we relate this classification
of participant’s motion and associated routing protocols to
everyday experience. The lower-left of the classification
shown in Figure 1 corresponds to hitchhikers being picked up
by randomly moving cars. In this scenario, cars move without
periodicity and do not adapt to the route of the hitchhiker.
The lower-right of the figure corresponds to public transport
with fixed schedules. Independently operating taxicabs that
pick up passengers in the street are represented in the top-
left of the diagram. Finally, FedEx trucks are situated in
the top-right corner. (Here, packages are transported, rather
than people but the analogy holds.) FedEx trucks travel on
structured daily routes, but only stop for scheduled pickups
and deliveries, i.e., their coordinated routes are adjusted in
response to demand.

From this description it is clear that performance metrics,
such as bandwidth and latency, can be expected to improve
for scenarios that can be classified towards the top-right of
the diagram. To achieve these performance improvements,
an increased amount of coordination among the network
participants is required. Such coordination can exploit struc-
ture present in participant’s motion patters to improve the
efficiency of routing. A coordination of network participants
that adapts the motion to the network’s demands enables a
better usage of the participants’ capacity and thus can lead
to increased bandwidth and reduced latency. The contribution
of this paper lies in algorithms that take advantage of these
insights to improve the performance of disruption-tolerant
networks.

Contributions. To address the incongruence between the
movement of network participants and traffic flow that may
arise when movement pattern of participants do not match
bandwidth requirements, we propose the introduction of
autonomous agents as participants into the network. These
agents can be ground-based [36] (see Figure 2), airborne [8],
or underwater mobile robots [13], [14], [38], [34].

We propose methods for adapting the motion of such
agents to bandwidth and latency requirements of a network.
We call our approach Multi-Objective Robotic Assistance
(MORA), which allows a set of autonomous agents in the
DTN to enhance network performance by delivering pack-
ets. While the problem of choosing optimal motions for
autonomous agents in this context is shown in this paper to
be NP-hard, we propose techniques from robotic control that
are able to obtain high-quality approximations to the optimal
solution. We found experimentally that the addition of agents
can have significant improvements to network performance;

Fig. 2. The UMass Segway RMP, the subject of our previous work [36], is
a robotic autonomous agent that can act as a network participant to improve
performance in disruption-tolerant networks. Other platforms include robotic
airborne vehicles [8] and underwater mobile robots [13], [14], [38], [34].

for example, in the case where it is paired with MaxProp [4],
MORA increases average delivery rates from 67% to 88%
while simultaneously reducing average delivery latency from
120 minutes to 76 minutes. MORA is independent of the
underlying DTN routing protocol used by nodes, and our
evaluations show that it improves the performance of random,
FIFO, ME/DLE [5], [4], and MaxProp [4] protocols.

II. RELATED WORK

Since this work is a synthesis of ideas from networking
and robotic control, it has related work in both areas.

A. Networking
DTN routing has been studied by a growing number

of researchers. As we stated in the introduction, we can
taxonomize previous work based on their assumptions about
the inherent structure of the network and the adaptiveness of
peers to the demand in the network.

Along with the preliminary versions of this work [5], [6],
our work is distinguished by its exploration of the adaptation
of peer movements to meet communication needs of the
network. We propose the use of robotic peers to improve-
ment performance. Previous to our efforts, Li and Rus [23]
proposed algorithms that minimally alter node movements
for delivery of a single packet in a partially disconnected
network. They assume peers have a communication channel
that periodically broadcasts the locations of all other peers
with bounded error though the channel does not allow the
transfer of data. The authors point out that it is difficult to
extend the algorithm to efficiently support multiple packets
at once. Our work does not have such limitations.

We distinguish other work by the degree to which peer
movements are fixed and well-known. At one end of the
spectrum, Zhao, et al. [41], [42] proposed DTNs based on
ferries, which are peers that have completely predictable
movements through the geographic area (e.g., a city bus or
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river ferry). Peers route message end-to-end by scheduling
their movements to meet with the ferry. In later work, Zhao,
et al. [43] propose a method for designing multiple fixed ferry
routes. In comparison, our method dynamically adjusts routes
based on perceived load, learned by agents from within the
DTN itself. Also related to the paradigm of adding resources
to a DTN is our work on throwboxes, which are solar-
powered, stand alone computers with radios and storage [44],
[2]. From one point of view, they play the role of stationary
ferries.

At the other end of the spectrum is a series of papers
that attempt to learn patterns in the movements of peers. In
2001, we proposed a routing algorithm for highly partitioned
networks by exploring a number of different strategies for
deciding which messages to exchange when two network
participants meet [10]. Our algorithm, called Drop-Least
Encountered, had peers keep track of the other peers they
meet regularly over time. Peers initialize their estimate of
the likelihood of message delivery to a moving peer as 0.
When a peer A meets another peer B, the former sets the
likelihood of delivering messages to B as 1. Then A takes a
portion of B’s likelihood of delivering messages to the other
peers in the system. These values degrade over time, such
that they are reinforced only if A and B meet periodically.
Versions of this same algorithm, some more advanced, were
subsequently proposed by others [24], [28], [16], with each
paper showing a different analysis of the problem.

In our previous work, we have also proposed using ac-
knowledgments of delivered data to remove stale data from
network buffers [4]. Schemes also exist that use network
coding [39], or restrict the number of copies of a packet [33],
[30], [37], [25].

Also relevant to this paper is work by Jain et al. [18], who
showed that networks that have a large number of connection
opportunities require less intelligent forwarding algorithms.
As resources become scarce, increasing availability of infor-
mation about the network increases the performance of DTN
routing.

There are other challenges within the subject of DTNs.
For example, an information retrieval service can be a vital
service in a DTN used by disaster management workers. In
our previous work, we proposed a method of dividing up
a database such that any small random subset of peers can
answer queries with high accuracy even though each peer
carries only a small fraction of the full database [17]. In our
method, no routing is required, yet it is robust despite the
movement of peers, who may change groups at any time.

