
Faculty of Computer Science, Electrical Engineering and Mathematics
Department of Computer Science

Bachelor thesis

Implementation of
Pointer-Push&Pull operation

for maintenance of Random Graphs
in Peer-to-Peer Networks

July 17, 2006

Student: Thomas Janson, tjanson@uni-paderborn.de

Advisor: Prof. Dr. Christian Schindelhauer

Abstract

In this bachelor thesis the implementation of a Peer-to-Peer Network with a random
structure is presented. Each peer in this network is connected to a fixed number of other
random peers. The Pointer-Push&Pull operation is used to keep the structure of the
network random all the time. This operation is able to establish each arbitrary net-
work structure with equal probability. The random structure with its expander property
provides a robust connectivity to realize robust network backbones. Normally several
random networks are used in an application for different contexts. For this purpose, a
network communication model for Peer-to-Peer Networks is shown first which is able to
handle many independent working peers at the same time and tries to solve the network
communication between the peers in general. Finally a broadcast service is presented
which is able to broadcast data in overlay networks like random networks.

i

Contents

1. Introduction 1

2. Graph theoretical consideration 2
2.1. The Pointer-Push&Pull operation . 2
2.2. Randomized Rumor Spreading . 4

3. Implementation 6
3.1. Basic framework for a Peer-to-Peer Network 7

3.1.1. Network communication model . 7
3.1.2. Peer interface based on the network communication model 20

3.2. Pointer-Push&Pull Peer . 23
3.2.1. Random walk operation . 25
3.2.2. Pointer-Push&Pull operation . 27
3.2.3. Common Peer-to-Peer network operations 32

3.3. Broadcast service . 35

4. Bibliography 40

A. Test and Diagnostics 41
A.1. Distributed Trace . 43

A.1.1. Peer Trace . 46
A.1.2. Peer-to-Peer Network Trace . 47
A.1.3. SSH . 49
A.1.4. Logging . 52

A.2. Simulation . 53

ii

List of Figures

2.1. The Pointer-Push&Pull operation . 3
2.2. Concurrent call of 2 Pointer-Push&Pull operations 3
2.3. Sequence diagram of the median-counter algorithm. 5
3.1. Components of the implementation. 6
3.2. Network Communication Framework. 7
3.3. Class diagram of the network communication model. 8
3.4. Pipe architecture of the abstract network communication model. 15
3.5. An acknowledgement manager as pipeline element of a Communication. . . 16
3.6. A service which resolves the public socket address of a Communication. . . 19
3.7. The Peer interface based on the abstract network communication model. . 21
3.8. Class diagram of the structure and use of a Pointer-Push&Pull Peer. . . . 24
3.9. Class diagram of the structure for the random walk operation. 26
3.10. Class diagram of the structure for the Pointer-Push&Pull operation. . . . 28
3.11. Sequence diagram for the Pointer-Push&Pull operation. 29
3.12. Payload of the network packets in the Pointer-Push&Pull operation. . . . 32
3.13. Class diagram of the broadcast service. 36
3.14. Exchange of rumors in the broadcast service 37
A.1. Main frame of the Debug/Simulation of a Peer-to-Peer Network 42
A.2. Structure of a distributed tracing for a Peer-to-Peer Network 43
A.3. Setup of the Communication of the debug. 45
A.4. Visualization a single Pointer-Push&Pull Peer 46
A.5. Structure of a Virtual Peer . 47
A.6. Visualization of a random overlay network 48
A.7. Degree analysis of a random overlay network. 49
A.8. Frame for the automatically start of the debug via SSH 50
A.9. Setup for a trace application via SSH . 50
A.10.Logging frame . 53
A.11.Main frame of the Debug/Simulation of a Peer-to-Peer Network 54
A.12.Network properties of a Pointer-Push&Pull Peer in a random network . . 55
A.13.Dialog for the simulation of a dynamic network 56
A.14.Visualization of a broadcast in a random overlay network 57
A.15.Dialog for the manipulation of the network connectivity 58

iii

List of Tables

3.1. The parameters of a Pointer-Push&Pull Peer. 23
3.2. The different message types used by a PointerPushPullPeer. 25

iv

1. Introduction

This work is focussed on the implementation of a Peer-to-Peer Network. The structure
of this overlay network is random. The advantages of random networks are a small
diameter, a robust connectivity even for small degrees, and the expansion property.
Random networks are also successfully used in Gnutella and JXTA.

Chapter 2 describes the graph theory which is used in the implementation of the Peer-
to-Peer Network. First the Pointer-Push&Pull operation, a distributed random digraph
transformation [2], is presented. This operation is used in the implementation to estab-
lish random networks and maintain the connectivity of the networks. Furthermore, a
technique for randomized rumor spreading [1] will be summarized, which is used for a
broadcast service in overlay networks.

In chapter 3 the implementation of the Peer-to-Peer Network using the algorithms of
chapter 2 is described. The first section of this chapter deals with a network communi-
cation model. In this model several participants like peers can use a network connection
shared. The network layer is encapsulated from the application layer and participants
exchange information in form of object oriented messages. The progress of the message
exchange is asynchronous. Additionally, the communication model is extendable with a
pipeline concept. It’s possible to add extensions to this pipelines which can observe and
modify the incoming and outgoing traffic.

In the next section, the implementation of a Pointer-Push&Pull Peer is presented. Pointer-
Push&Pull Peers establish random overlay networks. The Pointer-Push&Pull operation
is used to keep the network random all the time and to maintain the network connectiv-
ity. These peers base on the network communication model which allows applications to
connect to several random networks in different contexts using only one network connec-
tion.

Finally the implementation of a broadcast service for an overlay network like the imple-
mented random overlay network is shown. This service uses the technique of randomized
rumor spreading described in chapter 2.

1

2. Graph theoretical consideration

2.1. The Pointer-Push&Pull operation

The Pointer-Push&Pull operation is an operation that transforms a labeled d-out-regular
multi-digraph. The operation is introduced in [2].

The transformation of a graph is the transition of a graph to another one. The trans-
formed graph has to contain the same set of nodes and has to keep to the same definitions
like the degree. So the transformation of a graph is the modification of the edges set
with restrictions to the definition of the graph.

A labeled d-out-regular multi-digraph is a directed graph with a regular out-degree d.
So each node has exactly d edges to other nodes. Self-loops, which are edges from a
node to itself, and multiple edges between the same nodes are allowed. Additionally, the
edges are labeled with the effect that each edge has got its unique label, so that it can be
distinguished between several edges between the same nodes. Furthermore, the graph is
only weakly connected. This means that there has not to exist a directed path between
all possible paris of nodes. A path between all nodes would only exit if the directed edges
would be regarded as undirected.

The transformation of a graph G = (V,E) in a Pointer-Push&Pull operation is defined
as follows:

1. Choose a random node v0 with v0 ∈ V

2. Do a random walk starting at node v0 with length 2. Choose in each step of the
random walk an edge uniformly of the edges set of the node. The result is the path
(v0, v1, v2).

3. Transform the graph: Remove the edge (v1, v2) and add the edge (v1, v0). Remove
the edge (v0, v1) and add the edge (v0, v2).

The transformation of the Pointer-Push&Pull operation is shown in figure 2.1.

The goal of this operation is to create random graphs. The advantages of this operation
are that the connection of the graph is not interfered and it is possible to create each
possible graph with the same probability. Random graphs provide a robust connectivity

2

2. Graph theoretical consideration

v0 v1

v2

v0 v1

v2

Figure 2.1.: The Pointer-Push&Pull operation

and an expansion, which addresses exactly the demands of Peer-to-Peer Networks. An
implementation of the Pointer-Puhs&Pull operation in a Peer-toPeer-Network is shown
in section 3.2.2.

Concurrent call of the operation

There is one case in the concurrent execution of the Pointer-Push&Pull operation, shown
in figure 2.2, which leads to an incorrect state. In this example two operations are started

v0 v1 v2 v3

v0 v1 v2 v3

Figure 2.2.: Concurrent call of 2 Pointer-Push&Pull operations

at the same time with the random walk paths P0 = (v0, v1, v2) and P1 = (v1, v2, v3). If the
first operation with P0 would process the transformation and remove the edges (v0, v1),
(v1, v2) and add the edges (v0, v2) and (v1, v0), then the second operation with P1 would
not be able to execute the transformation successfully because it could not remove the
edge (v1, v2) twice. Therefore the edge (v1, v3) could not be added in the second operation
because this would raise the out-degree of node v1 by one.

3

2. Graph theoretical consideration

A solution for this problem is to lock the edges on the random walk for other operations.
So it is not possible that an edge is modified in the graph transformation of concurrent
Pointer-Push&Pull operations several times.

2.2. Randomized Rumor Spreading

This section presents the theoretical approach of randomized rumor spreading which has
been presented in [1]. This technique is used in the implementation for a broadcast
service in an arbitrary overlay network.

The random phone call model is used for spreading the rumors. In this model n players
are connected in a network. The process of rumor spreading is round based. In each
round each player calls in parallel a random communication partner in order to exchange
rumors. For the exchange of rumors between the called and the calling player there exist
two possibilities:

• a rumor is pushed, if the calling player tells the randomly called other player a
rumor.

• a rumor is pulled, if the called player tells the player, which has called, a rumor.

Here the push-pull-scheme is used, which is a combination of push and pull. The rumors
are exchanged in both directions between the calling and the called player. In this scheme
a rumor can be spread in O(lnn) rounds with O(n ln lnn) transmissions of the rumor.

If a player is informed and spreads a rumor, it has to determine on its own when to stop
spreading the rumor again. When a player stops too early and does not inform enough
other players, it could happen that not all players are informed. If each player informs
more players as needed, the according number of transmissions of a rumor between the
players is higher as necessary, too. So this factor must be adjusted carefully. Here the
median-counter algorithm is used for this task. The algorithm has to be executed for
each single rumor by each player. In this algorithm a rumor has the state A, B-m, C
or D. A rumor is in state A if the player has received the rumor the first time in the
current round. In the states B-m and C the player spreads the rumor to other players.
In state D a player does not spread the rumor anymore. If a player has a rumor in state
D, it’s possible that another player tells him the same rumor again. So the player has
to keep the rumor in state D in order to prevent that it starts with the same rumor in
state A again. After state D the rumor is deleted. The transitions of the states of the
median-counter algorithm are shown in the diagram in figure 2.3 more precisely.

