

Storage Networks Optimizing Heterogeneous Data Distribution

JRG

N.

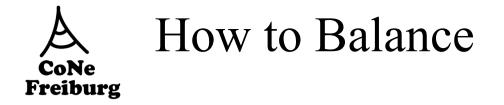
Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

- André Brinkmann, Kay Salzwedel, Christian Scheideler, Compact, Adaptive Placement Schemes for Non-Uniform Capacities, 14th ACM Symposium on Parallelism in Algorithms and Architectures 2002 (SPAA 2002)
- Christian Schindelhauer, Gunnar Schomaker, Weighted Distributed Hash Tables, 17th ACM Symposium on Parallelism in Algorithms and Architectures 2005 (SPAA 2005)
- Christian Schindelhauer, Gunnar Schomaker, SAN Optimal Multi Parameter Access Scheme, ICN 2006, International Conference on Networking, Mauritius, April 23-26, 2006

A The Problem in Storage Networks

- A_{d,s}: Number of bytes of document d assigned to storage s
- Distributed Algorithm:
 - Use DHHT to split each document into |S| parts
 - Store corresponding blocks on the server
- Can be also achieved by a centralized algorithm
- Straight forward generalization of fair balance
 - Distribute data according to a (m x n) distribution matrix A where $\forall s : \sum_{d} A_{d,s} \leq |s|^{and} \quad \forall d : \sum_{s} A_{d,s} = |d|$
- DHHT
 - assigns $A_{d,s}(1 \pm \varepsilon)$ elements of $d \in D$ to $s \in S$
 - Information needed: File-IDs, Server-IDs, and matrix A
 - If matrix A changes to A' $(1 + \varepsilon) \sum_{d,s} |A_{d,s} A'_{d,s}|$ data reassignments are needed

JNI REIBURG



- A fair balance like $A_{d,s} = |d| \cdot \frac{|s|}{\sum_{s' \in S}}$ is not always the best to do
- Servers are different in capacity and bandwidth
- Documents are different in size and popularity
- Goal: Optimize Time
- Assumption
 - All sizes can be modeled as real numbers

4

- b(s) = bandwidth of server s
 - b(s) = number of bytes per second
- p(d) = popularity of document d
 - p(d) = number of read/write accesses
- Sequential time for a document d and an assignment A SeqTime $(d) := \sum_{k=1}^{d} \frac{A_{d,k}}{k}$

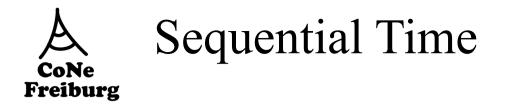
SeqTime_A(d) :=
$$\sum_{s \in S} \frac{1}{b(s)}$$

Parallel time for a document d and an assignment A

ParTime_A(d) := max_s
$$\in$$
 s $\left\{ \frac{A_{d,s}}{b(s)} \right\}$

- Observation
 - Popular bytes cause more traffic than less popular once
 - Costs are defined by the traffic per byte

iBURG



- Sequential time
 - load all parts of a document from all servers sequentially

$$\operatorname{SeqTime}_{A}(d) := \sum_{s \in \mathcal{S}} \frac{A_{d,s}}{b(s)}$$

- Worst case sequential time WSeqTime := max_d {SeqTime_A(d)}
- Average sequential time

AvSeqTime :=
$$\sum_{d \in D} p(d)$$
 SeqTime_A(d)

- where
 - S: set of servers with bandwidth b(s) and capacity |s| for each server s
 - D: set of documents with size |d| and popularity p(d) for each document

- Parallel time
 - load all parts of a document from all servers simultaneously

$$\operatorname{ParTime}_{A}(d) := \max_{s \in \mathcal{S}} \left\{ \frac{A_{d,s}}{b(s)} \right\}$$

- Worst case parallel time WParTime := max_d {ParTime_A(d)}
- Average parallel time

AvParTime :=
$$\sum_{d \in D} p(d)$$
 ParTime_A(d)

- where
 - S: set of servers with bandwidth b(s) and capacity |s| for each server s
 - D: set of documents with size |d| and popularity p(d) for each document

- Sequential time
 - load all parts of a document from all servers sequentially

$$\operatorname{SeqTime}_{A}(d) := \sum_{s \in \mathcal{S}} \frac{A_{d,s}}{b(s)}$$

- Sequential bandwidth
 - download speed of a document d

$$\operatorname{SeqBandwidth}_{A}(d) := \frac{|d|}{\operatorname{SeqTime}_{A}(d)}$$

- Worst case sequential bandwidth WBandwidth := mind {SeqBandwidthA(d)}
- Average sequential bandwidth

AvBandwidth := $\sum_{d \in D} p(d)$ SeqBandwidth(d)

- where
 - S: set of servers with bandwidth b(s) and capacity |s| for each server s
 - D: set of documents with size |d| and popularity p(d) for each document

BURG

- Parallel time
 - load all parts of a document from all servers in parallel

ParTime_A(d) :=
$$\max_{s \in S} \left\{ \frac{A_{d,s}}{b(s)} \right\}$$

- Parallel bandwidth
 - download speed of a datum d

$$\operatorname{ParBandwidth}_{A}(d) := \frac{|d|}{\operatorname{ParTime}_{A}(d)}$$

- Worst case parallel bandwidth
 WParBandwidth := min_d {ParBandwidth_A(d)}
- Average parallel bandwidth time

AvParBandwidth:= $\sum_{d \in D} p(d)$ ParBandwidth_A(d)

- where
 - S: set of servers with bandwidth b(s) and capacity |s| for each server s
 - D: set of documents with size |d| and popularity p(d) for each document

Most Reasonable Time Measures

Minimize the expected sequential time based on popularity of the document:

AvSeqTime
$$(p, A) = \sum_{d \in D} \sum_{s \in S} p(d) \frac{A_{d,s}}{b(s)}$$

 Minimize the expected parallel time based on the popularity of the document

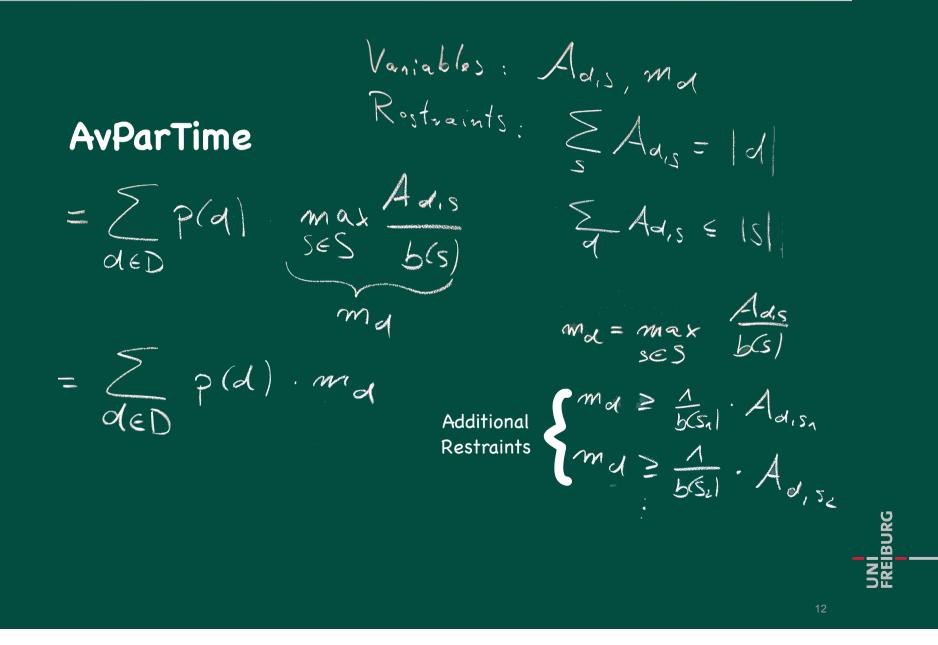
$$\operatorname{AvParTime}(p, A) = \sum_{d \in D} \max_{s \in S} \frac{A_{d,s}}{b(s)} p(d)$$

 $\forall s : \sum_{d} A_{d,s} \leq |s|$

 $\forall d: \sum_{s} A_{d,s} = |d|$

Measure	Linear programm	Add. variables	Additional restraint	Optimize
AvSeqTime	yes	—	—	$\min \sum_{s \in \mathcal{S}} \sum_{d \in \mathcal{D}} p(d) \frac{A_{d,s}}{b(s)}$
WSeqTime	yes	m	$orall d \in \mathcal{D}: \sum_{s \in \mathcal{S}} rac{A_{d,s}}{b(s)} \leq m$	min m
AvParTime	yes	$(m_d)_{d\in\mathcal{D}}$	$\forall s \in \mathcal{S}, \forall d \in \mathcal{D}: rac{A_{d,s}}{b(s)} \leq m_d$	$\min \sum_{d \in \mathcal{D}} p(d) m_d$
WParTime	yes	m	$orall s \in \mathcal{S}, orall d \in \mathcal{D}: rac{A_{d,s}}{b(s)} \leq m$	min M
AvSeqBandwidth	no	_		$\max \sum_{d \in \mathcal{D}} \frac{p(d) d }{\sum_{s \in \mathcal{S}} \frac{A_{d,s}}{b(s)}}$
WSeqBandwidth	yes	m	$orall d \in \mathcal{D}: \sum_{s \in \mathcal{S}} rac{A_{d,s}}{ d b(s)} \leq m$	min m
AvParBandwidth	no	$(m_d)_{d\in\mathcal{D}}$	$rac{orall d \in \mathcal{D} : \sum_{s \in \mathcal{S}} rac{A_{d,s}}{b(s) d } \leq m_d}{orall s \in \mathcal{S}, orall d \in \mathcal{D} : rac{A_{d,s}}{ d b(s)} \leq m}$	$\max \sum_{d \in \mathcal{D}} \frac{p(d)}{m_d}$
WParBandwidth	yes	m	$orall s \in \mathcal{S}, orall d \in \mathcal{D}: rac{A_{d,s}}{ d b(s)} \leq m$	min m

How to Describe AvParTime as a LP Freiburg



- Storage device
 - s₁: 500 GB, 100 MB/s
 - s₂: 100 GB, 50 MB/s
 - s₃: 1 GB 1000 MB/s

Documents

- d₁: 100 GB, popularity 1/111
- d₂: 5 GB, popularity 100/111
- d₃: 100 GB, popularity 10/111

A _{d,s}	S1	S2	S 3	Σ
d ₁	100	0	0	100
d ₂	2	2	1	5
d₃	2	98	0	100
Σ	≤ 500	≤ 100	≤ 1	

	SeqTime	SeqBand width	ParTime	ParBand width
d1	1000	100	1000	100
d ₂	61	82	40	125
d₃	1980	51	1960	51
Av	1864	121	1827	160
Worst case	1980	51	1960	51
13	1	1	1	

A Excursion: Linear Programming

- Linear Program (Linear Optimization)
- Given: m × n matrix A

m-dimensional vector b

n-dimensional vector c

- Find: n-dimensional vector x=(x₁, ..., x_n)
- such that

-
$$x \ge 0$$
, i.e. for all j: $x_j \ge 0$
- A $x = b$, i. e. $\sum_{j=1}^{n} \sum_{i=1}^{m} A_{ij} x_j = b_j$
- $z = c^T x$ is minimized, i.e. $z = \sum_{j=1}^{n} c_j x_j$ is minimal