B. Multi-Objective Control
In a disruption-tolerant network, robotic agents deliver

packets by performing physical motions. During their mo-
tions, the agents encounter sources, sinks, and other agents.
At any point in time, an agent may carry packets from
multiple sources to be delivered to a variety of destinations.
Given these destinations, an adequate motion of the agent has
to be determined. This motion will have to satisfy multiple

objectives determined by the destinations of network packets,
the need to encounter other agents for message passing,
and by desired performance metrics for the network. In
Section III-A, we show that the computation of an optimal
motion for agents in a disruption-tolerant network is an NP-
hard problem. To overcome this computational complexity
in a practical setting, we propose to determine near-optimal
motions of agents using multi-objective control methods from
robotics [7], [20].

In robotics, multi-objective control is used to generate
complex behavior by composing several simple behaviors.
These simple behaviors are represented and generated by
controllers [15]. To apply multi-objective control to generate
the motion of robotic agents in disruption-tolerant networks,
we have to define controllers that generate motion to optimize
network performance metrics. We then have to compose these
simple controllers to achieve agent motion that ensures the
satisfaction of multiple performance metrics.

A controller represents behavior using a control function.
The domain of this function is a subset of all allowable
states of the system. This subset includes the desired goal
state, which represents the unique minimum of the control
function. If the system is within the domain of the control
function, the controller can follow gradient of this function
to reach the goal state, since it represents its only minimum.
The control function thus implicitly defines goal-directed
behavior for a subset of the allowable state space. The
control function can also be viewed as an error function. By
descending the gradient of the control function, the controller
continuously reduces the error until the goal state with zero
error is reached. As long as the system remains within the
domain of the appropriate control function, the associated
controller will exhibit robust, goal-directed behavior. Control
theory [15] offers a rich theoretical foundation for this
method of behavior generation.

The appeal of controllers lies in their simplicity. For a
simple behavior it is generally not difficult to specify and
implement an appropriate control function. To generate more
complex behavior, it would be possible to design more
complex control functions. However, this approach quickly
leads to instabilities in the overall system behavior. Instead,
researchers in robotics have developed methods of composing
simple controllers to generate more complex behavior. The
two most commonly used methods rely on the subsumption
architecture [3] and on nullspaces [20], a fundamental con-
cept in linear algebra [22].

1) Subsumption: The subsumption architecture [3] can be
applied in a broader context, but we restrict our discussion to
controllers. The subsumption architecture proposes a layered
approach to generating complex behavior. For the purpose of
our discussion, each of these layers contains one or multiple
controllers. Each controller in the subsumption architecture
has access to state information and can issue commands that
affect that state. This command is specified by the control
function based on the current state information. Higher-level
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controllers can access the state of lower-level controllers and
can overwrite their commands. The process of overwriting
a lower-level command is referred to as subsumption. The
subsumption architecture allows the design and implementa-
tion of complex behavior in an incremental fashion, starting
with the lowest level and the most basic behavior. It is
noteworthy, however, that at any point in time a single
controller, namely the highest-level controller, will determine
a particular command to affect the system’s state.

2) Nullspaces: The composition of controllers based on
nullspace projections [7], [20], [35], [36] permits the concur-
rent execution of multiple controllers—and thus the attain-
ment of multiple, non-conflicting objectives. To achieve this,
controllers are ordered hierarchically. Within this hierarchy,
nullspace projections ensure that the effect of a lower-level
controller cannot interfere with the effect of a higher-level
controller. To understand how this can be achieved, we begin
by reviewing the notion of nullspace.

The nullspace of a linear mapping A consists of all vectors
x such that Ax = 0. Here, the nullspace of a controller is
considered to be the collection of control commands that,
when performed in addition to the controller, do not affect
its performance. An example: Imagine an object located as a
point p = (x, y) in the plane. A controller φ1 is changing the
state of the object to achieve x = 0. This is accomplished
using a control function that has a unique minimum along the
x-axis. A second controller φ2 has the objective of achieving
y = 0 with a similar control function. If φ2 only causes
motion of the object orthogonal to the x-axis, it will not affect
the degree to which φ1 has achieved its objective—it will not
interfere with φ1. We say that φ2 operates in the nullspace
of φ1. The spaces within which the two controllers act are
orthogonal to each other. Irrespective of the commands issued
by φ2, by projecting this command into the nullspace of
φ1, we can guarantee that all motions caused by φ2 will
be orthogonal to the x-axis.

Using this notion of nullspace projections, multi-objective
control is obtained by arranging the controllers into a hierar-
chy and projecting the behaviors of a lower-level controller
into the nullspace of a higher-level controller. At each level
of the hierarchy the controller optimizes its actions within the
nullspace of higher controllers. Since this optimization takes
place in the nullspace of the higher controller, the choice of
optimal action at a lower level is guaranteed not to affect the
optimality of an action chosen earlier by the higher controller.
This is in contrast to the subsumption approach, which
achieves coordination through turning individual controllers
on and off in a manner specified by the system designer.

Nullspace composition has been applied successfully in a
variety of tasks [7], [20], including by Sweeney et al. [35],
who used it to maintain network connectivity for distributed
agents. In the work, agents maintain line of site (necessary
for infrared communication) while pursuing the exploration
of an unknown environment.

III. AUTONOMOUS AGENTS IN DTNS

In this section, we describe how autonomous agents can be
deployed in disruption-tolerant networks to increase network
performance. This is accomplished by adapting the agents’
motion to the demand in the network (Figure 1). We first
show that determining optimal motions for agents is NP-
hard, providing the justification for the approximation ap-
proach presented here. Then, we define methods to optimize
particular network metrics. Subsequently, we define a multi-
objective controller that coordinates the individual methods.