4

2. Graph theoretical consideration

A

receives only from
players in state B

C

receives from player
in state C

B-m

B-(m+1)

receives rumor from
more players with a m'≥m

receives from player
in state C

D

was at most O(ln ln n) rounds in C
or

rumor r is propagated O(ln n) rounds

start algorithm

has rumor r and
wants to spread it

does not know rumor r

rumor r is propagated O(ln n) rounds

Rumor is not
propagated
any more

Pull and wait for
receiving rumor r

Propagate
the rumor r

with push & pull

rumor r is propagated
O(ln n) rounds

B-(ln ln n)

B-1

Figure 2.3.: Sequence diagram of the median-counter algorithm.

5

3. Implementation

This chapter presents the implementation of the Peer-to-Peer Network. For the imple-
mentation Java 1.5 is used. Additional information can be got from the sources or the
javadoc. All Java specific names are marked with a writing without serifs (Example).

The description of the implementation is seperated in the following sections:

1. A network communication model for Peer-to-Peer Networks

2. A Pointer-Push&Pull Peer which participates in a random overlay network

3. A broadcast service which is able to spread rumors in an arbitrary overlay network

Figure 3.1 gives an overview of the usage1 and the relations between the components.

Application

Network
Communication

Pointer-Push&Pull
Peer

Broadcast
Service

*1

*1 1 1

Figure 3.1.: Components of the implementation.

An application wants to use random networks. First it instantiates a network communi-
cation. Then it can create several Pointer-Push&Pull Peers. These peers use the network
communication shared in order to communicate with other peers in the network. Each
Pointer-Push&Pull Peer can join to a different random overlay network and is connected
with other random Pointer-Push&Pull Peers in that network. A Pointer-Push&Pull Peer
has a broadcast service. The application can broadcast information with this service in
the connected random network. All other applications, which have a Pointer-Push&Pull
Peer in the same random network, receive this information.

1An example application using random networks exists in p2p.randomnetwork.debug.ExampleApplication.

6

3. Implementation

3.1. Basic framework for a Peer-to-Peer Network

Random overlay networks constitutes only a backbone for an entire Peer-to-Peer Network.
This follows from the fact that random networks does not support a search functionality.
It’s only possible to process a random walk or to flood the random network for finding a
certain element. So the search functionality can be established in a Peer-to-Peer Network
which uses random networks only for a backbone on a lower tier. This structure consists of
several partial networks with different types and structures. For this purpose a framework
for Peer-to-Peer Networks is implemented which contains

• The general definition of a Peer-to-Peer Network

• The communication between peers

• Processing the protocols of peers

The individual Peer-to-Peer Networks can be created upon this framework.

3.1.1. Network communication model

The network communication model provides the shared use of a network connection
for several participants. The participants are administrated with a local address. The
participants exchange information in the form of messages. Messages are objects which
are transformed to byte data for the network layer. For handling incoming messages
a thread management is available. These threads forward the messages to the local
receivers and the receivers can handle the messages in the same threads. The network
traffic is passed through pipelines and additional features can be added to these pipelines
in order to extend the model. Figure 3.2 illustrates this framework. All these features
of the network communication model are combined in the class Communication. The
structure of the model is shown in figure 3.3.

Service
Extension

Participant

Traffic
Pipelines

Network
Connection

Thread
Management

Extension
Participant

Figure 3.2.: Network Communication Framework.

7

3. Implementation

*

0..1
1

1

handleMessage(msg: Message)

«interface»
Participant

close()

«interface»
Connection

UDP(port: int)
UDP

ip : InetAddress
port: int

SocketAddress

1

*

1
1

1

1

serialize(out: Output)
-serializeContent(out: Output)
-deserializeContent(in: Input,
 receiver: Participant,
 sender: ComAddress)

Message
{abstract}

1

1
receiver

1

1
sender

createMessage(in: Input,
 receiver: Participant,
 sender: ComAddress)

«interface»
MessageCreator

*

1

ByteMap

Default

Class

*

1

Constructor

1

*

key: byte

*

*

useuses

has

defined in

is instantiated by

uses for deserialzing
messages in the contextis addressed by

java reflection

has key mapped on

has

serialize(out: Output)
deserialize(in: Input)

local: int
ComAddress

serialize(Output: out)

«interface»
Serializable

deserialize(Input: in)

«interface»
Fixed

deserialize(in: Input,
 receiver: Participant)

«interface»
Context

send(msg: Message)
Communication

localAddress: int

Figure 3.3.: Class diagram of the network communication model.

8

3. Implementation

Local addressing

If several independent working peers are used in an application, it’s necessary for the
communication with other peers that each peer has a unique network address. The
number of ports of a computer is often very limited. Several computers often share an
internet connection and accordingly the port space, too. The user has to assign the port
mapping in the router manually to the individual computers in the local network. Then
a peer is able to act as a server and can receive messages from other peers which it
has never contacted before. Besides most computers are firewalled. Under that security
aspects the user wants to configure and release as few as possible ports.

Under this circumstances it’s advantageous to use one single network socket shared for all
independent working peers. A network socket can be addressed by the IP of the network
connection of the computer and the port of the service within the computer. In order
to distinguish the participant, which use a network socket shared, each participant gets
another local address, that addresses the participants within the shared network socket
uniquely.

So in this network communication model each participant has a ComLocation which is
composed of

• IP address

• port

• local address

The local addresses are assigned to the participants during the registration in the Com-
munication. A coincidental still free local address is usually assigned to the participants.
But it’s also possible to use a fixed address. Participants with a fixed address can be
addressed with only the IP and port. A fixed local address can also be reserved as a
precaution, that the address is not assigned accidentally to another participant.

Information exchange based on messages

This network communication model is designed for small information exchanges. In
Peer-to-Peer Networks only small messages are sent for maintaining the overlay network
structure or executing the lookup operation.

The communication participants like peers exchange information in form of messages.
The messages are objects and have the base type Message. A Message object contains the
sender address, the receiver address, and the content which should be transmitted. The
sender address is needed in most cases for an interacting protocol and for the assignment

9

3. Implementation

to an operation which is executed cooperated. The receiver address is needed to send the
message to the receiver. The content of a message can be defined in a special class derived
from Message. In the definition of the content can be distinguished between the object
layer and the raw data layer. In the Message-object the content can be composed and
described object-oriented how it’s used in the protocol of the communication participants.
If a message is sent via the network, it’s serialized to a byte array and vice versa on
the receiver’s side. So the protocols in the communication participants like peers are
encapsulated from the direct network communication and can be defined on a more
abstract level. The course of communicating works as follows:

• Sender:

1. Participant:

a) Compose the content in a special Message-object, which should be sent

b) Call the send-method in the Communication

2. Communication:

a) Serialize the Message-object to a byte array

b) Send the byte data via the network to the receiver

• Receiver:

1. Communication

a) Receive the byte data of a single message

b) Lookup the Participant-object, which is the receiver with the local address

c) Associate the byte data with a Message-type in the context of the re-
ceiver, which defines the structure of the data. Create an instance of that
Message-type

d) Deserialize the byte data to the Message-object in the context of the
receiver

e) Call the handleMessage-method in the receiver-object

2. Participant

a) Process the received Message-object

10

3. Implementation

The serialization process is the transformation of a Message-object to the byte data
which can be sent via the network. In this model the way how to serialize is defined
in the Message-type. Standardly the standard object serialization of Java is used. In
this ObjectOutput stream an object is serialized in the general form. First the name of
the class of an object with the whole package information is written, followed by the
serialVersionID which is used to avoid that two different versions of the same class are
used. Then for each attribute the name and the data is written. Referenced objects are
added on the same way. The references between the objects are represented with ID’s.
So if one object is referenced several times, it’s only written to the stream exactly one
time.

So the standard serialization has a huge overhead of data sizes. The first element in
the serialization is the class-type which can be equated with the type of the Message. A
communication participant like a peer has only a small amount of different message types
in its protocols. So if it is known which type of service like a peer receives a message, then
the type can be represented in the context of the receiver with a smaller-sized value like
only a byte. A byte is the smallest unit for the serialized byte data. Instead of writing
the name of an attribute for the identification, it is also possible to arrange the attributes
in a fixed order. Mostly nested objects within a Message-object have a flat hierarchy and
the type of the objects is not various with generalization. So it’s not always necessary
to describe the object type in the byte array. An example is an IP-address, which is
represented in Java as an object. This objects can be also treated as an 4 byte attribute
in the serialization.

So summarized the standard object serialization has the advantage, that it is very easy
for the programmer to define the objects which should be sent in the network. This
contains particularly general not fixed types, which are replaced in the instance situation
by interface realizations or derived classes. So it has not exactly to be known what data
has to be transmitted. But the general serialization has the disadvantage that the size
of the data is not optimal. So it is always a consideration between a small network
traffic and an easy implementation. In the context of Peer-to-Peer networks often small
messages are exchanged in order to maintain the overlay network and in this context
this messages should be as small as possible in order to minimize the base traffic of the
network. As result it can be chosen in the framework between the standard serialization
and a user defined serialization. For this purpose a Message-class has to be derived from
the interface Communication.Serializable if the way of the serialization is explicit defined
by the programmer. Else the standard serialization of Java is used.

It has to be clear in the deserialization how to transform the byte data to a Message-
object again. In the deserialization process the Communication determines the receiver
of the message first. The receiver provides a so called MessageCreator-object which de-
fines how to deserialize a message in the context of the receiver. The derived class

11

3. Implementation

MessageCreator.Default deserializes a message with the standard java deserialization with
a ObjectInput stream. For the user defined deserialization a MessageCreator with the
derived type MessageCreator.ByteMap is implemented. This type can be used if it’s pos-
sible to represent all possible message types with a single byte. It’s sufficient that each
type of communication participants instantiate one MessageCreator.ByteMap, because all
instances of the same receiver type will act on the same way. In such a MessageCre-
ator.ByteMap the map from a single byte to the class type of the message can be defined.
This is possible in Java with the java reflection. In the java reflection an object of the
class type Class can be got from each java class. The Class-object contains the whole
class architecture description with all attributes, functions and constructors in a general
form. So it’s possible to access all elements of a java object in a general way. So more
precisely a MessageCreator.ByteMap contains a map from a byte to a Contructor-object of
the java reflection of the corresponding Message class type. A MessageCreator.ByteMap
reads in the deserialization process the first byte of the byte array of a message and
determines the mapped Constructor. With that Constructor it can instantiate an object
of the individual Message type. Then it calls the deserialize-method in that instance with
the input stream of the byte array as parameter. In that object-method the content is
read from the stream and set in the Message-object.