JNI REIBURG

A Linear Programming 2

- Linear Programming (LP2)
- Given: m × n matrix A

m-dimensional vector b

n-dimensional vector c

- Find: n-dimensional vector x=(x₁, ..., x_n)
- such that
 - x ≥ 0
 - $Ax \le b$
 - $z = c^T x$ is maximal

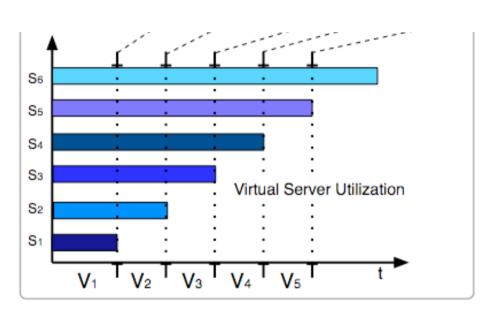
UNI FREIBURG

Performance of Linear Programming

- Worst case time behavior of the Simplex algorithm is exponential
 - A simplex can have an exponential number of edges
- For randomized inputs, the running time of Simplex is polynomial on the expectation
- The Ellipsoid algorithm is a different method with polynomial worst case behavior
 - In practice it is usually outperformed by the Simplex algorithm

$s'_{i} = b(s'_{i}) \cdot t_{j}$

ParTime = SeqTime with virtual servers



UNI FREIBURG

- Reduce optimal solution for LP of ParTime to the optimal solution of LP of SeqTime
 - Combining capacity of many disks in parallel
- Define new sequential virtual servers

CoNe Freiburg

– Sort s_i such that

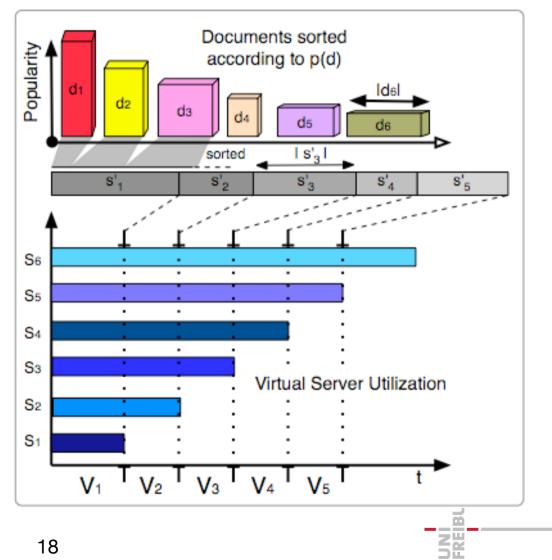
$$rac{|s_j|}{b(s_j)} \le rac{|s_{j+1}|}{b(s_{j+1})}$$

- Server s'_j parallelizes servers $s_{j},..,s_{|S|}$
- Virtual servers s'_i are then sorted such that b(s'_i)>b(s'_{i+1})
- $-Size of s'_i$:

$$t_j = \frac{|s_j|}{b(s_j)} - \sum_{i=1}^{j-1} t_i$$

Solve the LP of AvSeqTime

- Simple optimal greedy solution
- Repeat until all documents are assinged:
 - Assign most popular document on fastest sequential (virtual) server
 - Reduce the storage of the server by the document size and remove the document



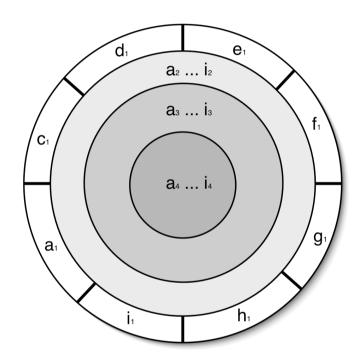
Applications in Storage Networks

Object storage with different popularity zones

- e.g. movies with varying popularities over time
- Fragmentation is done automatically
- Includes dynamics for adding and removing documents
- The same for servers

Use different bandwidth

- Each disk has different bandwidths
- Exporting different zone classes as sequential servers



UNI FREIBURG

Storage Networks Optimizing Heterogeneous Data Distribution

DZU

N.

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

Optimal File-Distribution in Heterogeneous and Asymmetric Storage Networks

Tobias Langner, Christian Schindelhauer, Alexander Souza

Computer Engineering and Networks Laboratory (TIK) Department for Information Technology and Electrical Engineering ETH Zurich, Switzerland

> SOFSEM '11 Nový Smokovec

25 January, 2011

- Storing files on multiple machines is a common habit
 - P2P overlays basically represent storage networks
 - File-hosting services like Amazon S3, Rapidshare, etc.

- Storing files on multiple machines is a common habit
 - P2P overlays basically represent storage networks
 - File-hosting services like Amazon S3, Rapidshare, etc.
- Gigantic storage requirements by special applications (Google, Amazon, CERN)

- Storing files on multiple machines is a common habit
 - P2P overlays basically represent storage networks
 - File-hosting services like Amazon S3, Rapidshare, etc.
- Gigantic storage requirements by special applications (Google, Amazon, CERN)
- Most existing approaches specifically tailored for data centers with homogeneous and symmetric network connections.

- Storing files on multiple machines is a common habit
 - P2P overlays basically represent storage networks
 - File-hosting services like Amazon S3, Rapidshare, etc.
- Gigantic storage requirements by special applications (Google, Amazon, CERN)
- Most existing approaches specifically tailored for data centers with homogeneous and symmetric network connections.
- Little attention to asymmetric bandwidths typical for end-user connections

Synopsis

1 Motivation

2 Problem Setting

3 Analytical Scaling

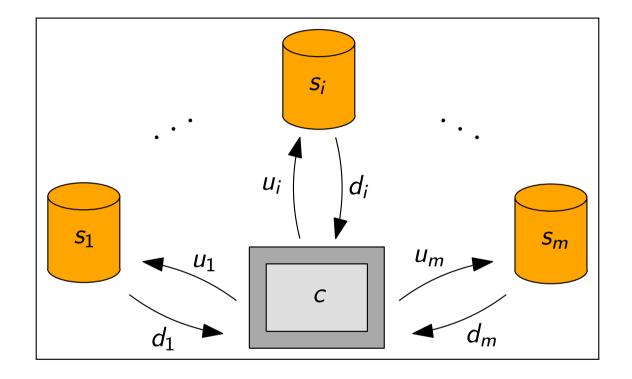
- Maximum Flow in Distribution Problems
- Total Data Function in 3D
- The Algorithm