In our model, the network is composed of peers, which
are mobile nodes that are the sources and destinations of
packets. Peers carry computational resources including a
wireless radio. The movement of peers is dictated by a model
described below. We introduce agents into the network, which
are systems that make online, autonomous decisions which
are intended to enhance performance in a system based
on a stated algorithm and the current available input. Our
agents carry the same type of resources as peers. They are
intermediaries on the paths from source to destination, but
are never the source or destination of packets. Agents are
nomadic and are able to navigate to selected location. We
present the details of this model below.

A. Complexity of Scheduling Agent Movement

The problem of determining optimal motions for agents in
a DTN is NP-hard. We show this by reducing the dial-a-ride
problem [29] to our DTN agent motion problem. The dial-
a-ride problem consists of dispatching a vehicle to service
a request for an item to be transfered from one location to
another. That problem is a generalization of the traveling
salesman problem [9], and it is known to be NP-hard.

The reduction of some instance of the dial-a-ride problem
to agents servicing a DTN is as follows. First, note that the
graph representing the physical or geographical environment
of a DTN is the same as in an instance of the dial-a-ride
problem. We assume that at each peer in the graph there
is a participant in the network, that each participant is far
enough away from any other participant that no point-to-
point communication is possible, and that each participant in
the network is static.

Every request made to the dial-a-ride system for transport
from a location A to a location B is exactly a message in the
DTN sent from a peer statically located at location A to a peer
statically located at location B. Since all of the participants
in the network are static and incapable of communicating, the
transport of the message from A to B must be accomplished
by the agent. By optimizing the routing of messages by the
agent we also obtain an optimal solution to the dial-a-ride
problem.

Since the dial-a-ride problem is NP-hard and reducible to
the problem of routing agents to assist DTN routing, the
routing of agents is NP-hard as well. A problem closely
related to the DTN agent motion problem has been shown to
be NP-hard by Zhao et al. [42].
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B. Performance Metrics

Our aim in deploying autonomous agents in a DTN is to
improve a variety of network performance metrics. These
metrics include the following:

• Bandwidth: This metric captures the total number of
messages in the network at a given point in time. We
want to schedule the motion of agents so as to increase
the bandwidth of the network, ensuring that available
space for the transport of messages is used effectively.
To achieve this, agents have to consider their travel time
for package delivery.

• Unique Bandwidth: This metric refers to the total num-
ber of unique messages that are currently active in
the network (multiple copies of a message may exist
in the network). Again, the desired motion of agents
increases this metric so that available bandwidth is
used most effectively to respond to the participants’
transmissions. To maximize this metric, agents should
prefer to transmit messages not already in transit.

• Message Latency: Latency captures the average amount
of time that it takes for a message to be delivered.
Message latency can be reduced by biasing the motion
of agents towards peers which are sending or receiving
many messages.

• Peer Latency: This metric refers to the average time
since a peer was last visited by an agent. To prevent
starvation, it is important that all of the participants in
the network be visited intermittently.

C. Distributed Network State Maintenance

The evaluation of performance metrics described in Sec-
tion III-B requires global state information. In a real network,
this global information is unavailable. Each peer in the
network has perfect information about its own state, but must
estimate the network’s overall state. Each agent accomplishes
this by constructing an approximate model of the network
from information obtained from other network participants
encountered during its motion. To construct this model,
we assume that all participants have (loosely) synchronized
clocks.

Each agent maintains information about every participant
in the network. This information is tagged with a global time,
synchronized between all participants. When two agents in
the network meet, they exchange packages according to the
employed routing protocol (in Section IV we describe and
compare the performance of four different routing protocols).
Agents also update their state information about all network
participants, provided the encountered agent has more recent
information available. This information includes a list of
carried packages for each participant and the GPS location
and time stamp of the last encounter. This approximate
global state of the network provides the agent with sufficient
information to determine its motion in accordance to the
desired performance metrics.

D. Movement Controllers for Performance Metrics

The motion of autonomous agents in a disruption-tolerant
network should optimize the four metrics described in Sec-
tion III-B. In Section III-A we showed that the corresponding
optimization is NP-hard. In this section, we describe two
methods for generating the agent’s motion derived from
multi-objective control in robotics. For each metric, we
present a method of determining a motion that optimizes the
metric in isolation. We refer to the algorithm that generates
the agent’s motion as a controller. The bandwidth controller
directs the agent to act so as to maximize bandwidth, the
latency controller acts to minimize latency, and so forth. We
then show in the next section how these controllers can be
combined to generate agent motion that optimizes all four of
the performance metrics.

The details of the individual controllers for each of the
performance metrics are as follows:

• Total Bandwidth Controller φT : Traveling to any peer
A will increase the bandwidth of the network by the
number of messages that the agent can obtain from peer
A. The peer chosen by this controller is the peer that
has the largest number of messages not yet seen by the
agent, amortized by travel time. This choice is based
on the information obtained through distributed state
maintenance (see Section III-C).

• Unique Bandwidth Controller φU : The unique band-
width controller chooses the peer that it believes to have
the largest number of messages not present anywhere
else in the network. This choice is made irrespective of
the travel time to reach the peer.

• Delivery Latency Controller φD: The delivery latency
controller chooses the peer whose average delivery time
is the largest, according to the information available to
the agent.

• Peer Latency Controller φP : To reduce the peer latency,
this controller should choose the location ni least re-
cently visited by an agent. Since latency relates to time,
we also would like to consider the travel time of the
agent. Let ∆tni be the time elapsed since location ni

has been visited by an agent. The peer latency controller
selects location n = argminni

∆tni + tni , where1 tni

is the agent’s travel time to location ni. This resolves
ties based on ∆tni in favor of locality. It ensures that
traveling time to visit the least recently visited location
does not actually cause an increase in the peer latency
statistic.