The composition of the message data follows to the class architecture of a derived Message
class. Dependent on that definition the individual serialization of the object-oriented
content can be described in the object method serializeContent(). This method has a
stream of a byte array as parameter. The content of the message can be written to this
stream. The serialization takes place in the Communication which is described more
precisely in the next section. The deserialization is the transformation from the raw data
of a message to the object-oriented Message-object. First an object of the special Message
class is instantiated. Then the object method deserialize() is called in the Message-object
with a input stream of the byte data as parameter. The content can be read from the
input stream and set in the object similar to the execution in the serialization. A further
parameter is the reference to the communication participant. This participant receives
the message when it’s completely created. This reference can be used if some elements
of the content are various and the participant has the information how to deserialize the
element. This technique is described more precisely in the section 3.1.2.

The local addresses of the sender and receiver of the message are added as further header
like the IP header before the content in the raw data which is sent via the network.

12

3. Implementation

Network Connection

In this model the network connection is encapsulated from the application layer. It’s
bounded to the Communication as an object which has to implement the interface Con-
nection. A Connection has to contain an incoming and an outgoing channel for the
network. The incoming channel receives incoming byte arrays of messages. The outgo-
ing channel is used to send byte arrays to to a socket address via the network. Both
channels are connected in the Communication. The participants of the Communication
have no direct access to this network connection object. They call the send-operation
in the Communication for sending a message and the Communication forwards incoming
messages to the receiver.

The default implemented connection is based on the UDP protocol. UDP stands for User
Datagram Protocol. This protocol gives a direct access to the datagram service of the IP
layer. In contrast to TCP, which provides a connection-oriented byte stream, UDP offers
only the delivery of single datagram packets. That adapts exactly to the communication
model with small single messages. A datagram packet consists only of the address, the
ports, a checksum and the data, which has a variable length. The maximum size for
a single network packet is 1492 byte. If the content of a single datagram package is
larger, the package is splitted into several packets whereas only the first one contains
UDP header. So it might be useful to take care about that limit and to utilise the full
capacity of single packets.

Each packet is individually addressed and routed. The delivery of the sent packets is not
guaranteed (no flow control). It’s also not guaranteed that the packets are received in
the same order in which they have been sent.
But all those restrictions, which would be supported in the TCP protocol, are not ab-
solutly needed in the case of a Peer-to-Peer Network. In the communication of a Peer-
to-Peer Network only small messages are exchanged between the peers. This messages
contain often a request which expects a reply. So the acknowledge of the successful de-
livery of the packet is returned automatically with the reply for the request.
An advantage of UDP is in contrast to TCP that the bandwidth is better used by sending
small packages and the overhead is minimal.
A socket with the TCP protocol establishes a fixed connection with another socket. So a
connection has to be established to each different peer in the network for the communi-
cation. That would raise the costs in a high dynamic network because a new connection
has to be established to each new peer of the permanently changing set of neighbors. The
UDP protocol is easier to handle: One DatagramSocket is used for sending and receiving
the messages of all arbitrary other peers and no connection is needed to set up.

For the outgoing and incoming channel the same socket with the same port is used.
This is necessary because the Communication acts as a server and the sender address of

13

3. Implementation

a request has to be used as the receiver for a reply. It wouldn’t be possible to add the
server port to the content of a network packet because that port would not be translated
with NAT, if the computer is behind a router.

Design of the network channels as pipelines

The incoming and outgoing channel of a Communication are designed as pipelines. Sev-
eral elements can be added to these pipelines which handle the incoming and outgoing
messages. Figure 3.3 illustrates that structure. In this way extensions can be added to
the Communication. The traffic is forwarded through each element of the pipelines. So
the elements can handle each message and modify the traffic or provide additional ser-
vices for the single messages. Thereby both pipelines are segmented in the object layer
and the raw-data layer. The pipeline elements in the object layer process the messages
as Message-objects. The elements in the raw-data layer process the messages as byte
arrays. Between the object layer and the raw-data layer two elements convert the traffic
between the layers and serialialize and accordingly deserialize the messages.

In this structure the communication participants are connected to the beginning of the
object layer of both pipelines. They call the send-operation in order to send a Message.
The Message is injected in the outgoing pipeline. Messages which reach the end of the
incoming pipeline are forwarded to the receiver. At the end of the raw-data layer the
network connection is bounded. Outgoing messages leave the Communication to the
network. Received messages from the network enter the Communication.

One general service is an acknowledgement service. This service guarantees that each
sent message has been received successfully. The service is added to the object layer of the
incoming and outgoing pipeline of a Communication. A message which should be acknowl-
edged is added to a special container with the class type MessageAcknowledgedContainer.
This container contains additionally an ID, which identifies the message uniquely in the
Communication. The outgoing pipeline element buffers all these messages. It adds them
to a scheduler as a TransmitErrorMsg with a timeout. The timeout indicates when the
acknowledgement of the message has failed. A scheduler is a simple utitility which allows
to send a message at a certain time with the linked Communication. The container with
the original message and the ID is passed on normally in the outgoing pipeline and is
sent. If a Communication receives such a message, it replies with an acknowledgment
message with the type AcknowledgementMsg. This acknowledgment contains the ID. If a
Communication receives such an acknowledgement message in time, the buffered transmit
error message is removed from the scheduler. Else the transmit error message with the
type TransmitErrorMsg is sent to the sender of the real message. So the communication
participant can react to the transmit error.

14

3. Implementation

SuperklasseParticipants

Communication

Raw-Data → Message
Deserialization

Message → Raw-Data
Serialization

Queue

Incoming Network
Connection (UDP)

Outgoing Network
Connection (UDP)

Message
Objects

Raw-Data

Application

Network

Element

Element

Element

Element

Element

Element

Element

Element

Figure 3.4.: Pipe architecture of the abstract network communication model.

15

3. Implementation

 acknowledgementTimeout: int
AcknowledgementManager

 id: int
AcknowledgementMsg

Message
{abstract}

id: int

MessageAcknowledged
Container

*

1

TransmitErrorMsg

*

1

time: int
ScheduleMsg *

1

*

* queue

1 1

queue

forward(msg: Message)

Incoming
ChannelElement

send(msg: Message)
Communication

*

1

forward(msg: Message)

Outgoing
ChannelElement

1

1

1

1

0..1

1

buffers

containscontains

uses for sending scheduled messages

contains

adds as TransmitErrorMsg
to the scheduler

removes the equal message
from the scheduler (equal ID)

 acknowledgementTimeout: int
Scheduler

add(msg: Message, time: int)
remove(msg: Message)

Figure 3.5.: An acknowledgement manager as pipeline element of a Communication.

16

3. Implementation

Another useful service is to retour local messages which have the same Communication
as receiver. This service is added to the object layer of the outgoing pipeline. It checks
simply the receiver address and redirects all local messages to the entrance of the object
layer of the incoming pipeline. A local message has the address of the Connection of
the Communication as receiver. In this case Message-objects have not to be serialized
and to send via the network. This is mostly of interest in the simulation of a Peer-
to-Peer Network where several peers can be tested in one Communication with high
performance.

A further interesting part for testing the robustness of a overlay network is of course to
manipulate the network connectivity. For this purpose, two elements can be added to
the incoming and outgoing pipeline. This elements dispose of some messages or forward
messages with a random delay.

Thread management

This model provides an asynchronous communication between participants. Participants
can send a request message and get an asynchronous reply message. The asynchronous
communication provides parallelism. A Communication has a queue where all incom-
ing messages are buffered. The incoming channel of the network connection passes the
the messages as byte arrays to that queue (Figure 3.4). Several worker threads han-
dle the buffered messages in the queue. The number of threads can be adjusted in the
method Communication.setNumberOfMessageHandlers(int). A worker thread removes an
available message from the queue and process the flow of this message through the in-
coming pipeline. Finally it delivers the message to the local receiver. The receiver is a
participant of the Communication. The participant can handle the received message in
the same thread. It can react on the received message and send a reply for example. So
a participant needs only own threads for executing own tasks.

The size of the queue for incoming messages is limited in order to prevent a buffer overrun.
If the quantity of inquiries cannot be mastered, there is no other possibility as deleting
some messages. Here the oldest messages are deleted and not handled. It would also be
conceivable to delete the messages dependent on a priority.

A participant calls the method Communication.send(Message) in order to send a message.
This operation is executed in the same thread until the message is sent and leaves the
Communication. If the bandwidth of the outgoing network connection is too small for
the produced traffic of the participants, the time for sending raises. So the participant
can measure the utilization of the Communication and is able to adapt accordingly it’s
behavior.

17

3. Implementation

Service for resolving the own public address

A further general problem is that a network service does not know its own public address
in the internet consisting of the IP and the port. If a computer uses a router as gateway to
the internet, it’s in a subnetwork and shares the internet connection with other computers
in the same subnetwork. In this case each computer has got an address in the local
network and the router has got one unique address in the internet. If a computer sends
a packet out from the local network into the internet, the router translates the address
in the packet header and replaces the local address with the public address. So the
receiver can send a response to that public address and the router forward the response
back to local computer. In this step the public address is replaced by the local address
again. As result a service does not know if an address, which it has to another service,
is really another service or it is its own address. This circumstance will not disturb the
functionality of the service but it would save some performance and a service does not
have to send data to itself.

For this purpose a service has been implemented which determines the public address of
a Communication. This service is a Participant of a Communication. It has a fixed local
address in the Communication. So the socket address of the Connection of a Communication
combined with that fixed local address is sufficient to address the service. The simple
idea of this service is that several of this services provide the public address each other.

It’s often the case that the internet connection has got a dynamic IP address which
is renewed recurrently for example every 24 hours. So a service has to refresh and
determine its own address in an interval that it doesn’t become outdated. But the time
of the replacement of the address is not known. So it cannot be guaranteed for each
point in time that the own address is correct and the own address should only be used
as optimization.

In the protocol of the service each service sends in an interval a request message to an-
other random service and gets a reply back. Both messages contain the socket address of
the other service in the payload of the packet. This address remains unchanged and is not
translated with NAT. So in one interaction both services can provide each other its own
address. The service has no own routing table and does not know which other service
it can contact. So it needs another service which is able to provide addresses of other
Communications. This can be some arbitrary other service like a peer which has to im-
plement the interface CommunicationAddressProvider. This interface contains a function
which results a random socket address of another Communication. It’s additionally possi-
ble to register other objects which are informed when the socket address is renewed in the
Communication. This objects have to implement the interface AddressChangesListener.

18

3. Implementation

*

0..1
1

1

handleMessage(msg: Message)

«interface»
Participant

send(msg: Message)
Communication

close()

«interface»
Connection

ip : InetAddress
port: int

SocketAddress

1

1

useuses

has

FIXED_LOCAL_ADDRESS: int = 1
PublicAddressLookup

addressChanged(com: com,
 oldAddress: SocketAddress,
 newAddress: SocketAddress)

«interface»
AddressChangesListener

getExternalCommunicationAddress():
 SocketAddress

«interface»
CommunicationAddressProvider

1

*

1

1

Message
{abstract}

1

1
receiver

1

1

sender

is addressed by

has

local: int
ComAddress *

*

informs

SocketAddressLookupMsg
{abstract}

Request

Response

*

1

contains

1

1

uses

*

*

informs
sends,

receives

send(msg: Message)
Communication

localAddress: int

*

Figure 3.6.: A service which resolves the public socket address of a Communication.

19

3. Implementation

3.1.2. Peer interface based on the network communication model

This section describes an interface for peers which are created upon the network commu-
nication model described in the preceding section. This interface allows also a general
integration of Peer-to-Peer Networks in applications. Figure 3.7 shows the interface.

In this model an application instantiates a peer with a factory with the base type Peer-
Factory. A concrete factory, which is derived from this base type, is able to produce peers
with the type Peer for the individual used Peer-to-Peer Network.

A Peer has to implement the following common operations:

create The peer creates a new overlay network. The properties of the network are defined
by this peer. All other peers have to keep to this initial properties.

join The peer joins to a still existing overlay network. The parameter of this operation is
the address of a known peer of that network. The peer can contact the other peer
and receive all information which it needs to join to the network. This includes for
example the individual properties of the overlay network.

leave The peer is currently connected to a network and leaves it.

lookup A lookup for a peer which is responsible for a certain ID in the Peer-to-Peer
network is executed. The passed parameter of this function is the searched ID. The
type of the ID depends on the individual type of the Peer-to-Peer network. The
result of the function is the address of the peer that is responsible for the ID. The
type of this address is PeerAddress.

A peer is a special Participant of a Communication and uses the Communication to exchange
messages with other peers in the same overlay network. Each peer has a routing table
with addresses of some other peers for the connection to a Peer-to-Peer Network. The
information and addresses of a peer are bundled in a PeerAddress which consists of the
following 3 elements:

• The network address

• The address or ID in the overlay network

• Some information of the application which uses the peer

With this composition of all information about another peer, the routing table of a peer
can be created in simple data structures. The network address is needed for communi-
cating with other peers. The address of a peer is in this framework a ComAddress which
has been defined in the section 3.1.1.
The overlay network address or ID is needed for executing the lookup operation and for
arranging the routing table. This is for example the ID in a distributed hash table.

20

3. Implementation

isEqual(id: ID): boolean
serialize(out: Output)

«interface»
ID

serialize(
 out: Output)

«interface»
Info

getID(): ID
getApplicationInfo(): Info
serializeExtensions(out: Output)
deserializeExtensions(in: Input)

PeerAddress
{abstract}

1

*
is addressed in the
overlay network by

1

*

is described by

create()
join(known: ComAddress)
leave()
lookup(searchedID: ID): PeerAddress
getAddress(): PeerAddress
getP2PNetworkProperties():
 P2PNetworkProperties

«interface»
Peer

1

1

is addressed by

1

*

1* uses

*

0..1

handleMessage(
 msg: Message)

«interface»
Participant

send(Message msg)
Communication

use

ip : InetAddress
port: int

SocketAddress

1

*
has

1

1
has

clone()

«interface»
P2PNetworkProperties

1

*

is configured by

create(
 com: Communication,
 id: ID,
 idDeserializer: ID.Deserializer
 info: Info,
 infoDeserializer: Info.Deserializer
):Peer

«interface»
PeerFactory

*

*
uses

uses for several peers

1

*

serialize(out: Output)
deserialize(in: Input)

local: int
ComAddress

«interface»
Application

provides

deserialize(in: Input): ID

«interface»
ID.Deserializer

deserialize(in: Input): Info

«interface»
Info.Deserializer

uses for deserializing

uses for deserializing

providesprovides

1*
initiates

with
default

serialize(out: Output)
deserialize(in: Input,
 p: Participant,
 sender: ComAddr.)

Message
{abstract}

1

*

has

1

*

has

sender receiver

Figure 3.7.: The Peer interface based on the abstract network communication model.
21

3. Implementation

The result of the lookup-operation is a PeerAddress. The application, which receives the
result, wants rather communicate with the application behind the found peer. So a Peer-
Address contains additional information about the application which uses the peer. This
information is various and defined by the application and could be for example the port
of the network connection of the application. So the requesting application is able to
communicate directly with the other application of the found peer.

PeerAddress’s are exchanged between the peers of a Peer-to-Peer network. So the ad-
dresses have to be serialized and transmitted via the network. The serialization of the
network address is defined in the method ComAddress.serialize(). In this method the
network address is written to the output stream and the method serializeExtensions() is
additionally called. The derived class PeerAddress overrides this method. The extensions
with the ID in the overlay network and application information are additionally written
to the output stream. The method ComAddress.deserialize() is called for deserializing an
address. The network address is read from the input stream and the method deserial-
izeExtensions() is additionally called. This method is overridden by the PeerAddress and
the extensions of the PeerAddress are read from the stream. The type of the application
information and possibly the type of the ID in the overlay network is various. So it has to
be defined in the Peer with a Info.Deserializer and ID.Deserializer object how to deserialize
that data. Both elements are able to read the data from the input stream and to return
the according object.

Restrictions relating to NAT

A peer does not always directly know its own address. If the peer runs on a computer
that uses a router as gateway to the internet, the computer has an address in the local
network and the router has a unique IP address in the internet. If a peers sends a
packet, the router replaces the local address in the packet header by the public address
with NAT. The port can also be translated.

In this background a peer is not allowed to serialize its own IP and port in the data of a
message. If the own address of the local network would be transmitted in the payload of
a packet, it would not be translated with NAT. And the local address can only be used in
the local network. As result the peer cannot add its own address to the routing table. If
other peers would send a request, it cannot reply with that entries. So the first peer in a
network has to start with an empty routing table instead of filling the routing table with
the own address according to the definition of the network structure. If a second peer
joins the network and demands for addresses of the network, both peers can transmit one
another the own addresses and both can initiate their routing tables. With this strategy
it’s not necessary to serialize the own IP or port in the user data of a message.

22

3. Implementation

3.2. Pointer-Push&Pull Peer

A Pointer-Push&Pull Peer is a peer of a random network which uses the Pointer-Push&Pull
operation to keep the network in random and to maintain the network connectivity. The
Pointer-Push&Pull operation is introduced in section 2.1 .

The peer is implemented in the class PointerPushPullPeer. According to the definition
of the Pointer-Push&Pull operation this peers have a multi-set as routing table with
the size of the regular out-degree of the network. The routing table contains addresses
of neighbors in the random network. Multi-set means that it’s possible that the same
neighbor can be contained in the routing table several times. Additional abilities of this
peer are a lookup operation for a peer with a specific ID and the usage of a broadcast
service. The architecture of the broadcast service is more exactly described in the next
section 3.3. Table 3.1 gives a survey of all properties of a random network. All peers
of the same random network have to keep to the same properties. This properties are
implemented in the class PointerPushPullProperties.

Table 3.1.: The parameters of a Pointer-Push&Pull Peer.

Category Parameter Unit Size [Byte]

Degree Regular Degree Integer (number) 4
Old neighbors Integer 4

Pointer-
Push&Pull

Interval Integer (milliseconds) 4
Timeout Integer (milliseconds) 4

Random
Walk

Number per hop Integer (number) 4
Timeout Integer (milliseconds) 4

Lookup Maximum hops Integer (number) 4
Timeout Integer (milliseconds) 4

Bearer service Lost connection timeout Integer (milliseconds) 4
Broadcast service Interval Integer (milliseconds) 4

The Pointer-Push&Pull Peers use the network communication model described in section
3.1.1 with a Communication for exchanging messages with other peers. This type of a
peer is only able to send and process a small amount of different message types. These
types are shown in table 3.2. All these message types are individual serialized and each
type is mapped to a 1 byte key. A MessageCreator.ByteMap is used in the deserialization
process in order to map the byte key to a message type.

The following subsections deals with the algorithms for establishing the random overlay
network and what is executed in the main operations create, join, leave, and lookup.

23

3. Implementation

isEqual(id: ID): boolean
serialize(out: Output)

«interface»
ID

serialize(
 out: Output)

«interface»
Info

getID(): ID
getApplicationInfo(): Info
serializeExtensions(out: Output)
deserializeExtensions(in: Input)

PeerAddress
{abstract}

1

*

is described by

create()
join(known: ComAddress)
leave()
lookup(searchedID: ID): PeerAddress
getAddress(): PeerAddress
getP2PNetworkProperties():
 P2PNetworkProperties

«interface»
Peer

1

*

1* uses

send(Message msg)
Communication clone()

«interface»
P2PNetworkProperties

1

*
is configured by

uses for several peers

1

*

«interface»
Application

provides

deserialize(in: Input): ID

«interface»
ID.Deserializer

uses for deserializing

PointerPushPullProperties

1

1

is addressed by

PointerPushPullAddress

0..degree

1
is connected in the
overlay network to

1

*
uses for lookup operation

*

0..1

use

PointerPushPullPeer

deserialize(in: Input): Info

«interface»
Info.Deserializer

providesprovides

uses for deserializing
neighbors

Figure 3.8.: Class diagram of the structure and use of a Pointer-Push&Pull Peer.

24

3. Implementation

Table 3.2.: The different message types used by a PointerPushPullPeer.

Key Mapped message type
0x00 Lookup request
0x01 Lookup response
0x02 Pointer-Push&Pull request
0x03 Pointer-Push&Pull response
0x04 Random walk request
0x05 Random walk response
0x06 Random walk join request
0x07 Random walk join response
0x08 Broadcast pull request
0x09 Broadcast pull response
0x0A Broadcast push

3.2.1. Random walk operation

A random walk is path through a graph. On each step of the path the next node is
randomly chosen with same probability.

A random walk operation is used here to collect addresses of peers in the network. This
operation is used when a peer has to few links in its routing table. Then it has to fill up
the routing table in order to have the regular degree. This is the case if the peer wants to
join to a network or if it has dead links in its routing table and has to repair the routing
table.

The random walk is controlled by the peer which has initiated the operation. In the first
step the peer sends a request message to a random neighbor of its own routing table. If
a peer receives such a request message, it replies with a random neighbor of it’s routing
table. So the peer, which executes this operation, can use that address for the next step
of the random walk.

On each step of the random walk a defined number of random links are collected and
sent back to the peer which has initiated the operation. So that peer is able to fill up
it’s own routing table until the regular degree of the random network is reached.

If the first step of the random walk is processed in the join operation, the joining peer
has not the parameters of the network. Then it sends a request message with a special
type for the join-operation on the first step of the random walk. In this case the peer

25

3. Implementation

startRandomWalkCollectorOperation(
 firstReceiver: ComAddress, isJoin:boolean)

response: RandomWalkCollectorResponseMsg
PointerPushPullPeer

msg: Message
receiver: Participant
waitTime: int

NotificationService

 neededNeighbors: int

RandomWalkCollector
RequestMsg

Message
{abstract}

RandomWalkCollector
JoinRequestMsg

neededNeighbors: int
newNeighbors: PointerPushPullAddress[]
nextReceiver: PointerPushPullAddress

RandomWalkCollector
ResponseMsg

prop: PointerPushPullProperties

RandomWalkCollector
JoinResponseMsg

degree: int
oldNeighbors: int
pointerPushPullInterval: int
pointerPushPullTimeout: int
randomWalkNumberPerHop: int
randomWalkTimeout: int
lookupMaxHops: int
lookupTimeout: int
lostConnectionTimeout: int

PointerPushPullProperties

interval: int
BroadcastServiceProperties

*

1

*
1

*

1randomWalk
TimeoutNotification

RandomWalkCollector
TimeoutMsg

1
1

1 1

Figure 3.9.: Class diagram of the structure for the random walk operation.

26

3. Implementation

which replies this message, defines on its own how many new addresses it has to send
back and sends additionally the network parameters to the joining peer.

In order to handle the case that a request is not replied, a peer starts a notification
service. This notification service is able to send a message time-delayed back to the
peer. So the peer sends with this service a message delayed with the timeout for the
random walk operation. If the reply is received in time, this notification service is simply
finalized. But if the timeout is expired, the peer knows that the other peer will not reply
any more. In this case it tries to continue the random walk with another random link.

3.2.2. Pointer-Push&Pull operation

The Pointer-Push&Pull operation is used to keep the overlay network random and to
maintain the network connectivity. The class diagram in figure 3.10 shows all classes of
the implementation which are involved in this operation.

The operation is executed on each peer in rounds. A Timer object is used to initiate
the recurrent call of the operation. A Timer is an extended thread which is able to send
recurrently a message in a fixed interval to a Participant like the PointerPushPullPeer.
The used message has the type PointerPushPullStartMsg. Whenever a peer receives this
message, it initiates the Pointer-Push&Pull algorithm. In order to make it possible that
each possible random network can be produced with equal probability, a peer does not
execute the operation in each round. The number of rounds, which a peer has to wait
for the next execution, is determined in a Markov chain. So after each execution of the
operation the next interval is determined in a Markov chain. In this operation a loop
is iterated and in each iteration stopped with probability 0.5. The number of iterations
is at the same time the number of rounds when the peer will initiate the next Pointer-
Push&Pull operation. The interval in the Timer-object is adjusted accordingly.

If a peer starts the Pointer-Push&Pull operation, it first chooses an arbitrary link of its
routing table neighbors with equal probability. This link is locked and moved from the
list neighbors to a data structure with the type LockedAddresses. This avoids that another
concurrent operation can be executed with the same link. It sends a request message
with the type PointerPushPullRequestMsg to that random neighbor.

If a peer receives such a request message, it chooses a random neighbor of its own routing
table. If this address is locked and is in the data structure LockedAddresses, the operation
has to be canceled and a response message with no new neighbor is sent back. Else if the
randomly chosen address is not locked, it’s replaced with the address of the sender. The
choose of the random neighbor and the replacement operation are processed together
thread synchronized. So no other concurrent operation is able to use the same address
of the routing table at the same time. Then the peer replies with a message of the type

27

3. Implementation

0..oldNeighbors

1

keeps old links

PointerPushPullAddress

0..degree

1

has in active routing table

 getNextTimeout():
 PointerPushPullAddress

LockedAddresses

timeout: long
TimeoutCheck

1

1 1

1

1

0..degree

contains

finalize()

interval: int
msg: Message
receiver: Participant

Timer

run()
Thread

1

1 timerPointerPushPull

PointerPushPull
StartMsg

PointerPushPull
RequestMsg

newNeighbor:
 PointerPushPullAddress

PointerPushPull
ResponseMsg

 content: Serializable
BearerMsg

receiver: ComAddress
sender : ComAddress

Message
{abstract}

outgoingBearerMsg(sender: Peer,
 msg: BearerMsg)
interactingBearerMsg(peer: Peer, in:
 BearerMsg, out: BearerMsg)
lostConnection(peer: Peer)
incomingBearerMsg(receiver: Peer,
 msg: BearerMsg)

«interface»
BearerListener

*

1

checkTimeoutPointerPushPull()

neighbors: PointerPushPullAddress[]
oldNeighbors: PointerPushPullAddress[]
lockedAddresses: LockedAddresses

PointerPushPullPeer

bears data for

deserialize(in: Input,
 peer: PeerBearer):
 Serializable

«interface»
BearerDeserializer

*

1
uses

Figure 3.10.: Class diagram of the structure for the Pointer-Push&Pull operation.

28

3. Implementation

:PointerPushPullPeer:PointerPushPullPeer

send request to random neighbor

send response with random neighbor

lock
random
neighbor

replace
random
neighbor

with sender
replace

locked neighbor
with

new neighbor

[timeout for
response expired]

Repair routing table

Figure 3.11.: Sequence diagram for the Pointer-Push&Pull operation.

PointerPushPullResponseMsg. This response contains the random address which has been
replaced in neighbors. If the routing table was empty then the response is sent back
without an additional address and the operation is canceled, too.

If a peer receives a response message with the address of a new neighbor, it removes the
locked address of the sender of the response from its routing table LockedAddresses. The
transmitted new neighbor is added to the active routing table neighbors. The Pointer-
Push&Pull operation is successfully finished. But if the message does not contain an
additional address of a new neighbor, the locked address is simply unlocked and moved
from the data structure LockedAddresses to neighbors. In this case the peer knows that
the other peer is currently in the network but could not execute the Pointer-Push&Pull
operation at the moment and the operation is canceled.

If the Pointer-Push&Pull operation has been executed successfully, the address of a
peer has been removed from the routing table, which has been been checked just in the
moment. So the peer knows that the other peer is currently in the network and the quality
of this link is in relation to the connectivity of the network very high. So it is useful to keep
this link for a while for the case that it’s determined that the routing table is incorrect.
This addresses are stored in a stack with the name oldNeighbors. The stack has got a
maximum size which can be set in the network properties PointerPushPullProperties. If

29

3. Implementation

it’s full and a new address should be added, the address, which is added first, is deleted.

The maintenance functionality of this operation consists of two parts. The first part is
that the Pointer-Push&Pull operation with its simple protocol of a request and a response
message can be seen as a ping, too. For this purpose, the locked addresses in the data
structure LockedAddresses are furnished with a timeout. This timeout can be adjusted
in the parameters of the network properties. In order to handle the case that the asked
peer for a Pointer-Push&Pull operation has left the network and does not reply, a thread
is started which checks these timeouts. If a timeout is expired, it’s known that the other
peer has left the network and the routing table contains a dead link. So the routing table
has to be repaired. First all links to the peer, which has left the network, are removed.
Then the routing table has to be filled up that it has the regular degree again. Addresses
of the data structure oldNeighbors are added to the active routing table neighbors first.
If that’s not sufficient, a random walk operation is started to get new neighbors. This
operation is described in section 3.2.1. The second part of the maintenance functionality
takes place implicitly. The second peer in the operation which is called for processing
a Pointer-Push&Pull operation, replaces always an address of its routing table with an
address of a peer, which has sent him a message just in the moment and it knows that
this peer is currently in the network. So old links are replaced bit by bit and possible
dead links to peers, which could have left the network, are deleted in this way.

Use of the messages for bearing data between applications

As mentioned in the introduction, a random network is normally used to connect appli-
cations in the same context. This applications executes together the same distributed
service. So if they want to publicize some information about the service, it’s probably
not important which other application in same context will receive the information. An
example is a Peer-to-Peer Network with a top-down approach. An efficient search struc-
ture is used at the top and the single elements of the search structure are connected
with a simple network structure like a random network. Thereby it would be possible
to exchange information about the search structure in the layer above because all peers
,which are connected in the same random network, provide the same part of the search
structure together.

In the Pointer-Push&Pull operation messages are sent to random other peers in the
overlay network. This messages can be used for transmitting some other data of the
application. The advantage is that the information of two operations with the same
receiver can be combined in one network packet and that reduces the network traffic.

For this purpose, there exists a bidirectional connection between a PointerPushPullPeer
and the application, which uses that peer. The application is able to set a so called

30

3. Implementation

BearerListener in the PointerPushPullPeer. This listener is informed when messages are
sent or received in the Pointer-Push&Pull operation. The application can add additional
data to these messages or get the additional data from the received messages. The
Pointer-Push&Pull operation has an interacting protocol whereby a request is sent and
a response is returned. So it would be additionally useful to allow the applications an
interaction, too. As result there are three cases to differentiate.

1. The first one is the request message, which starts a new Pointer-Push&Pull opera-
tion. There the procedure outgoingBearerMsg() is called in the BearerListener where
the listener is able to add some data to this single outgoing message.