4 Conclusion

Problem Setting

Distribution Network

Problem Setting

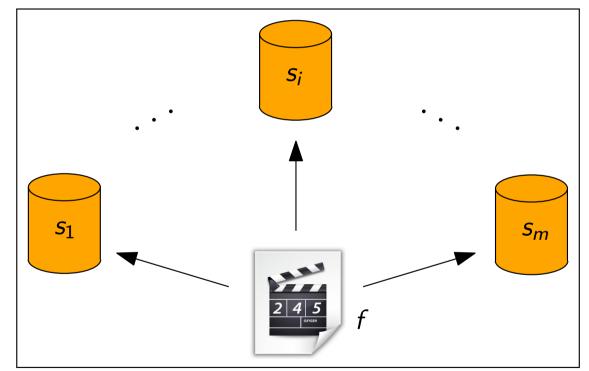


- Servers s_i with $i \in S = \{1, \ldots, m\}$, and one client c
- Each server s_i is characterized by its upload bandwidth u_i and download bandwidth d_i

Distribution Problem

Problem Setting

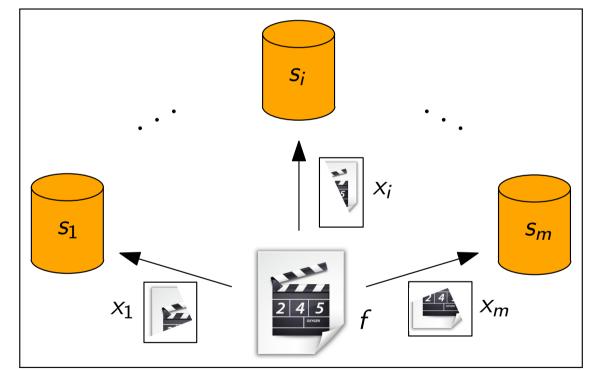
• How do we split a file f of size |f| into fragments for the servers to minimize the time for one upload and n downloads?



Distribution Problem

Problem Setting

• How do we split a file *f* of size |*f*| into fragments for the servers to minimize the time for one upload and *n* downloads?

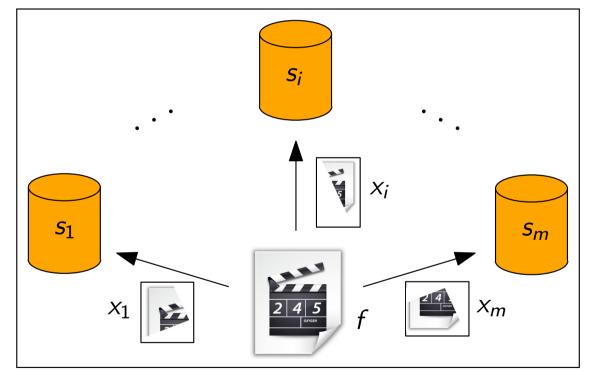


• Distribution vector $\mathbf{x} = (x_1, \dots, x_m)$ with $\sum x_i = |f|$. x_i is the size of the fragment of server s_i .

Distribution Problem

Problem Setting

• How do we split a file *f* of size |*f*| into fragments for the servers to minimize the time for one upload and *n* downloads?



- Distribution vector $\mathbf{x} = (x_1, \dots, x_m)$ with $\sum x_i = |f|$. x_i is the size of the fragment of server s_i .
- Equivalent simplified problem with |f| = n = 1.

Transfer Times

Problem Setting

The quality of a distribution \mathbf{x} is given by the transfer times:

• Upload time:

$$t_u(\mathbf{x}) = \max_{i \in S} \left\{ \frac{x_i}{u_i}
ight\}$$

Transfer Times

Problem Setting

The quality of a distribution \mathbf{x} is given by the transfer times:

• Upload time:

$$t_u(\mathbf{x}) = \max_{i \in S} \left\{ rac{x_i}{u_i}
ight\}$$

• Download time:

$$t_d(\mathbf{x}) = \max_{i \in S} \left\{ \frac{x_i}{d_i}
ight\}$$

Transfer Times

Problem Setting

The quality of a distribution \mathbf{x} is given by the transfer times:

• Upload time:

$$t_u(\mathbf{x}) = \max_{i \in S} \left\{ rac{x_i}{u_i}
ight\}$$

• Download time:

$$t_d(\mathbf{x}) = \max_{i \in S} \left\{ \frac{x_i}{d_i} \right\}$$

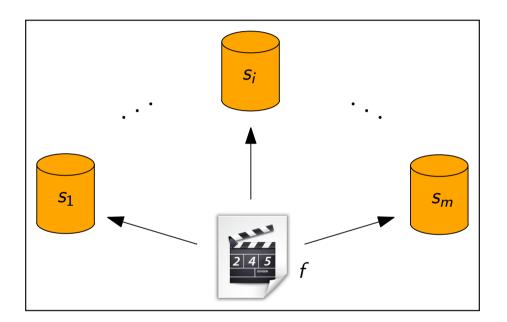
• Total time:

$$val(\mathbf{x}) = t_u(\mathbf{x}) + (n \cdot) t_d(\mathbf{x})$$

Objective

Problem Setting

We are given a distribution network and a file f with size 1.