Because these controller consider only a single perfor-
mance metric, they may generate conflicting motions for
the agents. For example, if there are two peers in spatial
proximity that exchange a large number of messages, the
total bandwidth controller φT would dispatch agents back and
forth between the peers to maximize the bandwidth usage.

1Here, argmin represents the ni that attains the minimum value of the
given expression when all locations are considered.
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However, this will prevent other peers from being visited,
something that the peer latency controller φP is trying to
ensure. In those cases, it will be necessary to coordinate the
controllers to result in consistent and effective motion.

Independently of the coordination scheme, these con-
trollers are responsible for selecting a peer as the new target
for the agent. The agent then moves to the geographic loca-
tion of the peer, as indicated by its global state information.
Once it arrives at that location, it selects a new destination,
regardless of whether the peer was encountered. While it is
moving, the agent sends packets to all agents and peers that
it comes in contact with. If, along the way, it makes contact
with the peer it is trying to move to, it also selects a new
destination.

E. Multi-Objective Control
In traditional wired networks, a network administrator

balances a variety performance metrics through the speci-
fication of fixed network parameters. In the previous section,
we introduced controllers that optimize specific performance
metrics (or objectives) of a network by determining the
motion of a robotic agent within that network. We now
will propose to use multi-objective control methods from
robotics [35], [40], [36] to balance multiple network perfor-
mance metrics in disruption-tolerant networks that have been
augmented with autonomous mobile agents.

The purpose of multi-objective control is to combine
multiple controllers in such a way their individual objectives
can be optimized concurrently. The simplest method of multi-
objective control combines the output of the individual con-
trollers to determine the overall behavior of the robotic agent.
Such a combination can be achieved, for example, by adding
the spatial motion vectors determined by each controller. For
some applications in robotics, such as obstacle avoidance,
the resulting motion will optimize multiple desired objectives
(staying at a distance from multiple obstacles). In the con-
text of disruption-tolerant networks, however, such a simple
strategy would be meaningless: if the bandwidth controller
identifies a particular network node as the next goal location
but the latency controller identifies a different one, these two
control decisions cannot be easily combined in a meaningful
way.

We explore more sophisticated methods for multi-objective
control, namely nullspace composition of controllers and the
subsumption architecture. Within either of these frameworks,
the network’s performance can be optimized by selecting
the parameter of each of the individual controllers and by
determine an ordering of controllers. This ordering deter-
mines a hierarchy of importance, effectively prioritizing the
performance metrics associated with the controllers.

1) Nullspace Composition: Informally, the nullspace of a
particular controller φ1 is defined as the set of actions that
can be taken by the agent without affecting the performance
of φ1 (see Section II-B). For example, if n potential motions
of an agent optimize the metric encoded by controller φ1

equally well, these n motions represent the nullspace of φ1.

Choosing any of these n motions will result in an equally
optimal overall behavior.

To optimize a second metric represented by controller φ2,
which we call the subordinate controller, one chooses among
those n choices a motion that performs best with respect
to the second metric. We say that φ2 is optimized in the
nullspace of φ1. This permits an implicit ordering of metrics
and corresponding controllers, in which the action taken by
a subordinate controller never affects the performance of
a superior one. The notion of nullspace together with an
ordering provides a principled framework for the composition
of the controllers introduced in Section III-D.

Motivated by the application of this framework to DTNs,
we define the performance of controllers with respect to a
threshold. This means, for example, that any motion of an
agent achieving a specified minimum bandwidth requirement
is said to perform equally well with respect to this metric.
Such a definition of performance permits nullspaces of suf-
ficient size to optimize multiple objectives.

An ordering of controllers captures the relative importance
of the associated network metrics. The specification of such
an ordering provides the network administrator with a simple
way of specifying criteria for performance optimization. The
ordering we use here is given by:

φP ! φD ! φU ! φT , (1)

where φi ! φj indicates that φj is more important than φi.
We say that φi is optimized subject to φj , meaning that
φi is optimized in the nullspace of φj , i.e., it is assured
that φi only generates motions that do not allow the metric
associated with φj to fall underneath its required threshold.
(The notation φi ! φj is taken from [7]).

The ordering of controllers given above was chosen based
on the observation that the nullspace of equal total band-
widths is significantly larger than the nullspace for unique
bandwidth, and so forth down the ordering. This means that
the ordering offers more flexibility for controllers with lower
priority.

It is important to note that the above ordering is not
the only appropriate one. Future work may be warranted
to explore the effects of different orderings either specified
by administrators or learned automatically. Likewise, the
choice of thresholds in the definition of nullspace is up to
the end user. A network administrator can manipulate the
performance of their network to suit its demands.

2) Subsumption: An alternative to the nullspace approach
to multi-objective control is subsumption [3]. The difference
is in how the controllers dominate one another; we still use
the four controllers described in Section III-D, prioritized as
described above. However, whereas in the nullspace approach
subordinate controllers optimized the motion of an agent
in the nullspace of superior controllers, in the subsumption
approach the controller with the highest priority exclusively
determines the motion of the agent until its performance
threshold is achieved. Only when all superior controllers
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achieve their performance metric, do subordinate controllers
get a chance to optimize their performance. In the subsump-
tion approach, the output of dominant controllers completely
subsumes the output of the subordinate controllers.

Given the ordering shown in equation 1, this would mean
that the total bandwidth controller φT determines the motion
of the robotic agent until the desired threshold for total
bandwidth is reached. Once this is the case, φT relinquishes
control to the next controller with lower priority, in this
case φU . Now φU determines the motion of the agent. If
the minimum threshold for the unique bandwidth is satisfied
in the network, φU passes control to φD. If however, during
the execution of φU , the total bandwidth criterion is violated,
the controller φT subsumes φU and takes control away. In
other words, if the objective of a controller φj is satisfied,
the controller passes control from right to left to controller
phii, in accordance with the direction of ! in φi ! φj . If
the objective of controller φj is not satisfied, it takes control
from all controllers φi for i < j.

