Lectures in Wroclaw

Epidemic Algorithms

- Monday, April 6th, 2009, 3pm
- Random Networks
 - Monday, April 6th, 2009, 6pm
- Distributed Heterogeneous Hash Tables
 - Tuesday, April 7th, 2009, 3pm
- Network Coding
 - Wednesday, April 8th, 2009, 11am
- Locality in Peer-to-Peer Networks
 - Wednesday, April 8th, 2009, 3pm

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Lectures in Wrozlaw April 2009

Peer-to-Peer Networks

Chord

Pointer Structure of Chord

For each peer

- successor link on the ring
- predecessor link on the ring
- for all $i \in \{0,..,m\text{-}1\}$
 - Finger[i] := the peer following the value r_V(b+2ⁱ)
- For small i the finger entries are the same
 - store only different entries
- Lemma
 - The number of different finger entries is O(log n) with high probability, i.e. 1-n^{-c}.

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Peer-to-Peer-Networks Summer 2008

Properties of the DHT

Lemma

- For all peers b the distance $|r_V(b.succ) r_V(b)|$ is
 - in the expectation 2^m/n,
 - O((2^m/n) log n) with high probability (w.h.p.)
 - $2^m/n^{c+1}$ für a constant c>0 with high probability
- In an interval of length w 2^m/n we find
 - $\Theta(w)$ peers, if w= $\Omega(\log n)$, w.h.p.
 - at most O(w log n) peers, if w=O(log n), w.h.p.

Lemma

 The number of nodes who have a pointer to a peer b is O(log² n) w.h.p.

Lookup in Chord

Theorem

• The Lookup in Chord needs O(log n) steps w.h.p.

Lookup for element s

- Termination(b,s):
 - if peer b,b'=b.succ is found with $r_K(s) \in [r_V(b), r_V(b')]$

• Routing:

Start with any peer b while not Termination(b,s) do for i=m downto 0 do if $r_K(s) \in [r_V(b.finger[i]), r_V(finger[i+1])]$ then $b \leftarrow b.finger[i]$ fi

Data Structure of Chord

For each peer

- successor link on the ring
- predecessor link on the ring
- for all $i \in \{0,..,m\text{-}1\}$
 - Finger[i] := the peer following the value $r_V(b+2^i)$
- For small i the finger entries are the same
 - store only different entries
- Chord
 - needs O(log n) hops for lookup
 - needs O(log² n) messages for inserting and erasing of peers

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Peer-to-Peer-Networks Summer 2008 Peer-to-Peer Networks

DHash++

Routing-Techniques for CHORD: DHash++

- Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek, Robert Morris (MIT) "Designing a DHT for low latency and high throughput", 2003
- Idea
 - Take CHORD
- Improve Routing using
 - Data layout
 - Recursion (instead of Iteration)
 - Next Neighbor-Election
 - Replication versus Coding of Data
 - Error correcting optimized lookup
- Modify transport protocol

Data Layout

- Distribute Data?
- Alternatives
 - Key location service
 - store only reference information
 - Distributed data storage
 - distribute files on peers
 - Distributed block-wise storage
 - either caching of data blacks
 - or block-wise storage of all data over the network

Recursive Versus Iterative Lookup

Iterative lookup

- Lookup peer performs search on his own
- Recursive lookup
 - Every peer forwards the lookup request
 - The target peer answers the lookupinitiator directly
- DHash++ choses recursive lookup
 - speedup by factor of 2

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Peer-to-Peer-Networks Summer 2008

Recursive Versus Iterative Lookup

- DHash++ choses recursive lookup
 - speedup by factor of 2

Summer 2008

Next Neighbor Selection

RTT: Round Trip Time

- time to send a message and receive the acknowledgment
- Method of Gummadi, Gummadi, Grippe, Ratnasamy, Shenker, Stoica, 2003, "The impact of DHT routing geometry on resilience and proximity"
 - Proximity Neighbor Selection (PNS)
 - Optimize routing table (finger set) with respect to (RTT)
 - method of choice for DHASH++
 - Proximity Route Selection(PRS)
 - Do not optimize routing table choose nearest neighbor from routing table

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Peer-to-Peer-Networks Summer 2008

Next Neighbor Selection

- Gummadi, Gummadi, Grippe, Ratnasamy, Shenker, Stoica, 2003, "The impact of DHT routing geometry on resilience and proximity"
 - Proximity Neighbor Selection (PNS)
 - Optimize routing table (finger set) with respect to (RTT)
 - method of choice for DHASH++
 - Proximity Route Selection(PRS)
 - Do not optimize routing table choose nearest neighbor from routing table
- Simulation of PNS, PRS, and both
 - PNS as good as PNS+PRS
 - PNS outperforms PRS

