
DAAD Summerschool Curitiba 2011
Aspects of Large Scale High Speed Computing Building Blocks of a Cloud

Storage Networks
4: Distributed Heterogeneous Hash Tables

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

Literature

 André Brinkmann, Kay Salzwedel, Christian Scheideler, Compact,
Adaptive Placement Schemes for Non-Uniform Capacities, 14th ACM
Symposium on Parallelism in Algorithms and Architectures 2002 (SPAA
2002)

 Christian Schindelhauer, Gunnar Schomaker, Weighted Distributed Hash
Tables, 17th ACM Symposium on Parallelism in Algorithms and
Architectures 2005 (SPAA 2005)

 Christian Schindelhauer, Gunnar Schomaker, SAN Optimal Multi
Parameter Access Scheme, ICN 2006, International Conference on
Networking, Mauritius, April 23-26, 2006

2

The Uniform Problem

‣ Given
• a dynamic set of n nodes V = {v1, ... , vn}

• data elements X = {x1, ..., xm}

‣ Find
• a mapping fV : X → V

‣ With the following properties
• The mapping is simple

- fV(x) be computed using V and x

- without the knowledge of X\{x}

• Fairness:

- |fV-1(v)| ≈ |fV-1(v)|

• Monotony: Let V ⊂ W

- For all v ∈ V: fV-1(v) ⊇ fW-1(v)

‣ where fV-1(v) := {x ∈ X : fV(x) = v }

Data Items X

Nodes: V

mapping f

3

Distributed Hash Tables
THE Solution for the Uniform case

‣ “Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot
Spots on the World Wide Web”,

• David Karger, Eric Lehman, Tom Leighton,
Mathhew Levine, Daniel Lewin, Rina Panigrahy,
STOC 1997

• Present a simple solution

‣ Distributed Hash Table

• Chooose a space M = [0,1[

• Map nodes v to M via hash function

- h : V → M

• Map documents and servers to an interval

- h : X → M

• Assign a document to the server which minimizes
the distance in the interval

• fV(x) = argmin{v ∈V: (h(x)-h(v))mod 1}

- where x mod 1 := x - ⎣x⎦

Assignm
ent

Assignm
ent

A
ssignm

ent

Nodes: V

Data Items X

Hash Function

Hash Function

4

The Performance of Distributed Hash
Tables

 Theorem
- Data elements are mapped to node i with probability pi = 1/|V|, if the

hash functions behave like perfect random experiments
 Balls into bins problem

- Expected ratio max(pi)/min(pi) = Ω(log n)

 Solutions:
- Use O(log n) copies of a node
–Principle of multiple choices

• check at some O(log n) positions and choose the largest empty
interval for placing a node,

–Cookoo-Hashing
• every node chooses among two possible position

5

The Heterogeneous Case

‣ Given

• a dynamic set of n nodes V = {v1, ... , vn}

• dynamic weights w : V → R+

• dynamic set of data elements X = {x1,...,xm}

‣ Find a mapping fw,V : X → V

‣ With the following properties

• The mapping is simple

- fw,V(x) be computed using V, x, w without the knowledge of X\{x}

• Fairness: for all u,v ∈ V:

- | fw,V-1(u)|/w(u) ≈ | fw,V-1(v)|/w(v)

• Consistency:

- Let V ⊂ W: For all v ∈ V:
✴ fw,V-1(v) ⊇ fw,W-1(v)

- Let for all v ∈ V\{u}: w(v) = w’(v) and w’(u)>w(u):
✴ for all v ∈ V\{u}: fw,V-1(v) ⊇ fw’,V-1(v) and fw,V-1(u) ⊆ fw’,V-1(u)

‣ where fw,V-1(v) := { x ∈ X : fw,V(x) = v }

Data Items X

Nodes: V
Weights: w

mapping f

6

Some Application Areas

 Proxy Caching
- Relieving hot spots in the Internet

 Mobile Ad Hoc Networks
- Relating ID and routing information

 Peer-to-Peer Networks
- Finding the index data efficiently

 Storage Area Networks
- Distributing the data on a set of servers

7

Application
Peer-to-Peer Networks

 Peer-to-Peer Network:
- decentralized overlay network delivering services over the Internet
- no client-server structure

• example: Gnutella

 Problem: Lookup in first generation networks very slow
 Solution:

- Use an efficient data structure for the links and
- map the keys to a hash space

 Examples:
- CAN

• maps keys to a d-dimensional array
• builds a toroidal connection network,

- where each peer is assigned to rectangular areas

- Chord
• maps keys and peers to a ring via DHT
• establishes binary search like pointers on the ring

8

Application
Storage Networks

 Distribute data over a set of hard disks
- Nodes = hard disks
- Data items = blocks

 Problem
- Place copies of blocks for redundancy
- If a hard disk fails other hard disk carry the information
- Add or remove hard disks without unnecessary data

movement
- Hard disks may have different sizes

9

Storage Network Architecture

 Avoid server based architectures
- Assignment of data is not flexible enough
- High local storage concentration (for LAN traffic

reduction)
- Low availability of free capacity

 Basic distributed storage network concept
- Combine all available disks into a single virtual one
- Server independent existence of storage

Challenges in Storage Networks

 Heterogeneity
- hard disks typically differ in capacity and speed

 Popularity
- some data is popular and other not (e.g. movies,

music :-)
- their popularity rank varies over time

 Consistency
- system changes by adding or re-placing/moving
- preserving a fair share rate
- only necessary data replacements must be done

 Availability
- hard disks may fail, but data should not!

 Performance

11

The Heterogeneous Case
 Given

– a dynamic set of n nodes V = {v1, ... , vn}

– dynamic weights w : V → R+

– dynamic set of data elements X = {x1,...,xm}

 Find a mapping fw,V : X → V

 With the following properties
– The mapping is simple

• fw,V(x) be computed using V, x, w

• without the knowledge of X\{x}

– Fairness: for all u,v ∈ V:

• | fw,V
-1(u)|/w(u) ≈ | fw,V

-1(v)|/w(v)

– Consistency:

• minimal replacements to preserve
the data distribution

 where fw,V
-1(v) := { x ∈ X : f w,V(x) = v }

s1

s2

sn

sn-1

D

S
fw,s : D → S

12

The Naive Approach to DHT

Huge Share
 ~ 1000

Small
~ 0.1

Normal
~ 1

13

SIEVE: Interval based consistent
hashing

‣ Interval based approach
• Brinkmann, Salzwedel, and

Scheideler, SPAA 2000

‣ Map nodes to random intervals (via
hash function)

• interval length proportional to weight

‣ Map data items to random positions
(via hash function)

‣ Two problems
• What to do if intervals overlap?

• What to do if the unions of intervals
do not overlap the hash space M?

overlapempty

Huge Share
 ~ 1000

Small
~ 0.1

Normal
~ 1

14

SIEVE: Interval based consistent
hashing

1.What to do if intervals overlap?

– Uniformly choose random
candidate from the overlapping
intervals

2.What to do if the unions of intervals
do not overlap the hash space M?

– Increase all intervals by a constant
factor (stretch factor)

– Use O(log n) copies of all nodes

• resulting in O(n log n) intervals

 If more nodes appear

– then decrease all intervals by a
constant factor

SIEVE is not providing monotony

– Re-stretching leads to unnecessary
re-assignments

overlapempty

Huge Share
 ~ 1000

Small
~ 0.1

Normal
~ 1

15

The Linear Method

‣ Alternative presentation of (uniform)
Consistent Hashing

‣ After “randomly” placing nodes into M

• Add cones pointing to the node’s
location in M

‣ Compute for each data element x the
height of the cones

• Choose the cone with smallest height

‣ For the Linear Method
• Choose for each node i a cone

stretched by the factor wi

‣ Compute for each data element x the
height of the cones

• Choose the cone with smallest height

16

The Linear Method: Basics

 For easier description we use half-cones,
- the weighted distance is

• where x mod 1 := x - ⎣x⎦

 Analyzing heights is easier as analyzing interval lengths!
 Define:

- Consider a data element and n randomly hashed nodes

r
s

Dw(r,s)

H(z)

17

The Linear Method: Basics

r
s
Dw(r,s)

H(z)

Proof:
– The probability of to receive

height of at least h with respect
to a node i is

1 - h wi

– Since

h

18

An Upper Bound for Fairness

Proof:
From Lemma 1 follows

We define

and the following term describes an upper bound

where

19

An Upper Bound for Fairness (II)

Proof (continued):

20

The Limits of the Linear Method

Why does the biggest node win?
The small ones are competing against each other
The big one has no competitor in his league

The solution:
Use copies of each node	

21

The Linear Method with Copies

A constant number of copies suffice to “repair” the linear function
This theorem works only for one data item

– If many data items are inserted, then the original bias towards some nodes is
reproduced:

• “Lucky” nodes receive more data items
Solution

– Independently repeat the game at least O(log n) times

22

Partitioning and the Linear Method

Partitions:
– Partition the hash range into sub-

intervals
– Map each data element into the

whole interval
– Map for each node 2/ε+1 copies into

each sub-interval

23

The Logarithmic Method

 Replacing the linear function by
 improves the accuracy

24

The Logarithmic Method

 Replacing the linear function with -ln((1-di(x)) mod 1)/wi
improves the accuracy of the probability distribution

25

Further Features

 Efficient data structure for the linear and logarithmic method
- can be implemented within O(n) space
- Assigning elements can be done in O(log n) expected time
- Inserting/deleting new nodes can be done in amortized time O(1)

 Predicting Migration
- The height of a data element correlates with the probability that this data

element is the next to migrate to a different server
 Fading in and out

- Since the consistency works also for the weights:
- Nodes can be inserted by slowly increasing the weight
- No additional overhead
- Node weight represents the transient download state
- Vice versa for leaving nodes

26

Double Hashing

 If every node uses a different hashing, then the
logarithmic method can be chose without any copies

 Advantage:
- Perfect probability distribution

 Disadvantage:
- Intrinsic linear time w.r.t. the number of servers

 This is the method of choice for Storage Area
Networks

27

DAAD Summerschool Curitiba 2011
Aspects of Large Scale High Speed Computing Building Blocks of a Cloud

Storage Networks
4: Distributed Heterogeneous Hash Tables

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