Problem Setting

Objective

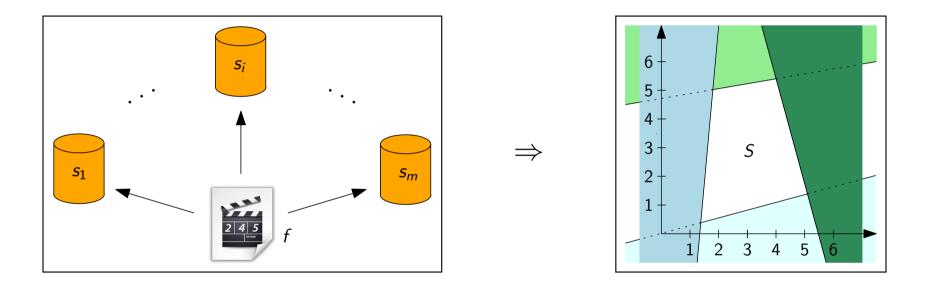
Find the optimal distribution \mathbf{x}^* that minimizes the total time

$$\operatorname{val}(\mathbf{x}) = t_u(\mathbf{x}) + t_d(\mathbf{x})$$
 .

Problem Setting

Important Properties

Problem Setting



- The distribution problem can be formulated as linear program. \Rightarrow Its solution space is a convex region.
 - \Rightarrow Every local minimum is global.

Non-Linear Optimization Problem

Linear Program

Upload/download bandwidths u_1 to u_m and d_1 to d_m File distribution $x = (x_1, \ldots, x_m)$

Non-Linear Programminimize $\max \left\{ \frac{x_1}{u_1}, \frac{x_2}{u_2}, \dots, \frac{x_m}{u_m} \right\} + \max \left\{ \frac{x_1}{d_1}, \frac{x_2}{d_2}, \dots, \frac{x_m}{d_m} \right\}$ subject to $\sum_{i=1}^m x_i = 1$ $x_i \ge 0$ for all $i \in \{1, \dots, m\}$

Linear Optimization Problem

Linear Program

Linear Program		
minimize	$t_u + t_d$	
subject to	$\sum_{i=1}^{m} x_i = 1$	1
		for all $i \in \{1, \ldots, m\}$
	X.	for all $i \in \{1, \ldots, m\}$
	$x_i \ge 0$	for all $i \in \{1, \ldots, m\}$

Dimension: m + 2

Synopsis

1 Motivation

2 Problem Setting

- Maximum Flow in Distribution Problems
- Total Data Function in 3D
- The Algorithm

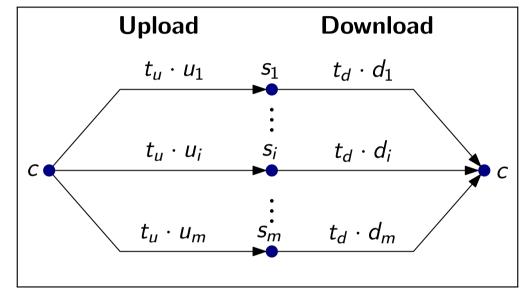
4 Conclusion

Maximum Flow in Distribution Problems

• Assume we are given upload time t_u and download time t_d

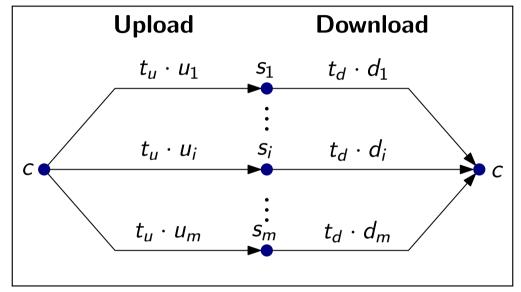
Maximum Flow in Distribution Problems

• Assume we are given upload time t_u and download time t_d



Maximum Flow in Distribution Problems

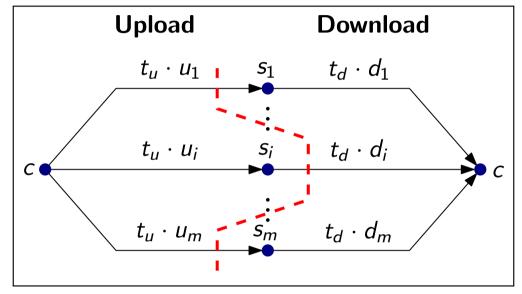
• Assume we are given upload time t_u and download time t_d



• The maximal amount of data that can be uploaded within t_u and downloaded within t_d corresponds to a maximum flow.

Maximum Flow in Distribution Problems

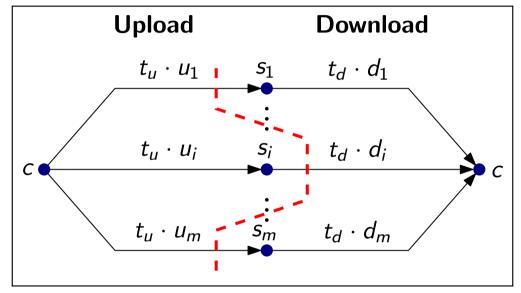
• Assume we are given upload time t_u and download time t_d



- The maximal amount of data that can be uploaded within t_u and downloaded within t_d corresponds to a maximum flow.
- Value of maximum flow f^* equals capacity of minimal cut

Maximum Flow in Distribution Problems

• Assume we are given upload time t_u and download time t_d



- The maximal amount of data that can be uploaded within t_u and downloaded within t_d corresponds to a maximum flow.
- Value of maximum flow f^* equals capacity of minimal cut

$$val(f^*) = \sum_{i=1}^{m} \min\{t_u \, u_i, \, t_d \, d_i\}$$

Decision Predicate

Maximum Flow in Distribution Problems

• There exists a distribution such that f with |f| = 1 can be uploaded and downloaded in time t_u and t_d , respectively, if

$$\sum_{i=1}^{m} \min\{t_u \, u_i, \, t_d \, d_i\} \geq 1$$

Decision Predicate

Maximum Flow in Distribution Problems

• There exists a distribution such that f with |f| = 1 can be uploaded and downloaded in time t_u and t_d , respectively, if

$$\sum_{i=1}^m \min\{t_u \, u_i, \, t_d \, d_i\} \ge 1$$

• We want to find the minimum values for t_u and t_d for which the above predicate holds.