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Next Neighbor Selection

- DHash++ uses (only) PNS
 - Proximity Neighbor Selection
- It does not search the whole interval for the best candidate
 - DHash++ chooses the best of 16 random samples (PNS-Sample)
- The right figure shoes the (0.1,0.5,0.9)percentile of such a PNS-Sampling

Fingers minimize RTT in the set 800 700 600 500 400 300 200 100 0 10 100 1000 Number of PNS samples **Computer Networks and Telematics** Albert-Ludwigs-Universität Freiburg **Christian Schindelhauer**

Average lookup latency (msec)

Cumulative Performance Win

Summer 2008

Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Modified Transport Protocol

Discussion DHash++

Combines a large quantity of techniques

- for reducing the latecy of routing
- for improving the reliability of data access

Topics

- latency optimized routing tables
- redundant data encoding
- improved lookup
- transport layer
- integration of components
- All these components can be applied to other networks
 - some of them were used before in others
 - e.g. data encoding in Oceanstore
- DHash++ is an example of one of the most advanced peer-to-peer networks

Peer-to-Peer Networks

Pastry

Distributed Storage Networks Winter 2008/09 Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Pastry

Peter Druschel

- Rice University, Houston, Texas
- now head of Max-Planck-Institute for Computer Science, Saarbrücken/ Kaiserslautern
- Antony Rowstron
 - Microsoft Research, Cambridge, GB
- Developed in Cambridge (Microsoft Research)
- Pastry
 - Scalable, decentralized object location and routing for large scale peer-topeer-network
- PAST
 - A large-scale, persistent peer-to-peer storage utility
- Two names one P2P network
 - PAST is an application for Pastry enabling the full P2P data storage functionality
 - First, we concentrate on Pastry

Pastry Overview

Each peer has a 128-bit ID: nodeID

- unique and uniformly distributed
- e.g. use cryptographic function applied to IP-address

Routing

- Keys are matched to {0,1}¹²⁸
- According to a metric messages are distributed to the neighbor next to the target
- Routing table has
 O(2^b(log n)/b) + ℓ entries
 - n: number of peers
 - ℓ : configuration parameter
 - b: word length

- typical: b= 4 (base 16),
 ℓ = 16
- message delivery is guaranteed as long as less than l/2 neighbored peers fail
- Inserting a peer and finding a key needs O((log n)/b) messages

Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Routing Table

Nodeld presented in base 2^b

- e.g. NodelD: 65A0BA13
- For each prefix p and letter x ∈ {0,...,2^b-1} add an peer of form px* to the routing table of NodelD, e.g.
 - b=4, 2^b=16
 - 15 entries for 0*,1*, .. F*
 - 15 entries for 60*, 61*,... 6F*
 - ...
 - if no peer of the form exists, then the entry remains empty
- Choose next neighbor according to a distance metric
 - metric results from the RTT (round trip time)
- In addition choose ℓ neighors
 - $\ell/2$ with next higher ID
 - $\ell/2$ with next lower ID

_															
0	1	2	3	4	5		7	8	9	a	b	c	d	e	f
x	x	x	x	x	x		x	x	x	x	x	x	x	x	x
		-	-												
6	6	6	6	6		6	6	6	6	6	6	6	6	6	6
0	1	2	3	4		6	7	8	9	a	b	c	d	e	f
x	x	x	x	x		x	x	\boldsymbol{x}	x	x	x	x	x	x	x
			_												
6	6	6	6	6	6	6	6	6	6		6	6	6	6	6
5	5	5	5	5	5	5	5	5	5		5	5	5	5	5
0	1	2	3	4	5	6	7	8	9		b	c	d	e	f
x	x	x	x	x	x	x	x	x	x		x	x	x	x	x
													+	-	
6		6	6	6	6	6	6	6	6	6	6	6	6	6	6
5		5	5	5	5	5	5	5	5	5	5	5	5	5	5
a		a	a	a	a	a	a	a	a	a	a	a	a	a	a
0		2	3	4	5	6	7	8	9	a	b	c	d	e	f
x		x	\mathbf{x}	x	x	x	\mathbf{x}	x	x	x	x	x	x	x	x

Routing Table

• Example b=2

Routing Table

- For each prefix p and letter x ∈ {0,...,2^b-1} add an peer of form px* to the routing table of NodelD
- In addition choose ℓ neighors
 - $\ell/2$ with next higher ID
 - *l*/2 with next lower ID
- Observation
 - The leaf-set alone can be used to find a target