3) Comparison of Nullspace Composition and Subsump-
tion: In this section we provide some insight about the differ-
ences between nullspace composition-based multi-objective
control and the subsumption-based approach. The main dif-
ference is in the method of combining multiple single-
objective controllers to achieve multi-objective behavior. We
will discuss how this difference can affect performance in
the context of agent-augmented disruption-tolerant networks.
For both approaches we assume that all performance metrics
have been ordered according to their importance for the spe-
cific network configuration and overall desired performance
objectives.

The main difference between nullspace composition and
the subsumption-based approach is that the former executes
multiple controllers concurrently while the latter only exe-
cutes a single controller at a time. Multi-objective control
uses nullspace projections to ensure that a subordinate con-
troller does not affect the behavior of a superior controller.
In practice, this means that the highest-priority objective will
always be optimized to the best of the agent’s abilities. This
is a desirable property; the network administrator can pick
the most important performance metric and the system will
ensure it remains optimized. However, this puts subordinate
objectives at a disadvantage. They can be optimized only
in the nullspace of all objectives superior to them. This
means that all subordinate controllers may be limited in their
ability to optimize their own performance metrics. With each
additional optimized performance metric, the nullspace could
be reduced significantly. It is possible that the nullspace is
empty for subordinate behaviors, leaving no possible action
to further optimize the associated performance metric. This is
the case when any action that could be taken by a subordinate
controller would interfere with the optimization of a higher-
priority objective. The nullspace based controller guarantees
performance for the highest-priority performance metric but
all other metrics are only optimized if the nullspace is

sufficiently large.
In the subsumption approach, the highest-priority con-

troller whose objective is not yet achieved assumes control,
possibly interrupting a lower-priority controller. Once the
highest-priority controller has reached its objective, a subor-
dinate controller can take its turn to optimize its performance
metric. However, in contrast to the nullspace-based approach,
the subordinate controller does not take into account the
objective of the superior controller; it is able to perform any
motion it wants to optimize its objective, even if that motion
interferes with the optimality of a superior performance met-
ric. If the superior controller’s performance goal is violated
as a result of this action, the superior controller immediately
re-assumes control.

Nullspace-based multi-objective control is suboptimal be-
cause it restricts subordinate controllers to operate in a
reduced space of actions. The subsumption-based approach
is suboptimal because the optimization of individual per-
formance metrics is not coordinated carefully enough. By
making these simplifications, both methods avoid solving
the NP-complete optimization problem (see Section III-A).
In spite of these simplifications, however, both methods
are capable of producing reasonable approximations to the
optimization problem in practice.

Due to the fact that the nullspace-based approach is
choosing actions that optimize multiple performance metrics
simultaneously, we expect its performance to be superior
to that of the subsumption-based approach. In Section IV,
we compare subsumption-based and nullspace composition-
based coordination of the controllers to validate this hypoth-
esis.

IV. EXPERIMENTAL EVALUATION

In Figure 1, we classified routing algorithms for DTN
according to the degree to which they exploit structure in the
motion of network participants and according to the degree to
which the participants adapt their movements to the network
demand. We now present experimental evidence that when
autonomous agents use MORA to adapt their movements,
they are capable of enhancing network performance of many
different DTN routing protocols. Using the analogy presented
in Figure 1, MORA agents are like taxicabs added to a system
of cars.

To evaluate our proposed algorithm MORA and the effect
of introducing autonomous agents into a DTN, we ran a
series of custom networking simulations. First, we evaluate
the use of nullspace versus subsumption multi-objective con-
trollers, and we find that nullspace controllers are moderately
superior. With additional evaluations, we find that significant
performance gains are possible using MORA, in terms of the
message delivery rate and latency. We apply MORA to four
routing protocols: random routing, the ME/DLE protocol [5],
[4], the MaxProp protocol [4], and FIFO routing. We vary
many scenario parameters, including the offered network
load, node buffer size, the number of peers in the network,
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and the size of each packet. Additionally, we show the
accuracy of the controllers used by MORA agents.

A. Methodology

The success of DTN forwarding algorithms is tied to
the movement pattern of peers. Traditionally, researchers
have used the random waypoint model (RWM) in lieu of
empirical models, though this is often criticized (see [21]).
Such a movement model cannot be used for our evaluation
of DTNs: if peers move randomly, then no peer is any better
at delivering a message than any other. A successful routing
algorithm exploits structured, distinguishable movements.

Our evaluations are based on traces of the movements of
the UMass DieselNet DTN [4], which is a testbed of 30
buses in Amherst, MA that we have constructed. To take
traces of movement, we installed GPS devices on each bus.
The GPS devices had to be placed on the buses at an angle
that prevented continuous reception of GPS signals (i.e., they
lacked a complete view of the sky). Therefore, while the
experiment was always able to record data transfers, the
location of each bus was available only during certain periods
of time. However, we constructed a simple trace generator
using GPS data to reconstruct the typical movement and
timing information of 9 bus routes that roam an area 8.24 km
by 14.70 km (about 121 km2). Each route is modeled on
representative trace days that had accurate GPS data. An
advantage of the trace generator is that we are able to vary
the number of buses in the simulation2.

The default values for each simulation are an unlimited
buffer, an offered mean load of 36 pkts/hour, 10-Kbyte
packets, and 9 buses, each on distinct routes. Peers generate
messages with inter-arrival times from a uniform distribution.
We allowed peers to have unlimited buffers because in our
real testbed each bus carries a 40GB drive; this is more than
sufficient given the actual transfer bandwidths we observed
between peers. In our experiments where we did limit the
buffer, the buffers at peers are stated in terms of the number
of messages they could store, which we varied from 50
to 450. In all experiments, each peer had an unlimited
buffer for storing messages for which it was the source. To
determine the amount of data transfered at each opportunity,
we multiplied the length of time peers are in radio range by
the mean transfer rate reported in the trace data, which is
120 KB/s. Each simulation is run for 10 simulated hours.