Decision Predicate

Maximum Flow in Distribution Problems

• There exists a distribution such that f with |f| = 1 can be uploaded and downloaded in time t_u and t_d , respectively, if

$$\sum_{i=1}^m \min\{t_u \, u_i, \, t_d \, d_i\} \ge 1$$

- We want to find the minimum values for t_u and t_d for which the above predicate holds.
- Substitute t_d by $T t_u$ to obtain the total data function.

$$\delta_T(t_u) = \sum_{i=1}^m \min\{t_u \, u_i, \ (T-t_u) \cdot d_i\}$$

Total Data Function

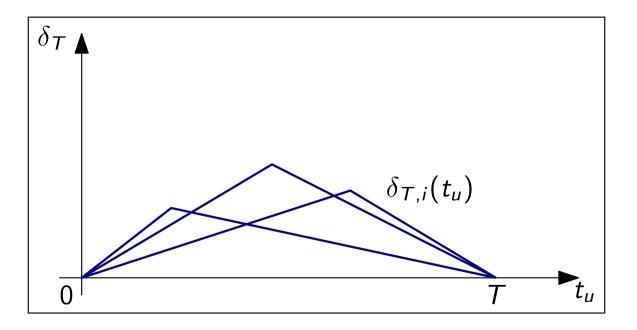
• The total data function for a fixed value of T:

$$\delta_T(t_u) = \sum_{i=1}^m \min\{t_u \, u_i, \ (T-t_u) \cdot d_i\}$$

Total Data Function

• The total data function for a fixed value of T:

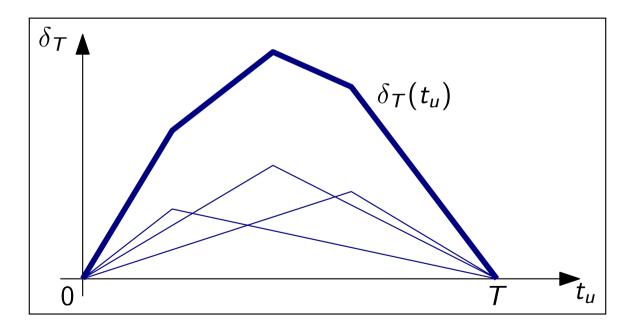
$$\delta_T(t_u) = \sum_{i=1}^m \min\{t_u \, u_i, \ (T-t_u) \cdot d_i\}$$



Total Data Function

• The total data function for a fixed value of T:

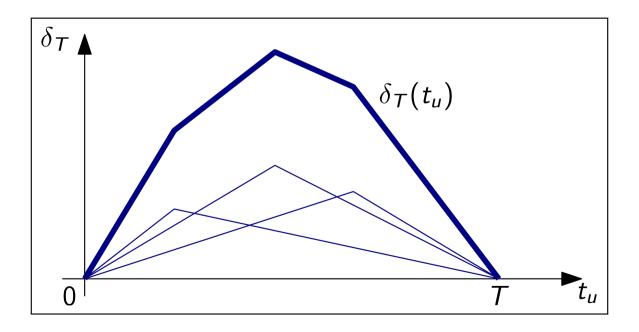
$$\delta_T(t_u) = \sum_{i=1}^m \min\{t_u \, u_i, \ (T-t_u) \cdot d_i\}$$



Total Data Function

• The total data function for a fixed value of T:

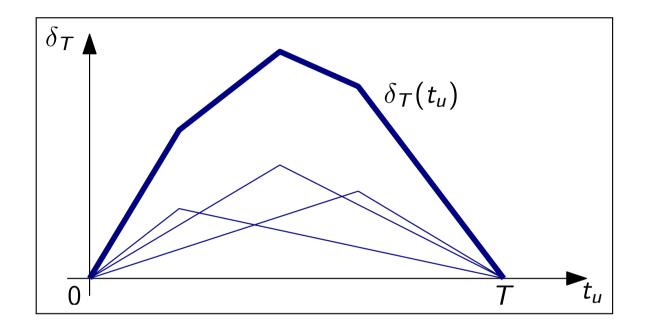
$$\delta_T(t_u) = \sum_{i=1}^m \min\{t_u \, u_i, \ (T-t_u) \cdot d_i\}$$