2. If a request message for the operation is received, the peer will send a reply back to
the sender of the request. In this case the method interactingBearerMsg() is called
in the BearerListener. The listener is able to get the data of the received request
message and is able to add some data to the corresponding response message.

3. If a response message is received by a peer, the method incomingBearerMsg() is
called. The application is able to get the additional data of this message which
could be the response of the interaction.

So it’s possible to propagate data to arbitrary other applications and it’s also possible to
make an interaction between two applications with this technique.

The data, which can be added by the BearerDeserializer, has to implement the interface
Serializable. This interface describes simply that an object is able to write its content
to an output stream. Vice versa, the application has to describe how to deserialize the
additional data in the byte array of a message again. Therefore, the application has to
set a BearerDeserializer-object in the PointerPushPullPeer-object. This instance is able
deserialize the additional data from an input stream and returns the additional data as
object. This object is set in the deserialized message object. The BearerListener gets this
message with the additional data.

Network packets

Figure 3.12 shows the content of the network packets for the two messages in the Pointer-
Push&Pull operation. The complete network packet consists of the IP header, the UDP
header, and the content. In the request message the sender address is composed of the
IP in the IP header, the port in the UDP header, the local address in the local address
header, and the extensions ID and ApplicationInfo. The elements ID, ApplicationInfo, and
the content for the BearerMsg have variable length. This messages are also shown as
classes PointerPushPullRequestMsg and PointerPushPullResponseMsg in figure 3.10.

31

3. Implementation

receiver sender message
type 0x02 ID Application

Info

local address header

receiver sender message
type 0x03 ID Application

InfoIP port local

sender extensionslocal address header

new neighbor address

0 4 8 9

0 4 8 9
Bearer
data

Bearer
data

13 15 19

Request message

Response message

Figure 3.12.: Payload of the network packets in the Pointer-Push&Pull operation.

3.2.3. Common Peer-to-Peer network operations

In this section the main operations of a PointerPushPullPeer are described.

A peer is connected to a random network in the first two operations create and join.
Therefor it registers itself in the linked Communication that it is able to send and to receive
messages of other peers. The process of the recurrent call of the Pointer-Push&Pull
operation is initiated, too. A peer is disconnected from a network in the third operation
leave and it de-registers itself in the linked Communication that it will not receive messages
anymore. The the execution of the Pointer-Push&Pull-operation is stopped.

Create

The PointerPushPullPeer creates a new random overlay network. The parameters with
the type PointerPushPullProperties are used which are set in the peer. Theoretical the
first peer of a random network would start with links to itself that it has the regular
degree. But this conflicts with the problem that it doesn’t know its own address. This
problem has been described in section 3.1.2 about restrictions to NAT. As result the first
peer starts with an empty routing table and if the second peer joins and contacts the
first peer, the first peer will fill up its routing table with links to the second peer. So a
peer has only the regular degree if it’s not alone in the network.

32

3. Implementation

Join

The PointerPushPullPeer wants to join a still existing random network and has the Co-
mAddress of a peer of that network as parameter. On the one hand the peer requires
the properties of the network that it has the same behavior like the other peers. On the
other hand it needs addresses of other random peers in the network that it’s connected
to the network and has the regular degree which is given in the properties. The random
walk operation is used to get this information. This operation is described in section
3.2.1. In this operation the peer gets addresses of of other random peers in the random
network. The first message of this operation is marked for the join-operation that it will
return additionally the parameters of the network. This first message is sent to the ad-
dress of the known peer, which is given as parameter in the join-operation. The network
properties, which are currently set in the peer, are transcribed with the new properties
of network, which the peer has joined to.

Leave

The peer is connected to a random network. In order to leave the network again the
routing table of the peer is simply cleared. Other peers of the network are not informed
that the peer has left it. There will be some dead links to this peer, but they will be
fixed with the maintenance functionality of the Pointer-Push&Pull operation, which is
called by the other peers of the network.

Lookup

A random network is not suitable for a huge distributed search structure like other Peer-
to-Peer networks, because the structure of the overlay network is random and there are no
defined ways how to find efficiently a peer which is responsible for a certain element. But
it’s possible to separate the peers of the random network in a small amount of different
ID’s. Thereby several peers have the same ID and the assignment of different ID’s to the
peers is uniformly distributed. As shown in the class diagram in figure 3.8 the ID can be
set in the PointerPushPullPeer by the application. The type of the ID is arbitrary and
can be defined by the application, too. As price for the generality the application has to
define additionally how to deserialize the ID again.

If the regular degree is high enough in ratio to the size of the ID space, then the proba-
bility, that a direct neighbor has got the searched ID, is not very small. If that’s not the
case, a random walk can be passed through until a peer with the searched ID has been
found.

33

3. Implementation

The probability that at least one neighbor of a peer has the searched ID is

1−
(
1− 1

k

)d
= 1−

[(
1− 1

k

)k
] d

k

≈ 1− e−
d
k

where d is the regular out-degree and k is the size of the evenly distributed ID space. So
the expected length of a random walk for the search is

1

1−e
d
k

So the expected runtime of the search is constant and depends only on the degree of the
random network and the size of the ID space.

The lookup operation is a synchronous function which returns the address with the type
PointerPushPullAddress of the peer with the searched ID. In this operation it cannot be
determined, if actually no peer with the searched ID exists, because the whole random
network has to be checked for this conclusion. As result the length of the random walk has
to be limited. This value can be set in the network properties PointerPushPullProperties.
And an exception with the type PeerNotFoundException is thrown in the lookup operation
if no peer with the searched ID could be found.

34

3. Implementation

3.3. Broadcast service

This implementation of a broadcast service is designed to execute broadcasts of rumors
in an arbitrary overlay network. The structure of the service is represented in the class
diagram in figure 3.13. A rumor represents any data, which an application wants to
broadcast is the network. This data has to implement the interface Rumor. A rumor
can be broadcasted in the overlay network by calling the function addRumor(Rumor) in a
broadcast service with the class type BroadcastService. An application can register itself
as listener with the type BroadcastListener in a broadcast service. The broadcast service
passes all new rumors to this listener.

In order to embed the broadcast service in an overlay network each peer of the network has
to bind an instance of the broadcast service. This association of a peer and a broadcast
service fulfills two purposes:

• The peer supplies the broadcast service with random addresses of its routing table.
The broadcast service sends the rumors to that random links in order to broadcast
the rumors.

• The broadcast service uses the Communication of the peer in order to spread rumors
to the broadcast services of other peers. This contains on the one hand that the
peer has to implement the specific interface PeerBroadcast. In this interface the
peer provides the broadcast service a method to send messages with the network
connection of the peer. On the other hand if a peer receives a message, which is
actually intended for the broadcast service, the peer must pass the message to the
broadcast service.

The messages, which are sent by a broadcast service, are addressed to another random
peer instead of the broadcast service of that peer. So a peer must be able to receive
messages of a broadcast service and to pass them to the own broadcast service. The
types of the messages of the broadcast service are mapped to a byte in the serialization.
So this implementation is designed for peers which use a MessageCreator.ByteMap for the
deserialization of messages. This adapts to the implementation of the Pointer-Push&Pull
Peer which is described in section 3.2. In this scheme the peer registers each different
message type with an unique key in a MessageCreator.ByteMap for the deserialization
process. The peer has additionally to register the message types of the broadcast service
that it’s able to receive them. The broadcast service uses three different message types.
The peer has to register this message types with a self defined key. This 3 defined keys
have to be set in the broadcast service that the broadcast service uses this keys in the
sent messages. The keys are shown as attributes in the class BroadcastService in the class
diagram in 3.13.

35

3. Implementation

handleBroadcastMsg(
 msg: BroadcastMsg)
addRumor(Rumor: Data)
-executeBroadcastRound()

keyPullRequest: byte
keyPullResponse: byte
keyPush: byte

BroadcastService

rumorsReceived(peer: Peer,
 rumors: Rumor[])

«interface»
BroadcastListener

interval: int

BroadcastService
Properties

«interface»
Rumor

determineStateChangeDecision
(equalRumor: Rumor)
applyStateChange()

MAX_NETWORK_SIZE: long
STATE_A: byte = 0
STATE_C: byte
CTR_MAX: byte
STATE_D: byte
STATE_DELETE: byte
state: byte
stateChangeDecision: int
data: byte[]

RumorData

1*

add(rumorsInStateD: RumorData[])
removeRumorsOfBlackList(list:
 RumorDataList): RumorData[]

RumorsBlackList
addAll(rumors: RumorData[])
applyStateChanges()

RumorDataList

*

*

*

*

1

*

*

*

1

1

1

1
propagates rumors in ignores rumors in

contains in state Dcontains in state A to C

supplies with rumors is configured with

finalize()
interval: int

Distributed
Timer

Thread

11 starts
roundssend(msg: Message)

getRandomNeighbor():
 PeerAddress

«interface»
PeerBroadcast

11 use

messageType: byte
BroadcastMsg

Message
{abstract}

PullRequestMsg

TransmitMsg

1

*

PullResponseMsg

PushMsg

Figure 3.13.: Class diagram of the broadcast service.

36

3. Implementation

As presented in section 2.2 the push&pull-scheme is used to spread rumors. In this
scheme each player, here broadcast service, chooses a random link and both players of
this link exchange all its rumors.

Starting
broadcast service

Randomly chosen other
broadcast service

pushed rumors

pulled rumors

Figure 3.14.: Exchange of rumors in the broadcast service

3 different messages types are needed for this scheme:

• Push message

• Pull request message

• Pull reply message

Thereby the messages for the push and the pull response contain several rumors. The pull
request message has no additional content. If a broadcast service initiates a broadcast
and has rumors for spreading, it sends them with a push message else it sends only a
pull request message. The other randomly chosen broadcast service, which receives one
of those messages, replies with a pull reply message if it has own rumors to propagate.
In this way both broadcast services have exchanged all its rumors.

The process of spreading a single rumor is administrated in a RumorData-object. This
object contains the rumor as an object, the rumor in the serialized form as a byte array,
and the state of the median-counter algorithm. A rumor is sent several times in the
process. So it makes sense to serialize it one time and use this byte array for all trans-
missions. Additionally the byte data of a rumor is used here for comparing two rumors.
The byte data can be seen as one big number. Two rumors are equal if both have the
same value. In the service several different rumors can be spread at the same time. So
if a rumor has been received, it has to be checked first if that rumor has already been
received before. And if the same rumor has been found then the process for stopping the
spread of the rumor can be executed.

