
Effects of Network Structure Improvement

on Distributed RDF Querying

Liaquat Ali, Thomas Janson, Georg Lausen, and Christian Schindelhauer

University of Freiburg
{ali,janson,lausen,schindel}@informatik.uni-freiburg.de

http://www.informatik.uni-freiburg.de

Abstract. In this paper, we analyze the performance of distributed
RDF systems in a peer-to-peer (P2P) environment. We compare the per-
formance of P2P networks based on Distributed Hash Tables (DHTs) and
search-tree based networks. Our simulations show a performance boost
of factor 2 when using search-tree based networks. This is achieved by
grouping related data in branches of the tree, which tend to be accessed
combined in a query, e.g. data of a university domain is in one branch.
We observe a strongly unbalanced data distribution when indexing the
RDF triples by subject, predicate, and object, which raises the question
of scalability for huge data sets, e.g. peer responsible for predicate ’type’
is overloaded. However, we show how to exploit this unbalanced data
distribution, and how we can speed up the evaluation of queries dra-
matically with only a few additional routing links, so-called shortcuts, to
these frequently occurring triples components. These routing shortcuts
can be established with only a constant increase of the peer’s routing ta-
bles. To cope with hotspots of unfair load balancing, we propose a novel
indexing scheme where triples are indexed ’six instead of three times’
with only 23% data overhead in experiments and the possibility of more
parallelism in query processing. For experiments, we use the LUBM data
set and benchmark queries.

1 Introduction

A goal of the Semantic Web [1] initiative is to integrate data from web resources
into machine-driven evaluation. The Resource Description Framework (RDF [2])
data model has been proposed by the W3C to encode these data. To cope with
the anticipated load of the Semantic Web data, several projects have emerged
that have studied distributed solutions for the storage and querying of RDF data.
State-of-the-art distributed RDF data stores such as RDFPeers [3], Atlas [4,5],
and BabelPeers [6] use Distributed Hash Tables (DHTs) to store and query RDF
data in a distributed manner. To attain an efficient search for RDF triples with
the same subject, predicate, or object, the triples are indexed three times for
each triple component (subject, predicate, or object) in these distributed RDF
databases. DHTs while provide fair load balancing properties with easy data

A. Hameurlain, W. Rahayu, and D. Taniar (Eds.): Globe 2013, LNCS 8059, pp. 63–74, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.informatik.uni-freiburg.de

64 L. Ali et al.

management under churn1 they also destroy the ordering of the index by using
hashing, and along with it the grouping of semantically-related data, e.g. data
of a university domain cannot be stored on a contiguous interval and is spread
over the complete table. This can cause more routing when collecting data from
the same domain to evaluate a query.

GridVine [7] and our proposed distributed RDF system 3rdf [8] address this
by using the P2P networks P-Grid [9] and 3nuts [10] respectively, providing a
distributed search tree for order-preserving indexing. Domain-related prefixes
(namespaces) in subjects, predicates, and objects of RDF triples order triples of
the same domain in the same branches of the search tree. In return, the data
belonging to the same domain is stored on nearby peers (in the metric of the
overlay routing structure) or even at the same peer.

In this paper, we evaluate the performance of distributed RDF systems when
using either the Chord or 3nuts P2P-network and when using two different RDF
data distributions in the network, the state-of-the-art indexing for subject, pred-
icate, and object and a novel indexing introduced in this paper. In Section 2 we
provide an overview about distributed RDF systems and distributed query eval-
uation techniques relating to this work. In Section 3 we present our simulation
including overlay networks, RDF data and query model, data distribution in-
cluding our new indexing scheme for a fairer data distribution, and the query
processing including speed-ups by exploiting additional features of the 3nuts
network. Based on this simulator, the simulation results regarding the perfor-
mance of the RDF system with the performance metrics routing-steps and time
for RDF query evaluation are presented in Section 4. Finally, we conclude in
Section 5, and give a brief outlook on future work.

2 Related Work

With more and more Web resources annotated with RDF information, distribu-
ted solutions for storage and querying of RDF data is a need. Several projects
have proposed peer-to-peer networks for the distributed evaluation of RDF data.
The majority of these projects, such as RDFPeers [3], Atlas [4,5], and Ba-
belPeers [6], use DHTs for the storage and querying of RDF data. The basic
idea here is to store each triple at three locations using the hash values of sub-
ject, predicate, and object. Triples with a specific subject, predicate, or object
are obtained during query evaluation by computing the hash value of that spe-
cific key again to resolve the peer providing these triples. To improve the query
load distribution, authors in [5] additionally index the triples by combinations
of triple components ’subject+predicate’, ’subject+object’, ’predicate+object’,
and ’subject+predicate+object’, with 7 replications of each triple in total. In
Section 3.3 we present a similar technique but with another objective, which of-
fers a more balanced data distribution. In the work [3] they measure the amount
of highly frequent triple components. The authors of [3,6] mention that triples

1 Peers entering/leaving the network only invoke local changes and take over/shed
data to neighbors.

Effects of Network Structure Improvement on Distributed RDF Querying 65

are not distributed uniformly in the network because of non-uniform distributed
index-keys. In this paper we will provide an analysis of the data distribution.

Traditional DHT-based P2P networks, such as Chord [11], are used as un-
derlying overlay networks in the aforementioned distributed RDF data stores
applying uniform hash functions to map data keys to peers in the network.
This achieves good storage load balancing but sacrifices the preservation of the
semantic proximity of RDF triples because it destroys existing relations among
the inserted triples keys (attributes) based on their order. RDF triple keys which
are semantically close at the application level are heavily fragmented in DHTs,
and hence the efficiency of RDF range queries or queries posed on semantically-
related attributes is significantly spoiled in these networks.

GridVine [7] and 3rdf [8] are other distributed RDF systems proposed for the
storage and querying of RDF data. GridVine and 3rdf use the P-Grid [9] and
3nuts [10] P2P networks respectively, to provide an order-preserving search tree
instead of a DHT-based search structure. The ordering in the tree can represent
the semantical proximity of closely related RDF triples (e.g. triples predicates
with the same prefix will be organized in the same subtree). In contrast to P-
Grid, 3nuts provides the additional feature of so-called interest locality, where
peers with a special interest in a particular search key or path can voluntary
participate in managing these paths. When co-managing a path and establishing
routing there, a peer increases its routing table but retains fast routing in that
path with direct links to other peers in the branch of the path. This is the reason
why we say the peer has a shortcut to that path. Additionally, the peer may also
participate in voluntary managing data in a path (which we do not make use of
in this work).

3 Simulation

3.1 Network Models

We simulate a distributed RDF system using either the DHT-based overlay
Chord or the search-tree based overlay 3nuts and compare the performance be-
tween both. The results might be transferable to the complete class of both
DHT-based and search-tree based peer-to-peer networks. The basic difference
between both will be explained below.

DHT-Based Overlay Networks. The majority of the state-of-the-art dis-
tributed RDF systems still use DHTs [12] for data allocation in the distributed
system. In a DHT, each peer and data item has an identifier, e.g. network address
and file name, which are hashed to a hash key in key space [0, 2m) for a typical
constant m = 128 for 128-bit keys. A peer then gets all data assigned which
has a hash key between its hash key and the next larger hash key of another
peer in the key space ring. It can be shown that the key space range assigned
to any peer is not greater than factor O (logn) as the expected key space range
which is 2m/n for n peers in the network. This results in a fair load balancing of

66 L. Ali et al.

data IDs. The DHT implementations then provide a routing structure to store
and look up data items with a lookup time, for instance, for Chord [11] with
O (logn). Fair load-balancing and logarithmic lookup time achieve scalability
where the network performance does not decrease considerably with the size of
the network.

