A

CoNe
Freiburg

DAAD Summerschool Curitiba 2011

Aspects of Large Scale High Speed Computing Building Blocks of a Cloud
Storage Networks

3: Distributed Hash Tables - Virtualization without Index
Database

Christian Schindelhauer

Technical Faculty

Computer-Networks and Telematics
University of Freiburg

é%«‘e Concept of Virtualization

Freiburg

» Principle

¢ A virtual storage constitutes handles all
application accesses to the file system

¢ The virtual disk partitions files and
stores blocks over several (physical)
hard disks

e Control mechanisms allow redundancy
and failure repair

» Control

¢ \/irtualization server assigns data, e.g.
blocks of files to hard disks (address
space remapping)

e Controls replication and redundancy
strategy

¢ Adds and removes storage devices

Hard Disks

,A\ Distributed Wide Area Storage Networks

CoNe
Freiburg

Distributed Hash Tables

- Relieving hot spots in the Internet
- Caching strategies for web servers
Peer-to-Peer Networks

- Distributed file lookup and download in Overlay networks
- Most (or the best) of them use: DHT

A WWW Load Balancing

CoNe
Freiburg
Web surfing: www.apple.de s uni-dreiburg.de

www.google.com

- Web servers offer web pages
- Web clients request web
pages

Most of the time these

requests are independent

Requests use resources of

the web servers

- bandwidth

- computation time R et Arne

é%:e [.oad

Freiburg

» Some web servers have always high
load

e for permanent high loads servers
must be sufficiently powerful

» Some suffer under high fluctuations
® e.g. special events:
- jpl.nasa.gov (Mars mission)
- cnn.com (terrorist attack)

e Server extension for worst case not
reasonable

e Serving the requests is desired

Monday

www.google.com

/AN

280008

Tuesday

N
|
4

Wednesday

A, Load Balancing in the WWW

CoNe
Freiburg

Monday Tuesday Wednesday
Fluctuations target some : : : : : '
e olo| ole| o o|
(Commercial) solution //4 \ I\\\ I\ f
- Service providers offer ' I I I I l l
- Many requests will be

exchange servers an
distributed among these
servers eI eI

But how?

é%?e [iterature

Freiburg

» Leighton, Lewin, et al. STOC 97
» Consistent Hashing and Random

Trees: Distributed Caching Protocols
for Relieving Hot Spots on the World

Wide Web
» Used by Akamai (founded 1997)

! Web-Cache

Io
° .'
LY

~N
J

TIT
N

phid

A\

CoNe Start Situation

Freiburg

» Without load balancing
» Advantage

e simple Web-Server
» Disadvantage : I
[

e servers must be designed for worst -
4=

case situations
... ’(‘B
2
.. m

Y14

Web-Clients

Web pages

é%:e Site Caching

Freiburg
Web-Server _

» The whole web-site is copied to I

different web caches e et

N Taee < LA T
» Browsers request at web server @ AT
] . Web-Cache

» Web server redirects requests to Web- - R Py

Cache I

» Web-Cache delivers Web pages
» Advantage:

¢ good load balancing
» Disadvantage:

¢ bottleneck: redirect

¢ |arge overhead for complete web-site
replication

Web-Clients

A\

cone Proxy Caching

Freiburg

» Each web page is distributed to a few
web-caches

» Only first request is sent to web server

» Links reference to pages in the web-
cache

» Then, web clients surfs in the web-
cache

» Advantage:
e No bottleneck
» Disadvantages:
¢ | oad balancing only implicit
e High requirements for placements

10

Web-Server _ I

Web-Client

Web-
Cache

A Requirements

CoNe
Freiburg

Balance Dynamics
fair balancing of web pages Efficient insert and delete of web-

cache-servers and files

N
il

Views
Web-Clients ,see” different
set of web-caches

1

A\ Hash Functions

CoNe
Freiburg

ltems

O O
N
® 00O Buckets
O gl
O
O

Setof ltems: 7
Set of Buckets: B

Example: f(z) — a?+ b mod n

A, Ranged Hash-Funktionen

CoNe
Freiburg

Given:

- Items Z , Number I := ||

- Caches (Buckets), Bucket set: B

- Views VY C 28

Ranged Hash-Funktion:

- f:26x7T B

- Prerequisite: for alle views fy,(Z) C V

¥~ Buckets

T View

OQQ
®
O 0O
od [0loo
®
O

ltems

A First Idea: Hash Function

CoNe
Freiburg

Algorithm:
- Choose Hash funktion, e.g.
f(i) = ai+ b mod n
n: number of Cache servers
Balance:
- very good

Dynamics

- Insert or remove of a single cache
server

- New hash functions and total re-
hashing

- Very expensive!!