The administration of all rumors takes place in two data structures. Both are bound to
the BroadcastService instance. The first one is a RumorDataList which contains all rumors
as RumorData. All this rumors are currently spread by the broadcast service. The second

37

3. Implementation

data structure has the type RumorsBlackList. This data structure administrates all rumors
which are not any longer broadcasted. So if some rumors are received, all rumors are
filtered out first which are contained in that data structure.

The broadcast of rumors is round based. In order to distribute the network traffic evenly,
a timer of the type DistributedTimer is used. This thread object initiates the broadcast
process in an interval and starts the rounds randomly distributed in the time-frame of the
interval. In each round the method BroadcastService.executeBroadcastRound() is executed
which consists of the following parts:

1. It’s first checked if there are rumors which are not any longer broadcasted. This
mechanism is described in the next paragraph more precisely. This rumors are
moved from the active list in the class RumorDataList to the list with stopped
rumors RumorsBlackList.

2. Then it’s checked if some rumors which are no longer broadcasted can be deleted.
This can be done first when it’s secure that the rumor will not received any more.
If a deleted rumor would be received again, the broadcast service would assume
that it is a new rumor and would start spreading the rumor once again.

3. Then the push&pull operation is executed. The broadcast service gets the address
of another random peer in the network from the associated peer. If the service has
own rumors which it can spread, it sends a push message with all its rumors to that
address. Else it sends a simple pull request message. The service will receive a pull
response asynchronous after the execution of this function. This reply contains all
rumors of the randomly chosen other broadcast service. If the other service has no
rumors to spread, it does not reply.

The median-counter algorithm is used for stopping the broadcast of a rumor. This algo-
rithm is executed for each individual rumor. First of all the maximum network size has
to be set in the constant RumorData.MAX_NETWRORK_SIZE in the implementation.
The transition between the single states of the algorithm are depended on this value. The
transition of the states of the algorithm is proportional to log log(n) with the network
size n. So it’s a parameter which has only a few possible values in the pratical usage.
Here this constant is set to 225 which can be used for all practicable network sizes. With
the double logarithm a smaller value could only be used in very small network with the
next order of magnitude of 224

= 65365, 223
= 256, and so on. The constants of the

other states in the class RumorData are adjusted to that network size.

If a rumor is received the first time, it’s added to the data structure RumorDataList in
state A. Else if the same rumor still exists and is currently propagated, the state of
both same rumors is compared in order to get a decision if the state of the rumor has
to be changed. This is done in the function determineStateChangeDecision(equalRumor:
RumorData) in the class RumorData. The decision, if the state should be changed, is

38

3. Implementation

kept in the attribute stateChangeDecision. If the received rumor is in state C, this value
is set to the maximum value. Else if both rumors are in state B-m, then this value is
incremented if the received rumor has a greater or equal B-m’ and it’s decremented if the
B-m’ of the other rumor is less. At the beginning of each round the transition of the state
is performed. If a rumor is in state C, the state attribute serve additionally for counting
the rounds in state C and the state is incremented. If a rumor is in state B-m, it’s changed
to state C if the decision value is the maximum value and it is changed to state B-(m+1)
if the decision value is greater than 0. After the state transition the decision value is
reseted to 0 again for the next round. After all state transitions all rumors which are now
in state D are moved from the data structure with all current propagated rumors to the
data structure RumorsBlackList with all ignored rumors. In each round it is checked if
rumors of the black list can be deleted. For that the state attribute is used for counting
the rounds in state D, too. In each round this value is incremented in state D and when
the maximum number of rounds for storing are expired, the rumor is deleted finally.

39

4. Bibliography

[1] R. Karp, S. Shenker, C. Schindelhauer, and B. Vöcking. Randomized rumor spread-
ing. In FOCS’00: 41st Symposium on Foundation on Computer Science, page 10,
2000.

[2] P. Mahlmann and C. Schindelhauer. Distributed random digraph transformations
for peer-to-peer networks. In SPAA’06: Proceedings of the eighteenth annual ACM
Symposium on Parallelism in Algorithms and Architectures, page 10, 2006.

40

Appendix A.

Test and Diagnostics

In this chapter the test and diagnostics of the implemented Peer-to-Peer Network is
shown. The diagnostics contains

• Simulation of a Peer-to-Peer Network

• Trace of a Peer-to-Peer Network

The simulation establishes a dynamic distributed overlay network for test and diagnostics.
The implemented tracer for a Peer-to-Peer Network analyzes the state and behavior of
this network. The main frame shown in figure A.1 gives overview of all functionalities
for the simulation and trace.

41

Appendix A. Test and Diagnostics

Right click for
resolving

public address

Choose
Peer-to-Peer Network

Tracing

Connected
Tracers

List of peers

Simulate dynamic
P2P Network

Set network properties
(Delete current network)

Create peers

Remove peers

Show peer

Number create

Connect network
automatically

Current Number
of peers

Start debug
application via SSH

Close debug

Show network
tracer

Show
java log

Setup Network
Communication

Adjust parallelism
of Communication

Double-Click
for showing peer

Right-Cick for
Popup

Figure A.1.: Main frame of the Debug/Simulation of a Peer-to-Peer Network

42

Appendix A. Test and Diagnostics

A.1. Distributed Trace

A framework for tracing a complete distributed Peer-to-Peer Network is implemented.
This framework can be extended with tracing elements for the individual network types.
Here the tracing extensions for random overlay networks are shown.

A tracer observes peers in order to show the state and the behavior of the peers. In order
to analyze a distributed network it is necessary to collect the state of the whole network
in one application. For this purpose a structure of several tracers is instantiated. One
of them is a special main tracer which has the information of the complete Peer-to-Peer
Network. The other simple remote tracers have only the information of the local running
peers and provide that information the connected main tracer. This structure is shown
in figure A.2.

Trace/Simulation

Peer-to-Peer Network

Main
Remote

Figure A.2.: Structure of a distributed tracing for a Peer-to-Peer Network

43

Appendix A. Test and Diagnostics

So the network of tracers is centralized with one main tracer and several remote tracers.
In order to establish this structure a main tracer has to be started first. Then several
remote tracers can be started which get the address of the main tracer as parameter. Each
remote tracer sends a message to the main tracer with its own address for a bidirectional
connection of the centralized tracer network.

A tracer uses a Communication in order to exchange information with other tracers. A
Communication is a network communication model which allows several participants to
use a network connection shared. In this model each participant has an extended address
which consists of the IP address, the port, and an additional local address within the
Communication. A tracer has a fixed local address. So a tracer can be addressed only
with the IP address and the port. The Commmunication of a tracer can be modified and
extended in the dialog shown in figure A.3. Press the button Communication in the main
frame (A.1) to open this dialog.

Normally a factory is used to instantiate a main or remote tracer. This factory creates the
type of the debug dependent on a string parameter which can be added to the application
parameters. An example for the parameters is shown in the listing below. The first one is
the parameter for a main tracer and the second one for a remote tracer. This parameter
should not contain any empty spaces.

− t r a c e r (3000 , i sS im , Main , c r e a t e =4)
− t r a c e r (3000 , i sS im , Remote , 1 2 7 . 0 . 0 . 1 , 3 0 0 0 , c r e a t e =4)

The first element is the port of the Communication which is instantiated for the tracer.
The second element isSim is optional and is part of the simulation. If it is set, then
peers which are removed from the simulation are also deleted and if the simulation frame
is closed then the application exits. The third element Main|Remote is the type of the
tracer. If the type is Remote (second example), then the following two elements are the
address of the main tracer with IP address and port. The remote tracer connects to that
main tracer with that address. The last parameter is also part of the simulation. It can
be set how many peers should be created initially.

An example for the parameters is given in the scripts for the trace of a random overlay
network.

Run_RandomNetwork_Sim_Main
Run_RandomNetwork_Sim_Remote
Run_RandomNetwork_Sim_Remote_Show

The first one starts a main simulation/tracer for a random network. The other two
scripts starts a remote tracer/simulation whereby only the last one is started with a
GUI. Thereby the address of the main trace is set to the local host. So call first the

44

Appendix A. Test and Diagnostics

Figure A.3.: Setup of the Communication of the debug.

45

Appendix A. Test and Diagnostics

script for the main tracer and then one of the scripts for a remote tracer on the same
computer and both tracers are connected to each other.

A.1.1. Peer Trace

The trace of a single peer can be started in a remote or main trace, because it only
depends the information of a single peer. In order to show the trace you have to select
a single peer in the list on the bottom of the main frame (A.1) and either you double
click on the address of the peer or click on the button Show on the right side of the peer
list.

The type of tracing can be defined by the application. Standardly it is set a frame which
can contain several tracing elements. Each of that elements shows different information
about the peer. Figure A.4 shows this frame for a Pointer-Push&Pull Peer in a random
overlay network. In the middle you can see the routing table which is a multi-set. On
the bottom the message exchanges of the peer are shown.

Figure A.4.: Visualization a single Pointer-Push&Pull Peer

The connection between peers and a tracer is established with a listeners or observer
concept. Thereby it is possible to set an oberserver in the peer for

46

Appendix A. Test and Diagnostics

• the message exchange of a peer

• changes of the peer state (routing table)

If a peer sends or receives a message or changes its routing table, it informs the observer.
Then the observer like the tracer is able to present the current state and the behavior of
the peer.

A.1.2. Peer-to-Peer Network Trace

The trace of a whole Peer-to-Peer network can only be processed in a main tracer. A
main tracer has the information of the whole network. For this purpose a Virtual Peer is
implemented(figure A.5). This structure is based on a proxy pattern. The real peer runs

Main DebugRemote Debug

Virtual PeerReal Peer
State

Message

Operation
Call

Virtual Peer
Remote

Figure A.5.: Structure of a Virtual Peer

remotely referenced in a remote tracer. The remote tracer creates a Virtual Peer Remote.
Then it sends the address of the Virtual Peer Remote to the main tracer. The main tracer
creates a Virtual Peer which is connected in the network with the Virtual Peer Remote.
The Virtual Peer and the Virtual Peer Remote participates in the Communication of the
tracer.