• Can be evaluated in $\mathcal{O}(m \log m)$ steps

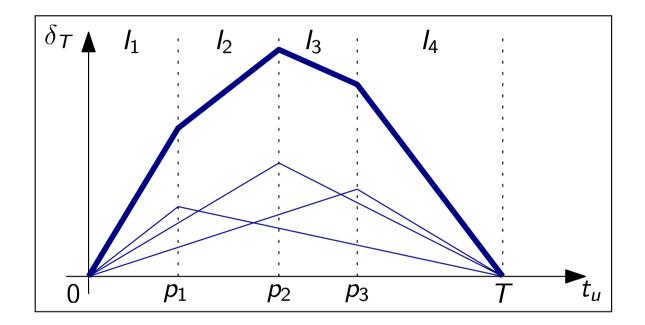
Evaluation

The Total Data Function



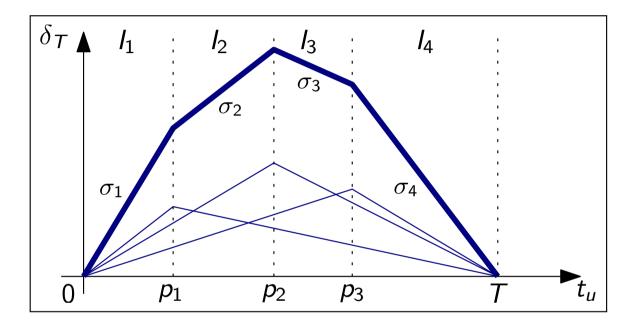
Evaluation

The Total Data Function



Evaluation

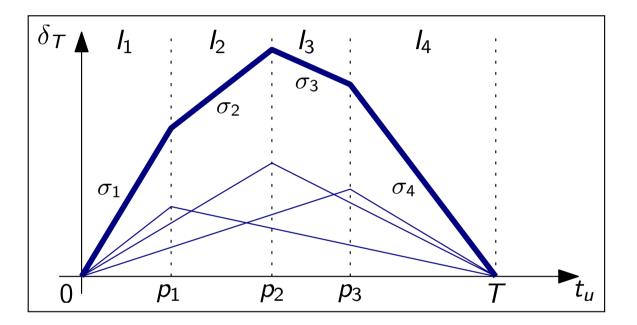
The Total Data Function



 σ_i is slope in interval I_i .

Evaluation

The Total Data Function



 σ_i is slope in interval I_i .

Recursion formula

$$\delta_T(p_i) = \delta_T(p_{i-1}) + \sigma_i \cdot (p_i - p_{i-1})$$

Scaling the Total Data Function

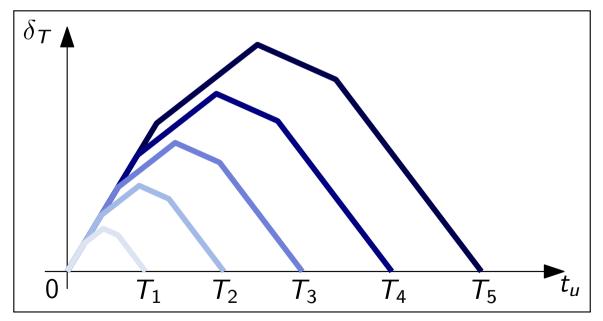
Total Data Function in 3D

• The total data function $\delta_T(t_u)$ determines how much data can be uploaded to and downloaded again from the servers within time T for different values of t_u .

Scaling the Total Data Function

Total Data Function in 3D

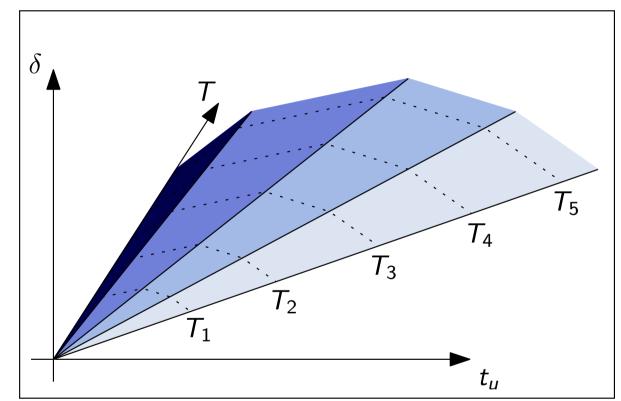
- The total data function $\delta_T(t_u)$ determines how much data can be uploaded to and downloaded again from the servers within time T for different values of t_u .
- Varying values of T only scale the total data function



Two-Variable Total Data Function

Total Data Function in 3D

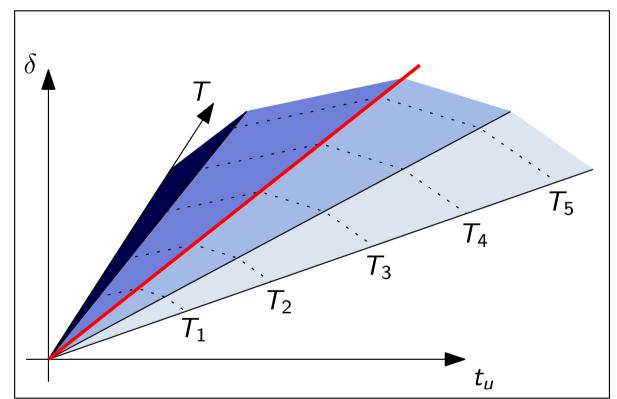
• Interpret $\delta_T(t_u)$ as two-variable function $\delta(T, t_u)$ now



Two-Variable Total Data Function

Total Data Function in 3D

• Interpret $\delta_T(t_u)$ as two-variable function $\delta(T, t_u)$ now

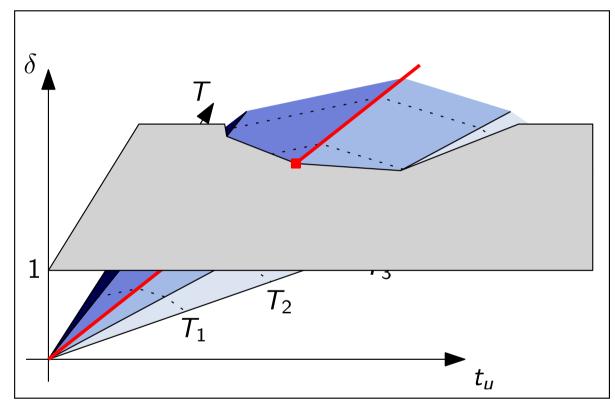


• To find the minimal value of T with $\delta(T, t_u) \ge 1$ for some t_u , establish straight line through the highest point of $\delta(T, t_u)$

Two-Variable Total Data Function

Total Data Function in 3D

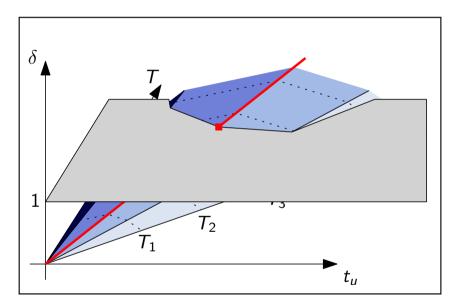
• Interpret $\delta_T(t_u)$ as two-variable function $\delta(T, t_u)$ now



- To find the minimal value of T with $\delta(T, t_u) \ge 1$ for some t_u , establish straight line through the highest point of $\delta(T, t_u)$
- Determine where it intersects the plane $\delta = 1$

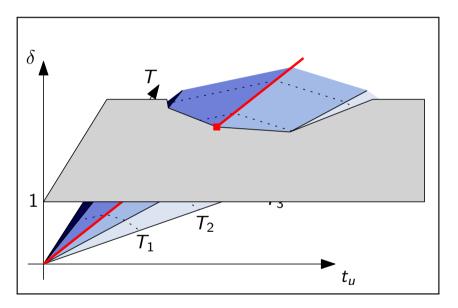
The Algorithm

• We determine the minimal value of T as depicted.



The Algorithm

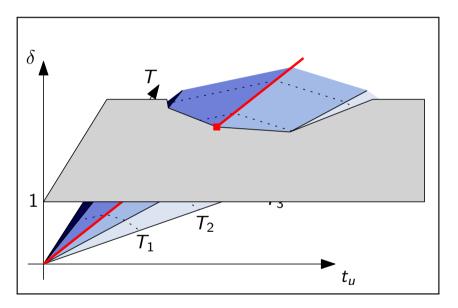
• We determine the minimal value of T as depicted.



• The decomposition of T into t_u and t_d is given by the coordinates of the intersection point.

The Algorithm

• We determine the minimal value of T as depicted.



• The decomposition of T into t_u and t_d is given by the coordinates of the intersection point.

The Algorithm

- Algorithm to determine a solution with these time bounds:
 - Iterate through all servers $s_i \in S$
 - Assign to s_i the data amount $x_i = \min\{t_u \ u_i, \ t_d \ d_i\}$
 - Return the resulting distribution

The Algorithm

- Algorithm to determine a solution with these time bounds:
 - Iterate through all servers $s_i \in S$
 - Assign to s_i the data amount $x_i = \min\{t_u \ u_i, \ t_d \ d_i\}$
 - Return the resulting distribution
- Through the feasibility predicate

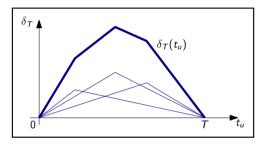
$$\sum_{i=1}^m \min\{t_u \, u_i, \ t_d \, d_i\} = 1$$

we know that $\sum x_i = 1$ and thus **x** is a valid distribution.

Runtime Complexity

The Algorithm

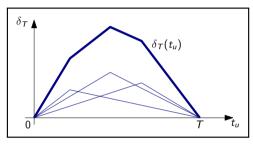
• Evaluating the total data function for a fixed value of T runs in $\mathcal{O}(m \log m)$ steps.



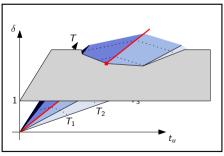
Runtime Complexity

The Algorithm

• Evaluating the total data function for a fixed value of T runs in $\mathcal{O}(m \log m)$ steps.



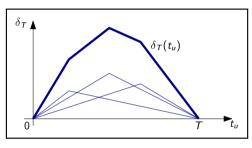
• Intersecting the straight line with the plane $\delta = 1$ is possible in constant time.



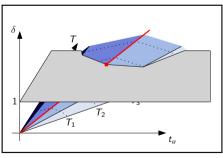
Runtime Complexity

The Algorithm

• Evaluating the total data function for a fixed value of T runs in $\mathcal{O}(m \log m)$ steps.



• Intersecting the straight line with the plane $\delta = 1$ is possible in constant time.



Runtime complexity: $O(m \log m)$

Synopsis

1 Motivation

- 2 Problem Setting
- 3 Analytical Scaling
 - Maximum Flow in Distribution Problems
 - Total Data Function in 3D
 - The Algorithm

Summary

• Formal introduction of a new distribution problem

Conclusion

Summary

• Formal introduction of a new distribution problem

Conclusion

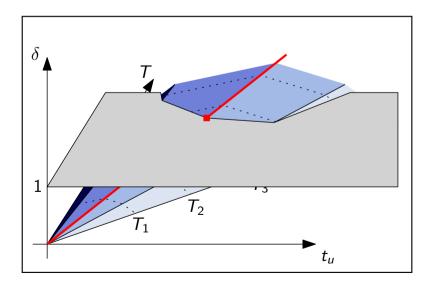
• Formulation as linear program

Summary

- Formal introduction of a new distribution problem
- Formulation as linear program
- Derived total data function from flow formulation

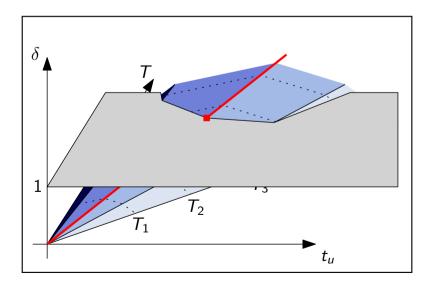
Summary

- Formal introduction of a new distribution problem
- Formulation as linear program
- Derived total data function from flow formulation
- Presented Analytical Scaling algorithm to find optimal solutions



Summary

- Formal introduction of a new distribution problem
- Formulation as linear program
- Derived total data function from flow formulation
- Presented Analytical Scaling algorithm to find optimal solutions



Future Directions

• Implementation of our ideas into real-world applications

Future Directions

- Implementation of our ideas into real-world applications
- Cope with non-static, fluctuating bandwidths

Future Directions

- Implementation of our ideas into real-world applications
- Cope with non-static, fluctuating bandwidths
- Respect limited storage capacity of servers

Future Directions

- Implementation of our ideas into real-world applications
- Cope with non-static, fluctuating bandwidths
- Respect limited storage capacity of servers
- Incorporation of redundancy to allow for failure tolerance

The End

Thank you for your attention!

Questions?