Tree-Based Overlay Networks. GridVine and 3rdf are distributed RDF sys-
tems using search-tree based overlay networks, such as P-Grid [9] and 3nuts [10].
The fundamental difference when using a search tree instead of a hash table is
omitting any hashing of data keys in order to preserves the order of data keys in
key space. In addition to logarithmic point queries this achieves efficient range
queries in key space, whereas hash tables do not provide an efficient implemen-
tation for range queries and the complete table has to be searched. Therefore,
when applications such as distributed RDF systems can organize data in key
space so that RDF triples needed during query evaluation have nearby keys in
key space, (e.g. a similar prefix in the search key equivalent to a small key range),
the advantage of range queries can be exploited and lookup time is significantly
reduced. The price for efficient range queries in this class of overlays is more
complicated and up to a constant factor larger routing structure being more
difficult to uphold under churn and data sets with high dynamics.

3.2 RDF Data and Query Model

Each node in the distributed RDF system can publish RDF resources in the net-
work. In RDF, resources are expressed as subject-predicate-object expressions,
called triples. The subject in a RDF triple denotes the resource, and the predicate
expresses a relationship between the subject and the object. Let U and L repre-
sent URIs and Literals, respectively in RDF, a triple (v1, v2, v3) ∈ U×U×(U ∪ L)
over certain resources U and L is called a RDF triple [2]. RDF data can also be
represented as graph where subject and object are nodes and the predicates are
edges.

RDF resources are normally represented by URIs [2], and resources belonging
to a particular application domain usually share common namespaces or prefixes
(e.g. the ’Professor’, ’name’, ’email’, and ’teach’ keys in triples of Listing 1.1
share a common prefix ’ubd0v0’). Thus, the support of efficient range queries in
tree-based overlays, which is equivalent to short lookup times between network
keys with the same prefix, achieves short querying time when RDF data with
the same prefix is associated in a query (see the example in Listing 1.1).

@p r e f i x r d f : <h t tp ://www. w3 . org /1999/02/22− r d f−syntax−ns#>
@p r e f i x ubd0v0 : <h t tp ://www. l e h i g h . edu/zhp2 /2004/0401/un iv−bench . owl#>
@p r e f i x d0v0 : <h t tp ://www. Department0 . U n i v e r s i t y 0 . edu#>
d0v0 : P3 r d f : t ype ubd0v0 : P r o f e s s o r .
d0v0 : P3 ubd0v0 : name Georg .
d0v0 : P3 ubd0v0 : ema i l georg@ub . com .
d0v0 : P3 ubd0v0 : t ea ch d0v0 : cou r s e1 .

Listing 1.1. RDF triples about a resource d0v0:P3 encoded in RDF/N3 format

Effects of Network Structure Improvement on Distributed RDF Querying 67

Each node in the distributed RDF system can also pose SPARQL basic graph
pattern queries to retrieve the RDF data stored in the system. These basic graph
pattern queries are composed of triple patterns. Let U , L, and V represent URIs,
Literals, and Variables, a triple (v1, v2, v3) ∈ (U ∪ V)× (U ∪ V)× (U ∪ V ∪ L) is
called a SPARQL triple pattern [13]. We evaluate the system performance, such
as response time and routing hops needed per query, by performing conjunctive
triple pattern queries in simulated RDF systems with either the Chord or 3nuts
overlay. Following [5], a conjunctive query Q is a formula:

?x1, . . . , ?xn : − (s1, p1, o1) ∧ · · · ∧ (sn, pn, on)

where ?x1, . . . , ?xn are variables and each (si, pi, oi) is a triple pattern. Each
variable xk appears in at least one triple pattern. These patterns are matched
against the input RDF triples to find all assignments of variables to URIs and
literals such that all triples of the query can be found in the RDF data-store.

3.3 Data Distribution

SPARQL, as well as the majority of RDF query languages, mainly support con-
straint search of the triples’s subject, predicate, or object values. Thus, as in
systems like (RDFPeers, Atlas, and BabelPeer), we index each triple three times
using the subject, predicate and object identifier.

The degree of the underlying RDF graph is not limited and predicates occur
several times to identify the same type of association between nodes. If we index
triples by subject, predicate or object, we group the triples with the same iden-
tifier on the same peer, with the advantage that we can perform a constraint
search for a specific subject, predicate or object in a local database. The main
drawback is that we leverage the load balancing techniques of most overlays
because data items with the same key are managed on the same peer. Since
the degree of this graph is not limited in any way, the load-balancing might be
unfair, so that typically there are lots of ’type’-predicates in most practical RDF
graphs only managed by one peer.

To cope with unfair load balancing, we propose another indexing scheme where
a triple is indexed for each possible combination of its 2 out of 3 components,
giving the 3!

(3−2)! = 6 combinations subject+predicate, subject+object, predi-

cate+subject, predicate+object, object+subject, object+predicate. This means
that, for instance, triples containing the predicate ’type’ are subdivided accord-
ing to all possible classes. Thus, in the example of Listing 1.1 there is one specific
peer managing all ’types’ with object ’professor’ but not necessarily ’types’ for
other objects. So if we already have a constraint for this object in a query,
all triples on this peer are sufficient. Queries where two triple components are
unknown become more challenging, when not all data for a specific triple com-
ponent are on the same peer and have to be collected from many peers. This is
equivalent to range queries, which are not practical in DHT-based overlays. We
therefore see a trade-off in DHT-based systems with two options, either a more
balanced data distribution with 6 indexes but limited functionality (evaluation

68 L. Ali et al.

of triple patterns with only 1 constant is not possible) or all functions but more
unbalanced data with the 3 index scheme. In contrast, in a search-tree based
system these kinds of range queries are very efficient. To retrieve all triples of a
specific predicate with the predicate+object index, we go to an arbitrary peer
in the predicate’s path in the search-tree and scan the subtree for all predicate-
object combinations only using direct routing links.

The data amount in the network is not necessarily twice when doubling the
number of indexes. Imagine a predicate’s path in the tree managed by a single
peer in the 3 indexes scheme. This peer then will manage the same triples in
the 6 indexes scheme since all triples for indexes predicate+subject and predi-
cate+object will be in the subtree of the path of the predicate’s identifier, and a
triple has to be transmitted only once in this case instead of twice for different
peers for paths predicate+subject and predicate+object. If m peers are in the
path of a triple component, the expected overhead factor of triples is (2− 1/m).

We have analyzed the distribution of triples in our RDF system with 1, 000
peers and 100, 000 triples. Figure 1 shows the triples managed by the peers in
decreasing order to the number of triples per peer, e.g. the peer with rank 1 in
Figure 1a has 20, 000 triples. Certainly, in an optimal load balancing, all peers
would manage the same amount of triples indicated by the constant function of
the mean value. For 3 indexes the mean number of triples managed by a peer

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

#t
rip

le
s

[lo
g]

Peer’s rank [log]

mean
3nuts
Chord

304

(a) Chrod/3nuts comparison for 3 indexes

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

#t
rip

le
s

[lo
g]

Peer’s rank [log]

3 index keys
6 index keys

6 unique index keys

372

304

(b) #triples/peer in 3nuts for 3/6 indexes

Fig. 1. Triple distribution on peers in distributed RDF system

was 304, but the median peer in 3nuts has 178 triples and in Chord only 132,
indicating a slightly better load balancing in 3nuts. When we use 6 instead of
3 indexes (Fig. 1b) and compare the top ranked peers, we can in fact prevent
hotspots where peers are overloaded by data and query requests slowing down
the system. Surprisingly, the number of triples is only 23% more compared to 3
indexes and (and not 100% more). And, as can be seen in Figure 1b, the peers
with only a few triples at the low end for 3 indexes get additional triples in the
6 indexes scheme. Accordingly, the median peer has 279 triples and the mean
number of triples is 372 indicating a better distribution than for 3 indexes. We
also checked a scheme with 6 indexes but unique ID extensions for all triples to
prevent triple clustering. The effect is negligible and the clustering of triples by
the same ID does not interfere with load balancing for 6 indexes.