If the main tracer calls an operation in the Virtual Peer then this operation call is for-
warded in the network to the Virtual Peer Remote. The Virtual Peer Remote calls the
operation in the real peer. The Virtual Peer Remote is additionally able to register itself
as observer in the real peer. If the real peer informs the Virtual Peer Remote about a
message or state change, then this information is sent to the Virtual Peer. The main

47

Appendix A. Test and Diagnostics

tracer is able to set an observer in the Virtual Peer an gets the transmitted changes of
the peer in this way.

So the main tracer has got a representative of each peer in the Peer-to-Peer Network:

• If the peer runs in the local application, the real peer is referenced.

• If the real peer runs in another application, a Virtual Peer is referenced

And with the state of each peer in the network it’s of course possible to present and
analyze the complete Peer-to-Peer Network.

Several tracing elements, which present information of the traced Peer-to-Peer Network,
can be added to the main tracer. That elements are shown in the third section Peer-to-
Peer Network Tracing of the main frame (A.1). There it is possible to choose one of the
tracing elements in a drop down box. The buttons beside the drop down box start, stop
or show the selected tracing tool. Figure A.6 shows an example for the visualization of
random overlay network. In this frame you can click or double-click on a peer in the
graph or in the list on the left to get additional information for a single peer. Another
example is presented in figure A.7 where the degree of a random overlay network can be
analyzed.

Figure A.6.: Visualization of a random overlay network

48

Appendix A. Test and Diagnostics

Figure A.7.: Degree analysis of a random overlay network.

A.1.3. SSH

A remote tracer can be executed with or without a visualization. If it’s started without
a visualization then it is also possible to start that application with a tracer with a SSH
remote shell. So the user is able to start several applications on different computers from
one single computer and establishes a real Peer-to-Peer Network.

For this purpose, a tool has been created that automates the starting of a java application
via a SSH connection on another computer. In this tool the application information for
several computers can be setup. The user can select these setups in a list and start them
with one mouse click. Figure A.8 shows the GUI of that tool. The tool can also be
opened with the button SSH in the tracer main frame A.1).

The button Add can be pressed for creating a new setup of a java application via SSH.
Then the dialog shown in figure A.9 pops up. The first three parameters Address, SSH
Port, and Username are used for establishing the SSH connection. Standardly the port
for SSH is 22. But if several computers have the same IP address, then it has to be
differentiated between the computers with the port. This case appears when several
computers use a shared internet connection with a router. The security check for the
Man-In-The-Middle-Attack is disabled in SSH because several computers with the same

49

Appendix A. Test and Diagnostics

Figure A.8.: Frame for the automatically start of the debug via SSH

Figure A.9.: Setup for a trace application via SSH

50

Appendix A. Test and Diagnostics

IP address but different ports will have different fingerprints and the connection to more
than one computer with the same IP address would fail.

All further parameters of the input mask are related to the application that should be
started on the server via SSH. As precondition the java application has to be available
on the server in the compiled form. Then the parameter Path defines the path of the
application on the server. The compiled class files of the application should be in the
subdirectory bin in this path. The parameter Main Class defines the class with the main
function which should be started. In the example of the random overlay networks this
class is p2p.randomnetwork.debug.RandomNetworkDebug.

The last three parameters Port, Properties File, and Create Nodes are related to the
parameters of the java application. The port is the port of the Communication which is
instantiated by the tracer. The properties file contains the properties of the Peer-to-Peer
Network. The last parameter Create Nodes defines how many peers should be created
initially. This part of the simulation.

It is possible to modify several setups on the same time. For this purpose you can select
several setups in the table and click on the button Modify. Then all parameters excepting
the network address are overwritten.

The buttons Start and Stop starts and stop processes for the execution of debug applica-
tions via SSH. Here it is also possible to select several setups at the same time. On the
bottom of the frame the output of one of the started SSH processes is shown. You can
double click on a setup in order to change to that output. The double click on the same
element again stops the output in the frame.

It is always a remote debug started in this context which contains the address of the
main debug as parameter. Then the remote debug connects to the main debug so that
it can be controlled by the main debug. If the tool is started in the main debug then
the address of the main debug is automatically used. If the application is on a computer
behind a router, then it is necessary to resolve the public address of the router first.
For this purpose you can make a right click on the IP address in the simulation/debug
frame and a popup will be shown. In the popup the option Refresh the IP address with a
webservice can be chosen to resolve the public address.

Setup SSH without password

The tool for the automatically execution of java applications via SSH is designed without
any additional user input. As result it cannot be entered the password for the login to
the server. In this section it is described how to establish a SSH connection from a client
to a server without a password.

51

Appendix A. Test and Diagnostics

Additionally you have to log in each server at least one time before you can use it in the
tool. The first time it will be asked if you accept the fingerprint of the server and this
has to be replied with yes. If this is not done, then the error "Host key verification failed"
will be prompted in the console output of the SSH tool.

Client
First a fingerprint for the client has to be created which consists of a private key
and a public key. The public key has the postfix .pub.
ssh−keygen −t r s a − b 1024

In the execution of the command the following has to be entered:

• Set the the storage location (for example .ssh/ida_rsa)

• Set an empty password

Then the directory /.ssh should contain the public key in the file ida_rsa.pub and
the private key in the file ida_rsa. As next step the public key has to be copied to
the server.
scp ~/. s sh / ida_rsa . pub u s e r@ s e r v e r : ~ / . s sh / i d a_ r s a_c l i e n t . pub

Server
First you have to log in the server with password.
s sh u s e r@ s e r v e r

Then the public key of the client, which has been copied to server, has to be
published in the server.
ca t ~/. s sh / i d a_ r s a_c l i e n t . pub >> ~/. s sh / au tho r i z ed_key s

Then you can log out and should be able to login without password again.

A.1.4. Logging

The package java.util.logging is used for logging the course of the program. This
package is a port of log4j and has the advantage over log4j that it is already
included in the standard java packet.

Figure A.10 shows a dialog frame for the representation of the log messages. In the
tree view on the left side of the dialog it is also possible to define which elements
of the running program should be logged. The course of single operations of the

52

Appendix A. Test and Diagnostics

Pointer-Push&Pull are logged here, too. If you enable the logger with the path
p2p.net.randomnetwork.PointerPushPullPeer.PushPull for example, then the execu-
tion of the Pointer-Push&Pull operation is logged.

Figure A.10.: Logging frame

A.2. Simulation

The diagnostics framework is able to create and simulate a dynamic distributed
Peer-to-Peer Network. So a real P2P application with real users is not absolutely
necessary for the diagnostics. This functionality is contained in the same visual-
ization shown in figure A.11.

A PeerFactory, defined in section 3.1.2, has to be set in the simulation so that the
simulation is able to instantiate the peers of the individual Peer-to-Peer Network.
If the framework is used also as simulation, then the parameter isSim has to be
set in the tracer which is described in A.1. This attribute indicates that the peers,
which are referenced in the tracer, are not used by another application and it’s
possible to delete the peers.

53

Appendix A. Test and Diagnostics

The create
operation creates
in each selected

debug the defined
number of peers

Select peers
in order to

delete them

Simulate dynamic
P2P Network

Set network properties
(Delete current network)

Create peers

Remove peers

Peer Simulation

Number create

Connect network
automatically

Current Number
of peers

Show network
debug

Network
Simulation

Figure A.11.: Main frame of the Debug/Simulation of a Peer-to-Peer Network

54

Appendix A. Test and Diagnostics

Peers can be created in the lower section of the main frame shown in figure A.11.
First you have to define the properties of the network which should be created
(Button Properties in the main frame). The whole network has to be deleted
before the changes take effect. The properties are only set in new created peers.
If the option Connect is enabled, then the peers connect automatically to the

Figure A.12.: Network properties of a Pointer-Push&Pull Peer in a random network

running Peer-to-Peer Network. In this scheme one single connected Peer-to-Peer
Network is created. The network can be created distributed on several debugs
which are connected to each other (figure A.2). It is also possible to control the
remote debugs and peers can be created remotely in a remote debug. For this
functionality the defined number of peers is created in each selected tracer. The
tracers can be selected in the middle section of the main frame (figure A.11).

In order to delete peers again you can select some peers in the list in the main
frame and click on the button Delete.

It is also possible to to start a dynamic network whereby peers are randomly
created and deleted. Click on the button Dynamic in the east-south of the main
frame and a dialog for that functionality will appear (figure A.13).

Additionally you can call the main operations of a single peer. This operations are
defined in section 3.1.2. Double click on the address of a peer in the main frame
or select a peer peer and click on the button Show. The dialog shown in figure
A.4 will appear. There you are able to call the operations create, join, leave, and
lookup.

It’s also possible to use a Peer-to-Peer Network trace element (section A.1.2) for
the simulation. Figure A.14 shows an example where a broadcast is processed in
a random overlay network. There you can selected a peer in the graph or in the

55

Appendix A. Test and Diagnostics

Figure A.13.: Dialog for the simulation of a dynamic network

list on the left and press the button Start in order to start a new broadcast in
the selected peer. If the button Reset is pressed, then the current shown debug is
ignored and not shown any longer.

The peers, which are created in the simulation, use the Communication of the debug
shared. It’s possible to manipulate the network connectivity. For this purpose click
on Communication in the simulation frame and then the dialog shown in figure A.3
appears. In this dialog you can click on Network Simulation and a dialog shown
in figure A.15 is shown. In this dialog you can manipulate the network traffic.
This contains that some message disappear randomly or messages are sent with a
delay.

56

Appendix A. Test and Diagnostics

Figure A.14.: Visualization of a broadcast in a random overlay network

57

Appendix A. Test and Diagnostics

Figure A.15.: Dialog for the manipulation of the network connectivity

58

	1 Introduction
	2 Graph theoretical consideration
	2.1 The Pointer-Push&Pull operation
	2.2 Randomized Rumor Spreading

	3 Implementation
	3.1 Basic framework for a Peer-to-Peer Network
	3.1.1 Network communication model
	3.1.2 Peer interface based on the network communication model

	3.2 Pointer-Push&Pull Peer
	3.2.1 Random walk operation
	3.2.2 Pointer-Push&Pull operation
	3.2.3 Common Peer-to-Peer network operations

	3.3 Broadcast service

	4 Bibliography
	A Test and Diagnostics
	A.1 Distributed Trace
	A.1.1 Peer Trace
	A.1.2 Peer-to-Peer Network Trace
	A.1.3 SSH
	A.1.4 Logging

	A.2 Simulation