Theorem

 With high probability there are at most O(2^b (log n)/b) entries in each routing table

Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Distributed Storage Networks Winter 2008/09

Routing Table

Theorem

 With high probability there are at most O(2^b (log n)/b) entries in each routing table

Proof

- The probability that a peer gets the same m-digit prefix is

 <u>n</u>-bm
- The probability that a m-digit prefix is unused is

$$(1 - 2^{-bm})^n \le e^{-n/2^{bm}}$$
$$e^{-n/2^{bm}} \le e^{-n/2^{c \log n}}$$
$$\le e^{-n/n^c} \le e^{-n^{c-1}}$$

Distributed Storage Networks Winter 2008/09

- With (extremely) high probability there is no peer with the same prefix of length (1+ε)(log n)/b
- Hence we have (1+ε)(log n)/b rows with 2^b-1 entries each

Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

A Peer Enters

- New node x sends message to the node z with the longest common prefix p
- x receives
 - routing table of z
 - leaf set of z
- z updates leaf-set
- ⋆ x informs *l*-leaf set
- x informs peers in routing table
 - with same prefix p (if $\ell/2 < 2^{b}$)
- Numbor of messages for adding a peer
 - ℓ messages to the leaf-set
 - expected (2^b ℓ/2) messages to nodes with common prefix
 - one message to z with answer

Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Distributed Storage Networks Winter 2008/09

24

When the Entry-Operation Errs

- Inheriting the next neighbor routing table does not allows work perfectly
- Example
 - If no peer with 1* exists then all other peers have to point to the new node
 - Inserting 11
 - 03 knows from its routing table
 - 22,33
 - 00,01,02
 - 02 knows from the leaf-set
 - 01,02,20,21
- 11 cannot add all necessary links to the routing tables

Missing Entries in the Routing Table

- Assume the entry Rⁱ is missing at peer
 - j-th row and i-th column of the routing table
- This is noticed if a message of a peer with such a prefix is received
- This may also happen if a peer leaves the network
- Contact peers in the same row
 - if they know a peer this address is copied
- If this fails then perform routing to the missing link

Christian Schindelhauer

Lookup

- Compute the target ID using the hash function
- + If the address is within the ℓ -leaf set
 - the message is sent directly
 - or it discovers that the target is missing
- Else use the address in the routing table to forward the mesage
- If this fails take best fit from all addresses

Distributed Storage Networks Winter 2008/09

Lookup in Detail

- L: ℓ-leafset
- R: routing table
- M: nodes in the vicinity of D (according to RTT)
- D: key
- A: nodeID of current peer
- Rⁱ_l: j-th row and i-th column of the routing table
- L_i: numbering of the leaf set
- D_i: i-th digit of key D
- shl(A): length of the largest common prefix of A and D (shared header length)

- (1) if $(L_{-\lfloor |L|/2 \rfloor} \leq D \leq L_{\lfloor |L|/2 \rfloor})$ {
- (2) // D is within range of our leaf set
- (3) forward to L_i , s.th. $|D L_i|$ is minimal;
- (4) $\}$ else {
- (5) // use the routing table
- (6) Let l = shl(D, A);
- (7) if $(R_l^{D_l} \neq null)$ {
- (8) forward to $R_l^{D_l}$;
- (9)
- (10) else {

}

- (11) // rare case
- (12) forward to $T \in L \cup R \cup M$, s.th.
- (13) $shl(T,D) \ge l,$

$$(14) |T-D| < |A-D|$$

$$(15)$$

 $(16) \}$

Distributed Storage Networks Winter 2008/09 Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Routing – Discussion

- If the Routing-Table is correct
 - routing needs O((log n)/b) messages
- As long as the leaf-set is correct
 - routing needs O(n/l) messages
 - unrealistic worst case since even damaged routing tables allow dramatic speedup
- Routing does not use the real distances
 - M is used only if errors in the routing table occur
 - using locality improvements are possible
- Thus, Pastry uses heuristics for improving the lookup time
 - these are applied to the last, most expensive, hops

Localization of the k Nearest Peers

- Leaf-set peers are not near, e.g.
 - New Zealand, California, India, ...
- TCP protocol measures latency
 - latencies (RTT) can define a metric
 - this forms the foundation for finding the nearest peers
- All methods of Pastry are based on heuristics
 - i.e. no rigorous (mathematical) proof of efficiency
- Assumption: metric is Euclidean

Locality in the Routing Table

Assumption

- When a peer is inserted the peers contacts a near peer
- All peers have optimized routing tables
- But:
 - The first contact is not necessary near according to the node-ID
- Ist step
 - Copy entries of the first row of the routing table of P
 - good approximation because of the triangle inequality (metric)
- > 2nd step
 - Contact fitting peer p' of p with the same first letter
 - Again the entries are relatively close
- Repeat these steps until all entries are updated

Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Locality in the Routing Table

In the best case

- each entry in the routing table is optimal w.r.t. distance metric
- this does not lead to the shortest path

There is hope for short lookup times

- with the length of the common prefix the latency metric grows exponentially
- the last hops are the most expensive ones
- here the leaf-set entries help

Localization of Near Nodes

- Node-ID metric and latency metric are not compatible
- If data is replicated on k peers then peers with similar Node-ID might be missed
- Here, a heuristic is used
- Experiments validate this approach

Experimental Results – Scalability

- Parameter b=4, l=16, M=32
- In this experiment the hop distance grows logarithmically with the number of nodes
- The analysis predicts O(log n)
- Fits well

Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Experimental Results Distribution of Hops

- Parameter b=4, I=16, M=32, n = 100,000
- Result
 - deviation from the expected hop distance is extremely small
- Analysis predicts difference with extremely small probability
 - fits well

Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Experimental Results — Latency

- Parameter b=4, I=16, M=3
- Compared to the shortest path astonishingly small
 - seems to be constant

Christian Schindelhauer

Skip-Net

➢J. Aspnes and G. Shah. Skip graphs, 2003

SkipNet: A Scalable Overlay Network with Practical Locality Properties Nicholas J.A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, Alec Wolman, 2003

>Problem:

- -Ordered storage of data on peers
- -without complicated balancing
- Solution

-Skip-graphs

16. Vorlesung -

Skip-Graphs

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

J. Aspnes and G. Shah. Skip graphs, 2003

≻ldea

 "Heads" and "Tails" of a coin toss recursively participate in an own game

Properties

- -higly resilient
- Diameter and degree O(log n) with high probability
- -Ordering of data remains

From: P2P Network Structured Networks von Pedro Garcia Lopez, Universitat Rovira I Virgili

16. Vorlesung -

Inserting Peers

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

>J. Aspnes and G. Shah. Skip graphs, 2003

≻Algorithm

- -Lookup of correct place according to node name
- -Insertion into higher ranks

>Runtime: O(log n) hops and O(log n) messages with high probability

Locality of Content and Routing

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Locality of content

- underlying ordering

>Alternative mapping of data

-data can be stored using num-id

Locality of Routing

- if the hosts are sorting along domains then local routing within a domain can be facilitated where possible

Range Search

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Num-ID range search
Name-ID range search
Intersection of Num-ID and Name-ID

≻Running time:

- -O(log n) for first element
- -Then constant time for each successing elements

16. Vorlesung -

New Trends for Locality of Peerto-Peer Networks

- RTT gives a distance measure between nodes of the Internet
- More than 5% of all triples of nodes in the Internet violate the triangle inequality (TIV)
- More than 50% of all pairs of nodes form an edge of a TIV
 - Wang, G., Zhang, B., Ng, T.S.E.: Towards network triangle in equality violation aware distributed systems. In:IMC.(2007)
- Better paths are possible using Peer-to-Peer Networks
 - Lumezanu, C., Levin, D., Spring, N.: PeerWise discovery and negotiation of faster paths. In: HotNets. (2007)

Reasons for TIV

Triangle Inequality and Routing Policy Violations in the Internet Cristian Lumezanu, Randy Baden, Neil Spring, and Bobby Bhattacharjee, 2009

Total Do	etours	793,693
Impossi	ble AS Paths	460,830 (58%)
Cause	Customer transit	343,381 (75%)
Cause	Peer transit	117,449 (25%)
	Truly disjoint	302,207 (66%)
Туре	Borderline	153,057 (33%)
	Undercover	5,503 (1%)

Possible	197,453 (25%)	
Troffic	Relay AS not on direct path	56,813 (29%)
Fng	Direct, detour paths differ	103,215 (52%)
Ling.	Direct, detour paths same	37,425 (19%)
Dath	Shorter than direct	17,770 (9%)
length	Equal to direct	75,032 (38%)
lengti	Longer than direct	104,651 (53%)
Transit	Smaller than direct	35,541 (18%)
Transit	Equal to direct	96,751 (49%)
COSt	Greater than direct	65,161 (33%)

Unknown

135,410 (17%)

Table 1. Detour paths are *possible* (may be available to the BGP decision process) or *impossible* (not advertised by BGP). Percentages inside the tables are relative to the total possible or impossible paths. Categories separated by horizontal lines overlap.

Lectures in Wrozlaw April 2009

P2P can be faster than IP

Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer