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Abstract—For evaluating RDF queries in Peer-to-Peer (P2P)
based RDF data stores, the location of a RDF triple in the
network must be attainable from a triple pattern in the given
query. An existing strategy, used by state-of-the-art distributed
RDF data stores, to fulfill this requirement is to store triples at
three locations that each triple can be found by the subject,
predicate, and object identifier. A major drawback of this
strategy is the issue of load-balancing caused by the fact that the
frequency of subject, predicate, and object occurrences in triples
is not uniformly distributed. While the majority of URIs and
literals occur very rarely some occur very frequently (e.g., peer
responsible for ’rdf:type’ is subjected to a very high storage load).
In addition, this skewed RDF triples distribution among network
peers also leads to an unfair query processing load distribution
and long query processing time. To cope with hotspots caused by
unfair data load distribution, we propose an optimized routing
index scheme where triples are indexed on the combination of
their subject, predicate and object components. This paper will
also show how can we exploit this novel index scheme to achieve
a better distribution of query processing load and faster query
response time by bundling computation resources and bandwidth
of peers with parallelism.

I. INTRODUCTION

The increasing amount of RDF [1] data on the Web calls
for the development of RDF data stores customized for the
efficient management of such data. Thus, several projects have
emerged that proposed distributed solutions for the storage
and querying of RDF data (RDF triples). State-of-the-art
distributed RDF data stores such as RDFPeers [2], Atlas [3],
BabelPeers [4], GridVine [5] and 3rdf [6] use P2P overlay
networks to store and query RDF data in a distributed manner.
To attain an efficient search for RDF triples with the same
subject, predicate, or object the triples are stored three times
in the network for each of the triple components separately
in these distributed RDF data stores. The triples are hence
grouped with the same identifier on the same peer, with the
advantage that it offers a constraint search for a specific
subject, predicate or object in a local database. However, this
comes with the drawback that we leverage the load balancing
techniques of most overlays, because the triples may not be
stored on peers of underlying networks uniformly due to the
non-uniform frequency distribution of subject, predicate, and
object occurrences in these triples. Some URIs and literals
occur very often (e.g., peer responsible for ’rdf:type’ is over-
whelmed with RDF triples) while others occur only rarely.

In addition, this indexing (storage) technique also leads
to an unfair query load distribution and cause substantial
cost in local computation and data transmission time. This
increase in computation and transmission time is caused due
to the fact that a large portion of RDF triples are stored on
relatively small portion of the network peers. We can expect
that heavily loaded peers will be frequently accessed during
query evaluation, and the storage of large number of triples
takes these peers a long computation time to compute the
results and a substantial time to transmit the resulting triples.
The constraint to use only a single constant in triple patterns
for routing the query to responsible peer also leads the query
evaluation on relatively small number of peers, thus results to
an unfair query processing load distribution.

To cope with the aforementioned drawbacks of existing in-
dexing technique, we propose a novel routing index scheme in
this paper, where a triple is indexed on the combination of its
subject, predicate and object identifiers, i.e., subject+predicate,
predicate+object and object+subject. This indexing technique
bears the same storage cost as in the state-of-the-art (triples are
stored 3 times), but results to a better data load distribution. We
will also show in this paper, by using this new indexing tech-
nique we can achieve a better distribution of query processing
load and faster query response time by bundling computation
resources and bandwidth of peers with parallelism.

II. RELATED WORK

Since RDF query languages mainly support constraint
search of the triples subject, predicate or object components,
existing distributed RDF data stores (RDFPeers, Atlas, Ba-
belPeers, GridVine and 3rdf) index triples 3 times for each
of these components. This indexing technique provides the
possibility to find triples based on any search criteria as
long there exist at least one constant in a triple pattern.
However in practice, frequency of subject, predicate and object
occurrences in triples is not uniformly distributed, and the peer
responsible for the frequent one is heavily loaded.

Cai et al.[2] addressed the issue of load-balancing by
limiting the storage of overly popular URIs and literals based
on the local capacity of peers. This comes of course at the cost
of possibly losing the complete result, when the query is on
these popular values. Battre et al.[4] tackled this problem by
constructing an overlay tree over DHT position of only overly
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popular triple components. This type of load balancing is also
very fragile in the case of a node failure in the overlay tree,
which results to the loss of whole branch of the tree.

Meitz et al.[7] showed a huge difference among the peer’s
data load, when triples are indexed 3 times using a fixed hash
depth of 1, i.e., hash(subject), hash(predicate), hash(object).
To improve the data distribution they proposed the idea to
index triples using a random hash depth, for example, for a
hash depth of h=4, there would be 4 potential location keys
for each triple components. They showed that the higher the
value of hash depth is chosen, the better the triples distribution
among peers would be. However, this comes at the cost of
network communication during query evaluation, since many
peers have to be queried for the evaluation of a triple pattern.
Finding an optimum hash depth is also missing in their work.

To cope with hotspots of unfair load balancing, we pro-
posed in [8] to index a triple for each possible combina-
tion of its 2 components, subject+predicate, subject+object,
predicate+subject, predicate+object, object+subject and ob-
ject+predicate. Extra storage of triples in the network was the
price we paid to achieve a fair triple load distribution.

For the improvement in query load distribution, au-
thors in [3] additionally indexed triples by combinations of
triple components ’subject+predicate’, ’subject+object’, ’pred-
icate+object’, and ’subject+predicate+object’, with 7 replica-
tions of each triple in total. They used this extra storage
overhead for the distribution of the query processing load
among many peers, but have not studied the utilization of this
overhead for the improvement in response time of queries.

Harth et al.[9] used the notion of quad (subject, predicate,
object, context) to represent the RDF data, and proposed an
optimized index structure to support evaluation of RDF queries
in centralized RDF data stores. He showed that only 6 indexes
are needed to cover all possible (16) access patterns, where as
an access pattern is a quad where any combination of subject,
predicate, object, context is either specified or a variable.
Motivated by their idea of reducing the number of required
indexes, we show in Section IV-B that only 3 indexes is needed
in our new index scheme to cover all 8 possible triple patterns.

III. SYSTEM MODEL AND DATA MODEL

We simulate a distributed RDF system using the search-tree
based overlay 3nuts [10] and compare the performance when
using the state-of-the-art indexing for subject, predicate and
object, and the new indexing for the triple distribution.

Each peer in the distributed RDF system can publish RDF
resources in the network. In RDF [1], resources are expressed
as subject-predicate-object expressions, called triples. The
subject in a RDF triple denotes the resource, and the predicate
expresses a relationship between the subject and the object.

Each peer in the distributed RDF system can also pose
SPARQL [11] basic graph pattern queries to retrieve the RDF
triples stored in the network. These basic graph pattern queries
are composed of triple patterns.
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Fig. 1: individual/combined indexes comparison.

IV. DATA DISTRIBUTION

RDF triples in distributed RDF data stores are indexed in
such a way that it can answer all possible triple patterns. A
triple pattern is a triple where any combination of subject,
predicate and object is either specified or a variable.

To find all triples for a specified triple component, the triples
are stored in a P2P-network with the triple component as key.
Since all three components of a triple can be specified, this
makes three storages for keys with subject, predicate, and
object identifier. The search structures of P2P-network are
originally designed to store single data elements at a unique
key and it is not provided to balance several data elements
with the same key on several peers for better load distribution.
In distributed RDF data stores, a peer stores a set of triples
with same triple component as key. Since in RDF triples some
triple components are more frequent, for instance ’rdf:type’,
the peer responsible for such a key store more triples and the
built-in load balancing is not able to balance this higher load.
State-of-the-art distributed RDF data stores (see Section IV-A)
do not tackle this load balancing problem. In Section IV-B we
present our own solution, with the basic idea to extend the
keys such that the set of triples with same key are smaller and
load balancing of the P2P-network performs better.

A. State-of-the-art index scheme
The indexing of triples on their individual components in

existing distributed RDF data stores results to a skewed triple
distribution because of non-uniform frequency distribution of
subject, predicate, and object occurrences in triples.

The effect of this unfair distribution is illustrated in Figure 1.
For measurement the data of Lehigh University Benchmark
(LUBM [12]), for one university with 100,000 triples, has been
stored in the network of 1000 peers. The bars for individual-
keys show the statistics of data load (number of triples) per
peer using this index scheme. We observe a huge differences
among the maximum, average and median load. The number
of triples on heavily loaded peer (21489 triples) is about 73
times higher than the peers average load (289 triples).

B. Novel index scheme
When a set of data elements is mapped to the same key

in the network, we can only achieve fair load distribution if
either the network provides mapping several peers on the same
key and distribute the load of the key or we make the keys on
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application layer unique such that the load-balancing of P2P-
networks only supporting one peer for one key fully applies.
In our solution, we decide for the second option and reduce
the set of triples with same key by extending the keys which
are originally the subject, predicate, and object identifier. First
idea coming to mind is adding an arbitrary key extension,
for instance a small hash value, and keys would be divided
into subsets resulting into better load distribution. However,
these subsets would be unstructured and if we evaluate a
query containing the original key, we have to process it at all
extended keys, for instance subject+hash. So we have decided
to extend the keys with another triple component, e.g,. the key
consists out of subject+predicate. A possible drawback might
be a non-uniform fragmentation of the triples sets but the big
advantage is that the triple sets are structured and if subject
and predicate are already specified in a triple pattern, it has to
be performed only at the location of subject+predicate key.

We propose an index scheme ’3-tuple index’ where 3
combined routing indexes are created on triples subject, pred-
icate and object components, i.e., subject+predicate, predi-
cate+object and object+subject. The 3-tuple or 6-tuple indexes
are based on the notion of tuple index.

Definition 1 (Tuple index): A tuple index concatenates the
identifiers of two components as key for the storage of a triple.

To tackle the problem of load-balancing, we proposed a
similar storage solution ’6-tuple index’ in [8], where triple
are indexed six instead of three times for each possible
combination of its 2 out of 3 components.

We avoid the storage of extra triples in our new index
scheme by not considering the usage of redundant routing
indexes, which we had in our 6-tuple indexing. For example,
the index on subject+predicate suffices for routing a query
to the responsible peer when subject and predicate are given
in a triple pattern, and we do not need to store triples on
predicate+subject. This index also covers the evaluation of
triple patterns where only subject is provided (through prefix
search). For the search where only predicate is given we can
use the index on predicate+object.

The creation of routing indexes on combinations of subject,
predicate and object components divides the data load of a
heavily load peer to many peers. For example, Figure 2 shows
that in our experiment, with indexing triples on its predicate,
for instance, there was only one peer responsible for the stor-
age of 18128 triples with predicate ’type’. However, indexing
triples on predicate+object subdivided this storage load to
many peers storing triples of the classes (UndergradStudent
5916 triples, GraduateStudent 1874 triples, Publication 5999
triples and so on) respectively.

RDF queries where two triple components are unknown get
more challenging in this new indexing technique, if not all data
for a specific triple component are on the same peer and have
to be collected from many peers. To evaluate such queries, we
leverage the fact that the search tree based overlays (e.g. 3nuts)
provide support for range or prefix queries. For example, a
lookup for triple pattern (? : predicate : ?) resolves to a prefix
query for a specific predicate on the predicate+object index,
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Fig. 3: #triples/peer for individual/combined indexes.

where we go to an arbitrary peer in the predicate’s path in
the search-tree and scan the subtree for all predicate-object
combinations only using direct routing links. In contrast, range
queries are not practical in DHT-based overlays. Therefore, we
see a trade-off in DHT-based systems with two options, either
a more balanced data distribution with combined indexes but
limited functionality (evaluation of triple patterns with only 1
constant is not possible) or all functions but more unbalanced
data load with state-of-the-art index scheme.

The effect of using new index scheme is reflected in
Figure 1, where the bars of 3-tuples index show a significant
reduction in the differences among the maximum, average
and median load. The number of triples stored on the heavily
loaded peer reduces to 8330 triples. Though 6-tuple indexing,
6-tuples bars, stores more triples than 3-tuple indexing, but this
extra storage has no impact on further reducing the hotspots.

Figure 3 shows the triples managed by the peers in de-
creasing order to the number of triples per peer, When we use
combined keys for indexing and compare the top ranked peers,
we can in fact prevent hotspots where peers are overloaded by
data. Certainly, in an optimal case, all peers would manage the
same amount of triples indicated by the constant function of
the average value. Both in individual key indexing and 3-tuple
indexing the average number of triples managed by a peer is
289, but in 6-tuple indexing the average number of triple is
396. The median peer in 6-tuple index scheme has 260 triples,
in 3-tuple indexing 200 and in individual key indexing only
85, indicating a better load distribution for our novel 3-tuples
index scheme, without bearing an extra triple storage cost.

V. QUERY PROCESSING

In addition to having an unbalanced data distribution by
storing triples on its individual subject, predicate and object
components, this triple distribution technique also leads to
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a very unfair query processing load distribution and cause
a substantial cost in terms of local computation and data
transmission time. This increase in computation and data
transmission time is caused due to the fact that in this triple
distribution method a large portion of the RDF data reside
on relatively small portion of the network peers. We can
expect that heavily loaded peers will be frequently accessed
during query evaluation, and the storage of large number of
relevant triples takes these peers a long local computation time
to compute the result and subsequently a substantial cost in
transfer time to transmit the resulting triples. The use of only 1
constant in triple patterns for routing also directs the evaluation
of query on relatively small number of network peers and thus
results to a an unfair query processing load distribution.

For example, The evaluation of given query in Listing 1 is
carried out by sending the query to the peer responsible for the
predicate ’rdf:type’. The presence of large number of triples
with predicate ’rdf:type’ on the corresponding peer cause a
long time to respond these triples.

We can exploit our 3-tuple index scheme to improve the re-
sponse time and processing load of queries. Triples indexed on
combination of subjects, predicates and objects are distributed
relatively on a larger portion of network peers, consequently
evaluation of RDF queries are carried out on large part of the
network peers (fair query load distribution). Peers responsible
for the combination of subjects, predicates and objects are
also supposed to contain relatively small number of triples.
The corresponding peers thus have to spent less time for the
computation and transmission of these triples.

For example, with this index scheme, the evaluation of
given query in Listing 1 is carried out on the peer responsible
for the key ’rdf:type+ub:GraduateStudent’. The corresponding
peer definitely contain less triples than the one responsible for
the key ’rdf:type’, and thus results to a shorter query time.

PREFIX r d f : <h t t p : / / www.w3 . org /1999/02/22− rd f−syntax−ns#>
PREFIX ub : <h t t p : / / www. leh igh . edu / zhp2 / univ−bench . owl#>
SELECT ?X
WHERE { ?X r d f : type ub : GraduateStudent }

Listing 1: SPARQL query returning under graduate and
graduate students.

The existing distributed RDF data stores, despite their differ-
ences on query processing, evaluate RDF queries sequentially.
Majority of these data stores (RDFPeers, Atlas, GridVine,
3rdf) use Query Chain (QC) query processing algorithm [3],
which moves query processing in sequence from one peer to
another and intersect the candidate sets in this way.

We exploit our novel indexing technique to parallelize the
processing of RDF queries. Parallelism could be a real boost
for computation time and data transfer time, since we can
bundle the computation resources and bandwidth of several
peers in parallel. For the parallel processing of RDF queries
we adopt the query processing algorithm, Spread By Value
(SBV) [3], it extends the ideas of QC by exploiting the values
of matching triples found during processing triple patterns
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Fig. 4: query chain in parallel query processing.

incrementally, it rewrites the next triple pattern and distributes
the responsibility of evaluating it to more peers than QC.

Figure 4 shows Parallel evaluation of an example query.
As in QC the first triple pattern is evaluated by the peer
responsible for the key ’type+Professor’. From this point on,
the query plan produced by SBV is created dynamically by
using values of matching triples that peers find at each step.
The values of variable ?x (p1,p2,p3,p4) are used in the second
triple pattern to produce a new set of queries that will jointly
find answers to this triple pattern. In the next step newly found
values of variable ?y (c1,c2,c3,c4,c5) are used in the third
triple pattern and send the resulting query set to responsible
peers. Multiple chains of peers will be involved for query
evaluation in this way, and the peers at the leaf of these chains
will deliver partial results back to the originating node.

VI. PERFORMANCE ANALYSIS

We present experimental performance evaluation done with
a simulator for our RDF system using either state-of-the-art
indexing or novel index scheme, and 3nuts [10] as overlay
network. For the testing we use the LUBM [12] data-set of
one university. There were 102707 triples in total, and the
network contained up to 1000 peers. We have generated 5
query sets (based on LUBM queries), the query in Listing 2
represents one type of such queries.

PREFIX r d f : <h t t p : / / www.w3 . org /1999/02/22− rd f−syntax−ns#>
PREFIX ub : <h t t p : / / www. leh igh . edu / zhp2 / univ−bench . owl#>
SELECT ?std name ?course name
WHERE {
?X r d f : type ub : UndergraduateStudent .
?X ub : name ?std name .
?X ub : takesCourse ?Y.
?Y r d f : type ub : Course .
?Y ub : name ?course name }

Listing 2: SPARQL query returning names of the students and
the courses they have taken.

A. Analysis of Query Load distribution
We analyze the effect of using 3-tuple index scheme on

the query load distribution. The query processing load for a
peer p is defined as the number of tuples (intermediate results)
that arrive at p, for the evaluation of a triple pattern, and are
compared against its locally stored triples.
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Figure 5a shows the query load distribution, for the query
in Listing 2, for both existing and new index schemes. On the
x-axis peers are ranked starting from the most highly loaded
peer. Where as y-axis represents the cumulative load. Each
point (x,y) in the graph represents the sum of load y for the x
most loaded peers. Though for both index schemes the same
total query processing load is created in the network, with
3-tuples indexing the query load is distributed to significantly
higher number of peers than with the individual-keys indexing.
With individual-keys indexing only 5 peers (out of 1000) are
involved, where as with 3-tuple indexing 230 peers partic-
ipated in the query processing. We achieve this nice query
load distribution with 3-tuples indexing because it allows to
forward the rewritten queries to peers in parallel using the
combination of constants in triple patterns as location keys.
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Fig. 5: Measurement results for the performance boost with
parallel query processing.

B. Analysis of Query Response Time
In our analysis we use connections between peers with

homogeneous delay and bandwidth. Therefore we will present
in this section how to derive the query response time from
the given experimental size of the transmitted data and local
computation time with a given physical network model.

Let δ denotes the delay and b the bandwidth in the physical
network. In parallel execution the query is split into several
sub-queries where each sub-query qj defines a path in a tree
(compare Figure 4). The query response time t for one path
qj is then for m triples patterns pi

t (path qj) =
m∑

i=1

(
ci + hopsi,j · δ

)
+

m∑

i=1

(
datai,j

b
+ δ

)

︸ ︷︷ ︸
transmission time

where ci is the computation time for evaluating pattern pi,
hopsi is the number of hops to lookup the peer providing
the triples for pattern pi, and datai is the data size for triples
to transfer to the next peer for the evaluation of of pattern
pi. Since the individual sub-queries are independent, e.g. all
lookups are performed in parallel, the total query time of the
tree of sub queries is

t (tree) = max
path qj

t (path qi) .

Comparing sequential and parallel processing, the data size of
the i-th step in sequential execution datai is equal to the size

of all parallel partial results datai,j

datai =
n∑

j

datai,j (1)

for n parallel sub-queries. In parallel execution we fragment
the partial results of each execution step according to Equa-
tion 1. With n parallel sub-queries we have n times the
bandwidth and the transmission time is up to factor n faster
(equality for equal data sizes of sub queries). Figure 5b shows
the query transmission time with varying bandwidth of the
query in Listing 2. The transmission time of parallel execution
outperforms the time of sequential execution by a factor of at
least 3 for delay 0.2 s and bandwidth smaller than 30 kB/s.

VII. CONCLUSIONS

In this paper, we discussed our novel indexing scheme
which store the same amount of triples in the network as state-
of-the-art index scheme but improved the load balancing and
could eliminate hotspots in the network where peers had to
manage far more triples than others. We showed by using our
new index scheme we can achieve a fair query load distribution
and faster query response time by bundling the computation
resources and bandwidth of peers with parallelism. We per-
formed query optimization with the goal of improving query
response time, and in future work will study the network traffic
generated in the parallel processing of RDF queries.
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