Effects of Network Structure Improvement on Distributed RDF Querying 69

3.4 Query Processing

Data of several peers has to be combined for evaluating conjunctive queries, and
we use the query processing algorithm, Query Chain (QC), originally presented
in [5], where the triple patterns contained in the query are iteratively resolved
by a chain of nodes. The query evaluation starts with a single triple pattern of
the query by doing a lookup for the peer responsible for the evaluation of this
triple pattern. This peer adds to an intermediate result all triples of its local
database qualified for the evaluated triple pattern. The intermediate result is
then extended by doing a lookup for a second triple pattern and joining the
results. This operation is executed until all triple patterns of the query have
been processed.

When triples are indexed six times for good load balancing, the triple storage
cost is 23% more for our test data than using three indexes. But we can exploit
this extra storage to achieve a better distribution of query processing load and
faster query response time by bundling bandwidth with parallelism. The Spread
By Value (SBV) query processing, presented in [5], extends the ideas of QC by
exploiting the values of matching triples found during processing triple patterns
incrementally; it rewrites the next triple pattern and distributes the responsi-
bility of evaluating it to more peers than QC. In our experiment we consider
the case where triples are indexed three times, and thus we use QC query pro-
cessing. Due to the small triple overhead of 23% caused by grouping of data
with same data in the same subtree, we will only get parallelism for identifiers
of triple components with a large set of triples managed by several peers. But if
the number of triples correlates with the result data size, it is not a bad thing.

Exploiting 3nuts Locality Features. The 3nuts information locality fea-
ture preserves key ordering; therefore for triple patterns with lookup keys shar-
ing the same prefixes (e.g. the ’UndergraduateStudent’, ’name’, ’advisor’, and
’teacherOf’ etc lookup keys in Listing 1.2 share a common prefix ’ubd0v0’), the
number of hops required to reach all these keys is reduced (at best, some keys
are managed by the same peer).

The number of hops required to evaluate triple patterns of a query can be
further reduced through a so-called feature interest locality provided in the dis-
tributed search tree of 3nuts. It allows peers responsible for triples components
(subject, predicate, or object) to establish few additional routing links, short-
cuts, to other frequently occurring components (subject, predicate, or object) of
relevant triples. These routing shortcuts can be established with only a constant
increase of the peer’s routing tables. To support the creation of shortcuts, each
peer in the network responsible for the triple components’ values (i.e. subject,
predicate, or object) creates a link to the peer, sharing at least one of the com-
ponents’ values of the same triple. In this way peers create Peers Link Graph
defined as follows:

Definition 1. A Peers Link Graph G is a tuple (N, E), where N is the set of
peers in G and E is the set of directed weighted edges in G. Two peers from N

70 L. Ali et al.

are connected with an edge in E if and only if triples managed by these two peers
share at least one triple components’ value. The weight of an edge E represents
the frequency of such related triples managed by corresponding peers.

Peers maintain statistics of their weighted links with the help of their locally
stored RDF triples. Each of these Peers Link Graphs is also connected with the
rest of the peers in the network through a directed edge of weight 1.

An example partial Peers Link Graph created for the peers sharing the sub-
jects of triples belonging to the class Professor is shown in Figure 2. The edge
from Peer1 to Peer3 with weight 2 indicates that ’course1’ is taught by two
professors.

Peer *
Peer 1 → key Professor

type?P Professor

Peer 2 → key name

name?P ……

Peer 3 → key course1

teach?P course1

Peer 4 → key author

author?Pub ?P

80

100

2

2

2100

Fig. 2. Example of Peers Link Graph for triples of class Professor

We observe that the frequency of subject, predicate, and object occurrences in
triples is not uniformly distributed, and we can assume that triples components
(subject, predicate, or object) which frequently occur in these triples will also
frequently occur in conjunctive triple pattern queries. We exploit this unbalanced
triple distribution, and thus consider only the top weighted edges of Peers Link
Graph for the creation of shortcuts. For example, in Figure 2, the edge from
Peer1 to predicate name with weight 80 has a high chance of being considered
for the creation of a shortcut than the edge from Peer1 to object ’course1’ with
weight 2.

4 Performance Analysis

In this section, we present experimental performance evaluation done with a
simulator for our RDF system using either a Chord network or a 3nuts network
and the 3 index scheme presented in Section 3.3 for triple storage in the overlay.
The Java-implemented Simulator includes a simulation for the physical network,
the overlay network, with the distributed RDF system on top. We repeated all
experiments several times but the variation of result values was negligible and is
thus not presented here. For the testing we use the Lehigh University Benchmark
(LUBM [14]) data-set of two universities, each with 16 departments. There were
223, 510 triples in total, which were indexed 3 times in the system. The network
contained up to 16, 285 peers.

Effects of Network Structure Improvement on Distributed RDF Querying 71

Application domains usually mark their own ontologies in RDF data with a
unique namespace. Accordingly, each university department in the test set gets
a distinctive namespace. In the example Listing 1.1, department 0 of university 0
uses the namespaces ’ubd0v0’ and ’d0v0’. We have generated 5 query sets (based
on LUBM queries) that sum up to 130 unique queries in total. Each set shares
queries of a common structure with distinctive namespaces for each department.
The first query set comprises for queries of the type in Listing 1.2 and we vary for
instance the namespace ’ubd0v0’ for 32 departments to generate more queries.

PREFIX r d f : <h t tp ://www.w3 . org /1999/02/22− r d f−syntax−ns#>
PREFIX ubd0v0 : <h t tp ://www. l e h i g h . edu/zhp2 /2004/0401/un iv−bench . owl#>
SELECT ? std name ? teacher name ? course name
WHERE { ?X r d f : t ype ubd0v0 : Underg radua teStudent .
?X ubd0v0 : name ? std name .
?X ubd0v0 : a d v i s o r ?Y .
?Y ubd0v0 : name ? teacher name .
?Y ubd0v0 : t ea che rO f ?Z .
?X ubd0v0 : takesCou r s e ?Z .
?Z r d f : t ype ubd0v0 : Course .
?Z ubd0v0 : name ? course name }

Listing 1.2. SPARQL query returning names of the students their advisors and courses
taken, provided that courses taken are taught by their supervisors

4.1 Analysis of Routing

Distributed query processing in a RDF system consists of searching, transferring
and evaluating RDF data. The distributed search structure of P2P-networks
achieves scalability but slows the search down typically to O (logn) routing
steps (called hops) in a network with n peers compared to a server with sufficient
resources. When the bandwidth of modern networks is high but the ping or delay
for data transmission is low, the response time of queries can by driven by these
delays, because each routing step in chain produces an additional delay.

 0
 10
 20
 30
 40
 50
 60

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

R
ou

tin
g

ho
ps

#peers [log]

3nuts
Chord

(a) Comparison of 3nuts and Chord

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8

H
op

s
re

du
ct

io
n

R
at

io

Triple patterns of query

3nuts
Chord

(b) Impact of information locality

Fig. 3. Measurement results for resolving the query in Listing 1.2

Figure 3a shows the mean numbers of hops of lookup-operation for resolving
the query of Listing 1.2 depending on the network size n. The linear functions in

72 L. Ali et al.

log-lin scale specially for Chord indicate a logarithmic hop number. The triple
components of this query are all in the domain ’ubd0v0’. Consequently, corre-
sponding triples are stored in 3nuts in the same subtree with path ’ubd0v0’ and
peers managing this subtree have fast lookup to each other. This really keeps
the hop numbers down for small networks up to 64 peers where single or only a
few peers manage the data for that domain. For larger networks more routing is
needed within the subtree and we see a linear increase starting a 128 peers like
in Chord.

While Figure 3a showed the total numbers of hops during processing a query,
Figure 3b shows the numbers of hops needed for routing of the next triple pattern
in chain of triple patterns in the query (percentile to the expected hop numbers
O (logn)). In the Chord overlay, we need almost the same numbers of hops to
lookup all indexed triple components. On the contrary, in the 3nuts overlay, the
hops for lookup decrease after the first step by 50% and the reason is again the
information locality: the first step starts at an arbitrary peer which might not
participate in the subtree of domain ’ubd0v0’ in the 3nuts tree with O (logn)
hops, but when the query enters this subtree once, it stays inside for the rest of
the query steps with fast routing.

Figure 4b shows further reductions in the numbers of hops needed for evalu-
ating the query in Listing 1.2 with the creation of up to 5 shortcuts by each peer
in 3nuts network. If a peer interested in evaluation of a triple pattern maintains
a shortcut to the lookup key of this triple pattern, then it takes it 0 hops to
reach this lookup key. The establishment of constant numbers of shortcuts for
each peer to frequently occurring triple components in the network could result
to a significant reduction in numbers of hops, e.g. the numbers of hops needed
for our example query reduced from 26 to 9 with creation of 4 shortcuts.

4.2 Analysis of Query Response Time

Our simulation does not provide the simulation of a real-world physical network
and it is impossible to find one suitable model covering all possible fields of
application such as the Internet, Intra net, and so on. Therefore we will present
in this section how to derive the query response time from the given experimental
routing data with a given physical network model. Let k = δ·b denote the product
of delay δ and bandwidth b in the physical network. The query response time t
is then for m triples patterns pi

t =

m∑

i=1

(
ci + hopsi · δ +

(
datai · δ

k
+ δ

))
≈ δ ·

m∑

i=1

(
hopsi +

datai
b

+ 1

)
.

where ci is the computation time for evaluating pattern pi, hopsi is the number
of hops to lookup the peer providing the triples for pattern pi, and datai is the
data size for triples of pattern pi to transfer to the next peer. For ci � δ we
neglect the computation time.

The response time is mainly driven by routing delays and data transfer time.
When the bandwidth is very high, routing delays are a dominant factor and

Effects of Network Structure Improvement on Distributed RDF Querying 73

reducing routing hops with the 3nuts overlay has a big influence, e.g. can reduce
the query response time in our example to 65%, see Figure 4a where we calculate
the ratio of the query response time for the actual routing of the query and
the expected time for an arbitrary routing in the network. The routing in query
processing in the Chord overlay almost needs the same time like arbitrary routing
steps between arbitrary peers with nearly no effect.

The improvement in query time shown in Figure 4a can be enhanced with
the creation of constant numbers of shortcuts to frequently occurring triples
components in underlying 3nuts network, e.g. the query time in our example
can be further reduced to 30% with creation of 4 shortcuts as shown in the same
Figure 4a. The creation of shortcuts reduces traffic and peers routing load as
well because a peer maintaining shortcuts to triples components has a direct
link to the peers responsible for these components.

Figure 4c shows the ratio of improvements in response time of the query
in Listing 1.2 with the creation of up to 5 shortcuts by each peer in the 3nuts
overlay. The response time of the example query is reduced to 50% with creation
of 4 shortcuts in the underlying 3nuts overlay.

(a) Impact of information lo-
cality and shortcuts

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5

R
ou

tin
g

ho
ps

#shortcuts

(b) Hops needed in the
query of Listing 1.2

 0

0.2

0.4

0.6

0.8

 1

 0 1 2 3 4 5

tim
e

re
du

ct
io

n
[%

]

#shortcuts

(c) Time reduction using
shortcuts (Listing 1.2)

Fig. 4. Measurement results for the performance boost using 3nuts localities

5 Conclusions

In this paper we analyzed techniques for optimization of distributed RDF sys-
tems and showed the practical application by simulation with the benchmark
(LUBM) data and queries. We have shown that using search-tree based instead
of DHT-based peer-to-peer networks improves the query response time by up
to a factor of two if RDF data of the same domain, for instance data of the
same university is grouped in the same branch of the tree and the query only
combines data of such a limited domain. We also tested the usage of shortcuts
in the 3nuts overlay network, where the peers increase their routing structure by
a constant factor. This technique achieves a further speed-up of query response
times of factor for instance 2.5 for 3 shortcuts per peer. We also presented a
novel indexing scheme with 6 indexes which only needs 23% more data in tests

74 L. Ali et al.

compared to the state-of-the-art 3 indexes scheme but improved the load bal-
ancing and could eliminate hotspots in the network where peers had to manage
far more triples than others, e.g. the predicate ’type’.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284(5), 34–43 (2001),
http://www.scientificamerican.com/article.cfm?id=the-semantic-web

2. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and
Abstract Syntax. World Wide Web Consortium. Tech. Rep. (2004),
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

3. Cai, M., Frank, M.: RDFPeers: a scalable distributed RDF repository based on a
structured peer-to-peer network. In: Proceedings of the 13th International Confer-
ence on World Wide Web, New York, USA, pp. 650–657 (2004)

4. Kaoudi, Z., Koubarakis, M., Kyzirakos, K., Miliaraki, I., Magiridou, M., Papadakis-
Pesaresi, A.: Atlas: Storing, updating and querying RDF(S) data on top of DHTs.
J. Web Sem. 8(4), 271–277 (2010)

5. Liarou, E., Idreos, S., Koubarakis, M.: Evaluating Conjunctive Triple Pattern
Queries over Large Structured Overlay Networks. In: Cruz, I., Decker, S., Alle-
mang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC
2006. LNCS, vol. 4273, pp. 399–413. Springer, Heidelberg (2006)

6. Battré, D., Heine, F., Höing, A., Kao, O.: On Triple Dissemination, Forward-
Chaining, and Load Balancing in DHT Based RDF Stores. In: Moro, G., Berga-
maschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M. (eds.) DBISP2P 2005 and
DBISP2P 2006. LNCS, vol. 4125, pp. 343–354. Springer, Heidelberg (2007)

7. Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Van Pelt, T.: GridVine: Build-
ing Internet-Scale Semantic Overlay Networks. In: McIlraith, S.A., Plexousakis,
D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 107–121. Springer,
Heidelberg (2004)

8. Ali, L., Janson, T., Lausen, G.: 3rdf: Storing and Querying RDF Data on Top of
the 3nuts Overlay Network. In: 10th International Workshop on Web Semantics
(WebS 2011), Toulouse, France, pp. 257–261 (August 2011)

9. Aberer, K.: P-Grid: A Self-Organizing Access Structure for P2P Information Sys-
tems. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001.
LNCS, vol. 2172, pp. 179–194. Springer, Heidelberg (2001)

10. Janson, T., Mahlmann, P., Schindelhauer, C.: A Self-Stabilizing Locality-Aware
Peer-to-Peer Network Combining Random Networks, Search Trees, and DHTs. In:
ICPADS, pp. 123–130 (2010)

11. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31, 149–160 (2001)

12. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent Hashing and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In: Proceedings of the 29th Symposium on
Theory of Computing (STOC 1997), pp. 654–663. ACM, New York (1997)

13. SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/
14. Guo,Y.,Pan, Z.,Heflin, J.: LUBM:ABenchmark forOWLKnowledgeBase Systems.

Web Semantics: Science, Services and Agents on theWorld WideWeb 3(2-3) (2005)

http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-sparql-query/

	Effects of Network Structure Improvement
on Distributed RDF Querying

	1 Introduction
	2 Related Work
	3 Simulation
	3.1 Network Models
	3.2 RDF Data and Query Model
	3.3 Data Distribution
	3.4 Query Processing

	4 Performance Analysis
	4.1 Analysis of Routing
	4.2 Analysis of Query Response Time

	5 Conclusions
	References

