
DAAD Summerschool Curitiba 2011
Aspects of Large Scale High Speed Computing Building Blocks of a Cloud

Storage Networks
5: Peer-to-Peer Networks

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg



Outline

 Principles and history
 Algorithms and Methods

- DHTs
- Chord
- Pastry 

2



Global Internet Traffic Shares
1993-2004

Source: CacheLogic 2005

3

E-Mail

FTP

Peer-to-Peer

Web

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

CacheLogic Research Trends of Internet Protocols 1993-2004

S
h

a
re

 o
f 

In
te

rn
e

t 
tr

a
ffi

c

0

10

20

30

40

50

60

70



Global Internet Traffic 2007

‣ Ellacoya report (June 2007)
• worldwide HTTP traffic 

volume overtakes P2P after 
four years continues record 

‣ Main reason: Youtube.com

4

rest
2%

VoIP
1%

Newsgroups
9%

non-HTTP video streaming
3%

gaming
2%

P2P
37%

HTTP
46%



Milestones P2P Systems

 Napster (1st version: 1999-2000)
 Gnutella (2000), Gnutella-2 (2002)
 Edonkey (2000)

- later: Overnet usese Kademlia
 FreeNet (2000)

- Anonymized download

 JXTA (2001)
- Open source P2P network platform

 FastTrack (2001)
- known from KaZaa, Morpheus, Grokster

 Bittorrent (2001) 
- only download, no search

 Skype (2003)
- VoIP (voice over IP), Chat, Video

5



Milestones Theory

 Distributed Hash-Tables (DHT) (1997)
- introduced for load balancing between web-servers

 CAN (2001)
- efficient distributed DHT data structure for P2P networks

 Chord (2001)
- efficient distributed P2P network with logarithmic search time

 Pastry/Tapestry (2001)
- efficient distributed P2P network using Plaxton routing

 Kademlia (2002)
- P2P-Lookup based on XOr-Metrik

 Many more exciting approaches
- Viceroy, Distance-Halving, Koorde, Skip-Net, P-Grid, ...

 Recent developments
- Network Coding for P2P
- Game theory in P2P
- Anonymity, Security

6



What is a P2P Network?

 What is P2P NOT?
- a peer-to-peer network is not a client-server network

 Etymology: peer
- from latin par = equal
- one that is of equal standing with another
- P2P, Peer-to-Peer: a relationship between equal partners

 Definition
- a Peer-to-Peer Network is a communication network between 

computers in the Internet
• without central control
• and without reliable partners

 Observation
- the Internet can be seen as a large P2P network

7



Napster

 Shawn (Napster) Fanning
- published 1999 his beta version of the now legendary 

Napster P2P network
- File-sharing-System
- Used as mp3 distribution system
- In autumn 1999 Napster has been called download of the 

year

 Copyright infringement lawsuit of the music industry 
in June 2000

 End of 2000: cooperation deal
- between Fanning and Bertelsmann Ecommerce

 Since then Napster is a commercial file-sharing 
platform

8



Client

Server

Query

Reply

Client

Client

Client

Client

Client

Client

Client

direct

download

How Did Napster Work?

‣ Client-Server
‣ Server stores

•  Index with meta-data

- file name, date, etc

• table of connections of participating 
clients

• table of all files of participants

‣ Query
• client queries file name

• server looks up corresponding clients

• server replies the owner of the file

• querying client downloads the file 
from the file owning client

9



History of Gnutella

 Gnutella
- was released in March 2000 by Justin Frankel and Tom 

Pepper from Nullsoft
- Since 1999 Nullsoft is owned by AOL

 File-Sharing system
- Same goal as Napster
- But without any central structures

10



Ping

Ping

Ping

Ping

Ping

Ping

Ping

Pong

Pong

Pong

Pong

Pong

Pong

Pong

Gnutella — Connecting

‣ Neighbor lists
• Gnutella connects directly with other 

clients

• the client software includes a list of 
usually online clients

• the clients checks these clients until 
an active node has been found

• an active client publishes its neighbor 
list

• the query (ping) is forwarded to other 
nodes

• the answer (pong) is sent back

• neighbor lists are extended and stored

• the number of the forwarding is limited 
(typically: five)

11



Gnutella — Graph Structure

‣ Graph structure
• constructed by random process

• underlies power law

• without control

Gnutella snapshot in 2000

12
out-degree

o
c
c
u
re
n
c
e
s

10
0

10
1

10
2

10
3

10
!1

10
0

10
1

10
2

10
3

Gnutella 12/28/2000       
exp(6.04022)*x**(!1.42696)

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Random graph

(a) Gnutella 12/28/00(|r| = 0.94) (b) Random Graph

Figure 2.2: Log-log plots of degree versus rank (power-law 1)

node degree power-law exponent of −1.4 for the Gnutella topology. We must remark

that a group called Clip2 independently discovered this particular power-law for the

Gnutella network topology [13]. However they reported the power-law exponent of

−2.3, in disagreement with our result. We believe the reason for this discrepancy is

due to the fact that our results are based on the network crawls performed during

December of 2000, while the other result dates back to the summer of the same year.