In each experiment, our default scenario is a comparison
of 9 buses running a specific protocol (MaxProp, ME/DLE,
random, or FIFO) to 9 buses and 3 autonomous agents
running MORA. Obviously, adding robotic agents increases
the amount of buffer resources in the system. Therefore,
in the interest of a fair comparison, in the simulations of
MORA, 3 randomly chosen buses have no buffer space
allocated for packets generated by others. In other words,
the MORA protocol simulations do not introduce additional

2Future traces of DieselNet will solve this GPS data collection problem.
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Fig. 3. Simulation experiments comparing the effect of subsumption
vs threshold nullspace control on packet delivery rate as a function of
offered load for ME/DLE. A statistical test shows the difference of the
means are not significant for a 95% confidence interval.
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Fig. 4. Simulation experiments comparing the effect of subsumption vs
threshold nullspace control on delivery latency as a function of offered
load for ME/DLE. A paired t-test shows the means are statistically
different for a 95% confidence interval for all cases except 1 agent.

storage in the network. Note also that MORA agents never
generate packets.

Each point on the graph represents the average value
of 10 simulations with 10 different random seeds (totaling
thousands of packets). Error bars on graphs that report the
fraction of delivered packets represent the semi-interquartile
range (i.e., 25% and 75% of data). The SIQR numbers
were too large to be useful for latency measurements—this
is because the mean latency between each of the source-
destination pairs is very different, and so measuring the
variance of the latency is not illuminating or appropriate. To
address this problem, for all latency graphs, we computed the
paired t-test of robotic versus non-robotic versions of each
protocol. Each simulation contains the same delay between
new packets and the same movement patterns by buses.
Therefore, to perform the test, we pair corresponding mean
delivery times of each source-destination combination. The
mean latencies reported in the graphs are the means of all
source-destination means. Unless specifically denoted in the
caption of each figure or in the text, the results always
represent a significant difference between paired robotic and
non-robotic protocols for a 95% confidence interval.
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Fig. 5. A comparison of MORA to movement using random
selection of destinations — Packet delivery rate with increasing load
in the context of MaxProp and Random routing strategies.
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Fig. 6. A comparison of MORA to movement using random
selection of destinations — Delivery latency with increasing load in
the context of MaxProp and Random routing strategies.
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Fig. 7. Packet delivery rate with increasing load — a comparison of
MORA+MaxProp when agents move at varied speeds.
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Fig. 8. Delivery latency with increasing load — a comparison of
MORA+MaxProp when agents move at varied speeds. (Normal speed
is statistically the same as twice when packets per hour per bus is 2.)

1) Protocols: Our design of MORA is independent of and
oblivious to an underlying routing protocol used by non-
robotic peers in the system. Therefore, we evaluate MORA
over four different routing protocols, which we describe
below.

The limited resource in our simulations is the bandwidth
available between peers during transfer opportunities. At each
opportunity, peers do not know the amount of data that can
be transfered. These four protocols differ in how a peer
A decides which packets to send—and what order to send
them—to a peer B during a transfer opportunity.

• Random delivers packets destined for B first and then
selects and schedules packets randomly from those
stored at A.

• MaxProp [4] uses several mechanisms to provide rout-
ing. Packets are first assigned a score based on their des-
tination and B; the score is based on the likelihood that
B meets the destination directly or through a series of
intermediaries. Packets with lowest scores are scheduled
first; however, new packets are given a higher priority.

Additionally, reports of successful packet delivery is
epidemically flooded across the network to clear out
buffers of intermediaries. Finally, packets maintain a list
of previous hops to avoid transmitting to an intermediary
that has already received the packet. Details of MaxProp
are presented in our previous work; to our knowledge
no proposed protocol performs better.

• ME/DLE is described in our previous work [4] as the
Most Encountered / Drop Least Encountered protocol.
ME/DLE is an extension of our previous work, the
MV routing protocol (which appears in the preliminary
version of this paper [5]). MV was designed for en-
vironments where buffer space is the limited resource
and transfer opportunity bandwidth is unlimited. For
devices with very small buffers compared to their radio
resources, this makes sense. However, for the bus net-
work we have constructed, MV is not appropriate. While
MV’s only mechanism is to drop packets with desti-
nations that were least encountered, ME/DLE adds a
mechanism that prioritizes during transfer opportunities
the packets with destinations that are most encountered.
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Fig. 9. Packet delivery rate as network load increases.
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Fig. 10. Packet latency as network load increases.

In particular, ME/DLE uses the scoring mechanism
from MaxProp (i.e., it is exactly MaxProp without the
additional mechanisms).

• FIFO is a simple strategy where the packets are ordered
for transmission based upon the FIFO order at which
they were received at the bus node. Packets are also
deleted in FIFO order when necessary. When buffers
are large, packets leave the queue only when they are
successfully delivered to their destination. Because no
acknowledgments are reported, nodes can learn only
directly from peers which packets have already been
delivered by others.

B. Comparing Subsumption and Nullspace
To determine the appropriate multi-objective controller to

use for autonomous agents in a DTN, we compared the
performance of the two algorithms proposed in Section III-E
by simulation.

Figures 3 and 4 compare the performance of subsumption
to threshold-nullspace for varying numbers of robots with a
fixed network load of 18 packets per bus per hour using the
ME/DLE protocol. These experiments show that threshold
nullspace control is better at merging the various control
objectives of the primitive controllers. While the average
delivery fraction for threshold nullspace is better (Figure 3),

the confidence interval of the differences (not shown in the
graphs) indicates that the means are in fact not statistically
different. However, as Figure 4 shows, the mean latency of
threshold nullspace is lower and statistically significant.

Since it achieves lower latency, for all subsequent ex-
periments we choose nullspace-based multi-objective control
for the autonomous agents. Below, we describe how the
introduction of agents affects networks performance.