6
©
[|

0

30+ 1mod 4|

®© ©
vy

2i+2mod 3

,A\ Requirements of the

reemere Ranged Hash Functions

Monotony

- After adding or removing new caches (buckets) no pages
(items) should be moved

Balance
- All caches should have the same load

Spread

- A page should be distributed to a bounded number of
caches

Load

- No Cache should not have substantially more load than
the average

A\ Monotony

CoNe
Freiburg

e After adding or removing new caches (buckets) no pages (items) should
be moved

e Formally: Forall y, C Vv, C B
() eVi = f, (1) = fr,(0)

| O O 5
f. (7) O ® ages
View 1: v v Caches
View 2:
f (’L) w w w w w Caches
V2 O O ® O Pages

A\ Balance

CoNe
Freiburg

e For every view V the is the fy(i) balanced
Foraconstantcand all vy C B

Pr(fy(z) =b] < ﬁ

| o O i
v (2) @ o O ages
View 1: v 9 U Caches
View 2:
f (’L) w w w w Caches
& O O O O Pages
O

A, Spread

CoNe
Freiburg

* The spread o (i) of a page i is the overall number
of all necessary copies (over all views)

o(i) := [{fy,(4), f,(@), ..., fy, (D)}

View 1: O

i (9) 9 9 U oc(0) =2
View 2: Q

Fu. (3) g U g U

View 3:

O

A Load

CoNe
Freiburg

e The load A(b) of a cache b is the over-all number of all

copies (over all views)

A(D) = [{ Uy Hy(b) },

AMby) = 2
AMb,) = 3

wher H,,(b) ;= set of all pages assigned to bucket b
in View V
View 1.2 QQ ‘ Q‘
fVl (Z) w w m
View 2: O O @,
View 3: OO @ O@®
fv.) @ T U
b, b,

A\

CoNe
Freiburg

Distributed Hash Tables

C
Clt
Theorem

number of caches (Buckets)
minimum number of caches per View

V/C = constant (#Views / #Caches)
| =C (# pages = # Caches)

There exists a family of hash function
with the following properties

= Each function f&F is monotone

= Balance: For every view

= Spread: For each page i

. HF 1
with probability 1 — oo

= Load: For each cache b

1
C(1)

with probability 1 —

Pr{fy(i) =b] < o

Vi

o(i) = O(tlog C)

A(b) = O(tlog C)

A, The Design

CoNe
Freiburg

2 Hash functions onto the reals [0,1]
TB(b) maps k log C copies of cache b randomly to [0,1]
r7(7) maps web page i randomly to the interval [0,1]
fv(’t) .= Cache p €) which minimizes |7“B(b) — Tz(i)|

\

O
Caches O O o O O
(Buckets): ? ? ? ? r5(b)
View1 0 =0 7 Y 16 -
View2 0| m—Ee—O- |1

S

O @
Web pages (Items): (T) 3 CT) ‘ r7 (1)

A Monotony

CoNe
Freiburg

fy(i) := Cache b€V which minimizes |r5(b) — rz(3)|
Forall vy, cy,cB

sz(i) €V = fVI(Z) — sz(z)

Observe: blue interval in V, and in V; empty!

[1

View 1 0 []]
[]

View2 0

L

A\ 2. Balance

CoNe
Freiburg
Balance: For all views pr[f,(i) = b] < |_;|
- Choose fixed view and a web page i
- Apply hash functions rz(b) and 7z(7)
- Under the assumption that the mapping is random
e every cache is chosen with the same probability
Caches
(Buckets): E? ﬁ E?
'
Vew o m— e O :

@
Webseiten (ltems): g) ‘ CT) ‘

A 3. Spread

CoNe
Freiburg

o (i) = number of all necessary copies (over all views)
o (i) ‘= [{ Sy, (0), fy,(9), -, Fyu (D)]

C number of caches (Buckets)
S;é m'”'TUT(gsmber/oééaCEeS)per View ever user knows at least a fraction of 1/t
= constan iews aches
over the caches
| =C (# pages = # Caches)

. o i 1
For every page i U(Z) = O(t log C) with prob. 1 — (1)

Proof sketch:
e Every view has a cache in an interval of length t/C (with high probability)
* The number of caches gives an upper bound for the spread

0 t/C 2t/C 1 __@_

,A\ 4. Load

CoNe
Freiburg

e Last (load): A(b) = Number of copies over all views
A) == Uy Hy(b) }I,
where Hy(b) = set of pages assigned to bucket b under view V

* For every cache be we observe \(b) = O(tlog C)

with probability , _ 1
(1)

Proof sketch: Consider intervals of length t/C

* With high probability a cache of every view falls into one

of these Intervals
e The number of items in the interval gives an upper

bound for the load

0 t/C 2t/C

A Summa
CoNe ry
Freiburg

Distributed Hash Table

- is a distributed data structure for virtualization
- with fair balance
- provides dynamic behavior

Standard data structure for dynamic distributed
storages

A

CoNe
Freiburg

DAAD Summerschool Curitiba 2011

Aspects of Large Scale High Speed Computing Building Blocks of a Cloud
Storage Networks

3: Distributed Hash Tables - Virtualization without Index
Database

Christian Schindelhauer

Technical Faculty

Computer-Networks and Telematics
University of Freiburg