Since that time, the Gnutella network has undergone significant changes in terms

of its structure and size, as described in [13]. While the values of the node degree

exponent O for all of the Gnutella topology instances obtained during the month of

December are consistently around −1.4, we have observed O values of −1.6 for the

data obtained in November. This may be taken as indication of a highly-dynamic,

evolving state of the Gnutella network. We are nevertheless currently attempting to

establish contact with people from Clip2 in order to further examine reasons for this

discrepancy. Interestingly, power-law degree distributions have recently been reported

for another file-sharing P2P applications, Freenet [22].

22



Why Gnutella Does Not Really Scale

‣ Gnutella
• graph structure is random

• degree of nodes is small

• small diameter

• strong connectivity

‣ Lookup is expensive

• for finding an item the whole network 
must be searched

‣ Gnutella‘s lookup does not scale

• reason: no structure within the index 
storage

13



Chord

‣ Ion Stoica, Robert Morris, David 
Karger, M. Frans Kaashoek and Hari 
Balakrishnan (2001)

‣ Distributed Hash Table

• range {0,..,2m-1} 

• for sufficient large m

‣ Network

• ring-wise connections

• shortcuts with exponential increasing 
distance

14



Chord as DHT

‣ n number of peers
‣ V set of peers

‣ k number of data stored
‣ K set of stored data

‣ m: hash value length
• m ≥ 2 log max{K,N} 

‣ Two hash functions mapping to 
{0,..,2m-1}

• rV(b): maps peer to {0,..,2m-1}

• rK(i): maps index according to key i to 
{0,..,2m-1} 

‣ Index i maps to peer b = fV(i)
• fV(i) := arg minb∈V{(rV(b)-rK(i)) mod 2m}

15

p1

p

3

p
2

x
1

0110
1010
1110

0110
1010
1110

0110
1010
1110

x
3

x
2

1

0

4

6

8

12

10

14
2

3

5

9 7

11

13

15



Pointer Structure of  Chord

‣ For each peer
• successor link on the ring

• predecessor link on the ring

• for all i ∈ {0,..,m-1}

- Finger[i] := the peer following the 
value rV(b+2i)

‣ For small i the finger entries are the 
same

• store only different entries

‣ Lemma
• The number of different finger entries 

is O(log n) with high probability, i.e. 1-
n-c.

16

p
1

p
3

4

0

8

12

16

24

20

28

p
5

p
6

p
2

p
4

p
7

p
8



Data Structure of Chord

‣ For each peer
• successor link on the ring

• predecessor link on the ring

• for all i ∈ {0,..,m-1}

- Finger[i] := the peer following the 
value rV(b+2i)

‣ For small i the finger entries are the 
same

• store only different entries

‣ Chord
• needs O(log n) hops for lookup

• needs O(log2 n) messages for 
inserting and erasing of peers

17



Lookup in Chord

‣ Theorem 
• The Lookup in Chord needs O(log n) 

steps w.h.p.

18

p
1

p
3

4

0

8

12

16

24

20

28

p
5

p
6

p
2

p
4

p
7

p
8



How Many Fingers?

‣ Lemma
• The out-degree in Chord is O(log n) 

w.h.p.

• The in-degree in Chord is O(log2n) w.h.p.

‣ Theorem 

• For integrating a new peer into Chord 
only O(log2 n) messages are 

necessary.

19

0

2m-1

p
kp

j

Finger[m-1]

Finger[m-2]

Finger[m-log n]



0

2m-1

pkpj

Finger[m-1]

Finger[m-2]

Finger[m-log n]

Adding a Peer

‣ First find the target area in O(log n) 
steps

‣ The outgoing pointers are adopted from 
the predecessor and successor

• the pointers of at most O(log n) 
neighbored peers must be adapted

‣ The in-degree of the new peer is O
(log2n) w.h.p.