To evaluate the quality of agents’ chosen movement des-
tinations, we compared MORA against agents that move to
randomly selected destinations. Note that the agents do not
practice brownian motion or the random waypoint model.
The peer they chose to move to is randomly selected (c.f.,
the description of controller in Section III-D). This requires
some resources but is still trivial to implement and is more
fair than random waypoint motion. Figure 5 shows the packet
delivery rates for these two strategies when using MaxProp
and random routing and three agents. The delivery rates are
unchanged, but this is expected as the randomly moving
agents are bound to meet some bus and that is always helpful.
Since buses never leave the simulation, as long as the agents
are meeting buses, packets will get delivered. Figure 6 shows
the improvements due to MORA over randomly moving
agents are in terms of delivery latency. MORA decreases
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Fig. 11. Packet delivery rate as local buffer sizes increase.
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Fig. 12. Packet latency as local buffer sizes increase.

packet delivery latency by about half and it is less varying
with increasing load. We can conclude that our algorithm is
making decisions that benefit performance.

We also examined how agent movement speed affected
MORA performance. Speeds half as fast and twice as fast
did not affect delivery rate, as shown in Figure 7. However,
as might be expected, in our experiments, delivery latency
is affected by agent speed, but only slightly, as shown in
Figure 8.

C. DTN Performance with Agents
In our next set of experiments, we evaluate MORA under

varied network load, buffer space, and the number nodes in
the system. For each, we show the resulting packet delivery
rate and packet delivery latency. In general, we see that
MORA always improves the fraction of packets delivered
and consistently decreases average delivery latency.

Note that in Figures 9 through 16, delivery rate graphs
appear in the left column and delivery latency graphs appear
in the right column; MaxProp and Random are always in the
top row, and ME/DLE and FIFO are always in the bottom
row; The original protocols use unfilled symbols (e.g.,“◦”),
and robot-enhanced protocols use filled symbols (e.g., “•”).

Varying Network Load. Figure 9 compare the delivery
rates of the four protocols with and without MORA as the

offered load increases in the network. Figure 10 shows the
corresponding delivery latency. In all four protocols, the
use of MORA robots significantly increases mean delivery
rate. For the highest loads, we see that MORA provides
an increase from 67% to 87% for MaxProp, from 55% to
69% for Random, from 52% to 68% for ME/DLE, and from
53% to 70% for FIFO. In all cases, we also see that MORA
decreases average latency in all cases, and this difference
increases slightly as load increases.

Note that MORA adds stability to MaxProp, maintaining
a delivery rate of about 90% consistently as load increases
(Figure 9-top). Interestingly, ME/DLE and FIFO perform no
better than random (and therefore are very poor designs for
DTNs), but all four protocol protocols benefit from the use
of MORA robots.

Varying Storage. Figures 11 and 12 show the delivery rate
and latency, respectively, for experiments where we varied a
limited amount of buffer space carried by each bus and agent.
In these simulations, the load was fixed at 36 pkts/hour per
bus. (A comparison of Figures 11 and 9 shows that MaxProp
nodes require buffers of only about 450 packets.)

In all cases, MORA-versions of all protocols have delivery
rates that are no worse than without MORA, and we see the
strongest improvement with MaxProp. For all sized buffers,
MORA improves packet delivery latency.
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Fig. 13. Packet delivery rate with an increasing numbers of buses.
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Fig. 14. Packet latency with an increasing numbers of buses in the
network. (Means lack statistical difference after x = 27.)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

Av
g 

Fr
ac

tio
n 

of
 P

ac
ke

ts
 D

el
ive

re
d

Packets Size (K)

Robots+Maxprop
Maxprop

Robots+Random
Random

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

Av
g 

Fr
ac

tio
n 

of
 P

ac
ke

ts
 D

el
ive

re
d

Packets Size (K)

Robots+ME/DLE
ME/DLE

Robots+FIFO
FIFO

Fig. 15. Packet delivery rate as packet size increases.
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Fig. 16. Packet latency as packet size increases.
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Fig. 17. Synthetic mobility model — delivery rate as packet load
increases.
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Fig. 18. Synthetic mobility model — latency as packet load increases.
(Few points are statistically different for either protocol.)
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Fig. 19. Synthetic mobility model — delivery rate as the number of
nodes increases.
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Fig. 20. Synthetic mobility model — latency as the number of nodes
increases. (Both MaxProp and Random are not statistically different
from MORA versions at x = {9, 18, 54}.)

The best performing protocol is MORA-MaxProp, achiev-
ing delivery of 88% of packets with a buffer for only 300
packets and also achieving the lowest latency. And while
MORA does not improve the delivery rate of ME/DLE and
FIFO, it does improve delivery latency for those protocols.
We can infer that MORA in general requires sufficient
buffer in order to most improve performance, however, when
MORA is coupled with better performing routing protocols,
its improvements are pronounced even when storage buffers
are limited.

Varying Nodes. Figures 13 and 14 compare increasing
numbers of nodes on each bus route. Recall that we simulated
nine separate routes each with 1 bus; in the figures, we
increase the number of buses per route, with the total number
in the system shown on the x-axis. The number of agents is
fixed at 3 for all cases. As the network increases in density,
and the robot agents comprise a smaller fraction of the
population, we see diminished improvement between MORA
and the original protocols. We can conclude that MORA
agents must be a reasonable portion of the node population
if significant improvements are desired. It is difficult for us

to state conclusively from these experiments what percentage
is appropriate for an arbitrary network.

As the networks increase in size, the load also corre-
spondingly increases. For network greater than 45 buses,
the load is too high for network capacity, and the latency
spikes for Random, ME/DLE, and FIFO. MaxProp and
MaxProp+MORA do not suffer this congestion collapse since
the protocol clears out delivered packets and priorities data
for closer destinations, lowering latency for delivered packets.

Varying Packet Size. Figures 15 and 16 compare per-
formance as the size of the packets increase. This effectively
decreases the bandwidth available during each transfer oppor-
tunity. MORA-MaxProp again performs best in terms of the
percentage of delivered packets as well as latency, though all
see improvement. This experiment shows that MORA’s im-
provements are present for a variety of application-required
packet sizes in the DTN, the improvement drops as resources
become scarcer.

Evaluation Against a Synthetic Mobility Model. In our
final set of comparisons, we show the results of using MORA
in a purely synthetic mobility model that we first introduced
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Fig. 21. Accuracy of the distributed status information over time.

in our previous work [5]. In the model, peers move period-
ically between three randomly chosen geographic locations:
a home location and two remote locations. Peers move only
among the three points, with the home location being chosen
50% of the time, and the remote points visited 25% each.

We evaluate the performance of MaxProp and Random,
with and without MORA, as load increases and as the number
of nodes simulated grows (with the number of agents held
at 3). In Figure 17 we see that MORA doubles the delivery
rate, and we see in Figure 18 there is little improvement in
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latency. Similarly, MORA loses it’s advantage as the number
of nodes in the network increases, as shown in Figures 19,
and it has only a small improvement in latency as shown
in Figure 20. In this synthetic mobility model, the network
is closer to the movements of the random waypoint model,
and therefore, there is little structure for MORA to take
advantage of. Although nodes move to distinct locations,
the locations themselves are even distributed throughout the
geography. Most of the advantages of MORA are likely from
the increased number of connection opportunities it offers
rather than intelligent delivery. Therefore, we conclude that
MORA has the most to offer in scenarios where movement
is structured and not random.

D. Evaluation of Distributed Network Statistics
The control strategies are dependent upon a quality esti-

mate of the state of the network. In a DTN, the quality of
the estimate is affected greatly by the disruptive nature of
the network since peers find it hard to exchange information.
To better understand this, we monitor the percentage error
of each of the network statistics over time. Additionally we
measure the accuracy of an agent’s estimation of where a peer
is geographically and the agent’s actually location; longitude
and latitude are displayed separately. The graphs of these
results are shown in Figure 21.

The results shown are for 3 buses per route (27 total) and
24 simulated hours of continuous operation. The accuracy of
each agent is recorded every 50 seconds. The error reported is
measured relative to the ground truth in the simulation. The
plots represent the averages of 10 independent simulations
with different random seeds. We show results for simulations
with one, three and six agents in the system. We use the same
default parameters described earlier.

These results show that the agents are able to consistently
estimate the unique bandwidth in the system, and they have
a relatively accurate view of the total bandwidth. We believe
this is because bandwidth and unique bandwidth is discrete
and changes more slowly, so the approximation is more
consistent. The agents are constantly moving and location
is continuous, therefore there is much greater error. In other
words, bandwidth only ever changes when peers meet, and
when peers meet they have an immediate opportunity to
update the distributed statistics. On the other hand, location is
constantly changing and that information doesn’t propagate
out. From the perspective of the distributed statistics, peers
jump from one location to the next. Even so, each agent’s
estimation of the location of a peer that it is moving towards
stabilizes as the simulation progress, but always displays a
small amount of error compared to the size of the simulated
movement of 8.24 km by 14.70 km. These numbers could be
improved if MORA nodes used dead reckoning to estimate
where nodes will be in the future, rather than moving to
their last known location. The most problematic estimators
are message latency and last visit error. However, as these
have the least priority in our nullspace controller, we do not
believe the effect is pronounced. The estimates increase in

accuracy with the number of agents in the system since they
are able to pass information to each other. We expect that if
nodes in the system were modified to pass such information
to agents, the accuracy would be even greater—however, we
did not evaluate this scenarios as our goal for MORA is to
show its improvement without modifying other nodes in the
network. This is enforced by the notion that MORA performs
quite well in the MaxProp and Random cases.

V. CONCLUSIONS

Disruption-tolerant networks require routing algorithms
that are different from those designed for ad hoc networks.
The capacity of a DTN is provided solely by the motion of its
participants. For a routing algorithm to ensure performance
under such conditions, it has to explicitly account for this
motion in its strategy of forwarding messages. In this paper,
we introduce a classification of routing algorithms for DTNs
based on this observation. We differentiate routing protocols
based on the degree to which they exploit structure in the
movement patterns of network participants to improve perfor-
mance metrics. Along a different dimension, we differentiate
them based on the degree to which participants adapt their
motions to network demand.

The exploitation of structure in the network participants’
movement patterns improves performance in DTNs. We
introduce the routing protocol MORA, which maintains a
movement model of the network participants and uses this
information to perform routing of messages on the network.
It estimates the probability of a particular message being
delivered by a given peer, and thus is capable of making
informed routing decisions. We present experimental evi-
dence that routing messages in DTNs using MORA results in
significant performance improvements over other techniques
in achieving higher delivery rates and lower delivery latency.
These improvements continue even as traffic on the network
increases by an order of magnitude.

The adaptation of network participants’ motion to network
demand permits additional performance improvements for
DTNs. For this purpose, we propose the introduction of
autonomous agents into the DTN. By adapting their motion,
these agents are able to compensate for a mismatch between
available capacity and demand. We propose multi-objective
control algorithms from robotics to control the motion of
autonomous agents in order to optimize network performance
metrics. These algorithms permit for a simple prioritization
among network metrics by network administrators. Experi-
mental results demonstrate that multi-objective control meth-
ods are successful at improving network performance by
adapting the movements of autonomous agents introduced
into a DTN.

We have shown that employing a routing strategy based
on multi-objective control for autonomous agents in a DTN
has the most significant performance improvements. This
indicates that it is desirable for routing protocols in DTN
to exploit the structure present in movement patterns of
network participants to route messages as well as to change
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the movement patterns of participants in accordance with
network demands.
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