• Lookup time for each of them

• There are O(log n) groups of neighb 
ored peers

• Hence, only O(log n) lookup steps with 
at most costs O(log n) must be used

• Each update of has constant cost

20



Pastry

 Peter Druschel 
- Rice University, Houston, Texas 
- now head of Max-Planck-Institute for Computer Science, Saarbrücken/

Kaiserslautern

 Antony Rowstron
- Microsoft Research, Cambridge, GB

 Developed in Cambridge (Microsoft Research)
 Pastry

- Scalable, decentralized object location and routing for large scale peer-to-
peer-network 

 PAST
- A large-scale, persistent peer-to-peer storage utility

 Two names one P2P network
- PAST is an application for Pastry enabling the full P2P data storage 

functionality
- First, we concentrate on Pastry

21



Pastry Overview

 Each peer has a 128-bit ID: nodeID
- unique and uniformly distributed
- e.g. use cryptographic function applied to IP-address

 Routing
- Keys are matched to {0,1}128

- According to a metric messages are distributed to the neighbor next to the target
 Routing table has 

O(2b(log n)/b) + l  entries

- n: number of peers

- l: configuration parameter

- b: word length
• typical: b= 4 (base 16), 
l = 16

• message delivery is guaranteed as long as less than l/2 neighbored peers fail

 Inserting a peer and finding a key needs O((log n)/b) messages

22



Routing Table

‣ NodeId presented in base 2b

• e.g. NodeID: 65A0BA13
‣ For each prefix p and letter x ∈ {0,..,2b-1}  add an 

peer of form px* to the routing table of NodeID, 
e.g.

• b=4, 2b=16
• 15 entries for 0*,1*, .. F*
• 15 entries for 60*, 61*,... 6F*
• ...
• if no peer of the form exists, then the entry 

remains empty
‣ Choose next neighbor according to a distance 

metric
• metric results from the RTT (round trip time)

‣ In addition choose l neighors

• l/2 with next higher ID

• l/2 with next lower ID

23



Routing Table

‣ Example b=2
‣ Routing Table

• For each prefix p and letter x ∈ {0,..,2b-1}  
add an peer of form px* to the routing 
table of NodeID

‣ In addition choose l neighors 

• l/2 with next higher ID

• l/2 with next lower ID

‣ Observation
• The leaf-set alone can be used to find a 

target

‣ Theorem
• With high probability there are at most O

(2b (log n)/b) entries in each routing table

24



Routing Table

 Theorem
- With high probability there are at most O(2b 

(log n)/b) entries in each routing table

 Proof
- The probability that a peer gets the same m-

digit prefix is

- The probability that a m-digit prefix is unused 
is

- For m=c (log n)/b we get

- With (extremely) high probability there is no 
peer with the same prefix of length (1+ε)(log 
n)/b

- Hence we have (1+ε)(log n)/b rows with 2b-1 
entries each

25



A Peer Enters

‣ New node x sends message to the node z 
with the longest common prefix p

‣ x receives
• routing table of z

• leaf set of z

‣ z updates leaf-set

‣ x informs  l-leaf set

‣ x informs peers in routing table

• with same prefix p (if l/2 < 2b)

‣ Numbor of messages for adding a peer

• l messages to the leaf-set

• expected (2b - l/2) messages to nodes with 

common prefix 

• one message to z with answer

26



Lookup

‣ Compute the target ID using the hash function

‣ If the address is within the l-leaf set

• the message is sent directly

• or it discovers that the target is missing

‣ Else use the address in the routing table to 
forward the mesage

‣ If this fails take best fit from all addresses

27



Routing — Discussion

 If the Routing-Table is correct 
- routing needs O((log n)/b) messages

 As long as the leaf-set is correct
- routing needs O(n/l) messages
- unrealistic worst case since even damaged routing tables 

allow dramatic speedup
 Routing does not use the real distances

- M is used only if errors in the routing table occur
- using locality improvements are possible

 Thus, Pastry uses heuristics for improving the lookup time
- these are applied to the last, most expensive, hops

28



Localization of the k Nearest Peers

 Leaf-set peers are not near, e.g.
- New Zealand, California, India, ...

 TCP protocol measures latency 
- latencies (RTT) can define a metric
- this forms the foundation for finding the nearest peers

 All methods of Pastry are based on heuristics
- i.e. no rigorous (mathematical) proof of efficiency

 Assumption: metric is Euclidean

29



Experimental Results — Scalability

‣ Parameter b=4, l=16, M=32
‣ In this experiment the hop distance 

grows logarithmically with the number 
of nodes

‣ The analysis predicts  O(log n)
‣ Fits well

30



Experimental Results

31

‣ Parameter b=4, l=16, M=32, 
n = 100,000

‣ Result

• deviation from the expected hop 
distance is extremely small

‣ Analysis predicts difference with 
extremely small probability

• fits well



Experimental Results — Latency

‣ Parameter b=4, l=16, M=3
‣ Compared to the shortest path 

astonishingly small

• seems to be constant

32



DAAD Summerschool Curitiba 2011
Aspects of Large Scale High Speed Computing Building Blocks of a Cloud

Storage Networks
5: Peer-to-Peer Networks

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg


