A

CoNe
Freiburg

DAAD Summerschool Curitiba 2011

Aspects of Large Scale High Speed Computing Building Blocks of a Cloud
Storage Networks
6: PAST: Peer-to-Peer Network Storage

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

A PAST

CoNe
Freiburg

PAST: A large-scale, persistent peer-to-peer storage utility

- by Peter Druschel (Rice University, Houston — now Max-Planck-
Institut, Saarbrucken/Kaiserlautern)

- and Antony Rowstron (Microsoft Research)
Literature

- A. Rowstron and P. Druschel, "Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility", 18th ACM
SOSP'01, 2001.

all pictures from this paper

- P. Druschel and A. Rowstron, "PAST: A large-scale, persistent peer-to-
peer storage utility", HotOS VIII, May 2001.

,A\ Goals of PAST

CoNe
Freiburg

Peer-to-Peer based Internet Storage
- on top of Pastry

Goals

- File based storage

- High availability of data

- Persistent storage

- Scalability

- Efficient usage of resources

,A\ Motivation

Ff:irljteurg
Multiple, diverse nodes in the Internet can be used
- safety by different locations
No complicated backup
- No additional backup devices
- No mirroring
- No RAID or SAN systems with special hardware
Joint use of storage
- for sharing files
- for publishing documents

Overcome local storage and data safety limitations

A\

CoNe
Freiburg

Interface of PAST

Create:

fileId = Insert(name, owner-

credentials, k, file)

- stores a file at a user-specified
number k of divers nodes
within the PAST network

- produces a 160 bit ID which
identifies the file (via SHA-1)

Lookup:

file = Lookup(fileId)

- reliably retrieves a copy of the
file identified fileld

Reclaim:

Reclaim(fileId, owner-

credentials)

- reclaims the storage occupied
by the k copies of the file
identified by fileld

Other operations do not
exist:
No erase

to avoid complex agreement
protocols

No write or rename
to avoid write conflicts
No group right management

to avoid user, group
managements

No list files, file information,
etc.

Such operations must be
provided by additional layer

A, Relevant Parts of Pastry

CoNe
Freiburg

Leafset:
- Neighbors on the ring
Routing Table

- Nodes for each prefix + 1
other letter

Neighborhood set

- set of nodes which have
small TTL

Nodeld 10233102

Leaf set [SMALLER || LARGER |

| 10233033 | 10233021 | 10233120 | 10233122 |
| 10233001 | 10233000 | 10233230 | 10233232 |

Routing table

[-0-2212102 || 1 | -2-2301203 || -3-1203203 |
0 1-1-301233][1-2-230203 | 1-3-021022 |
[10-0-31203 | 10-1-32102 |EENN2RNN| 10-3-23302 |
[102-0-0230 | 102-1-1302 || 102-2-2302 g
| 1023-0-322 | 1023-1-000 || 1023-2-121 _
[10233-0-01 |EI| 10233-2-32 |
—! [102331-2-0 ||

| | _:

Neighborhood set
| 13021022 | 10200230 | 11301233 | 31301233 |
| 02212102 | 22301203 || 31203203 | 33213321 |

,A\ Interfaces of Pastry

CoNe
Freiburg

route(M, X):

- route message M to node with nodeld numerically closest
to X

deliver(M):

- deliver message M to application
forwarding(M, X):

- message M is being forwarded towards key X

newlLeaf(L):
- report change in leaf set L to application

A, Insert Request Operation

CoNe
Freiburg

Compute fileld by hashing
- file name
- public key of client

- some random numbers, called
salt

Storage (k x filesize)
- is debited against client's quota
File certificate

- is produced and signed with
owner's private key

- contains fileID, SHA-1 hash of
file's content, replciation factor k,
the random salt, creation date,
etc.

File and certificate are routed via
Pastry

- to node responsible for filelD

When it arrives in one node of the k
nodes close to the fileld

- the node checks the validityof the
file

- it is duplicated to all other k-1
nodes numerically close to fileld

When all k nodes have accepted a
copy

- Each nodes sends store receipt
is send to the owner

If something goes wrong an error
message is sent back

- and nothing stored

A, Lookup

CoNe
Freiburg

Client sends message with requested fileld into
the Pastry network

The first node storing the file answers
- no further routing
The node sends back the file

Locality property of Pastry helps to send a close-
by copy of a file

,A\ Reclaim

CoNe
Freiburg

Client's nodes sends reclaim certificate

- allowing the storing nodes to check that the claim is
authentificated

Each node sends a reclaim receipt

The client sends this recept to the retrieve the
storage from the quota management

A Security

CoNe
Freiburg

Smartcard

- for PAST users which want to store files

- generates and verifies all certificates

- maintain the storage quotas

- ensure the integrity of nodelD and fileID assignment
Users/nodes without smartcard

- can read and serve as storage servers

Randomized routing
- prevents intersection of messages

Malicious nodes only have local influence

A, Storage Management

CoNe
Freiburg

Goals

- Utilization of all storage
- Storage balancing

- Providing K file replicas

Methods

- Replica diversion
exception to storing replicas nodes in the leafset
- File diversion

if the local nodes are full all replicas are stored at different
locations

A, Causes of Storage Load Imbalance

CoNe
Freiburg

Statistical variation
- birthday paradoxon (on a weaker scale)

High variance of the size distribution
- Typical heavy-tail distribution, e.g. Pareto distribution

Different storage capacity of PAST nodes

A Per-Node Storage

CoNe
Freiburg
Assumption:
- Storage of nodes differ by at most a factor of 100

Large scale storage
- must be inserted as multiple PAST nodes

Storage control:

- if a node storage is too large it is asked to split and rejoin
- if a node storage is too small it is rejected

é%u‘e Replica Diversion

Freiburg

» The first node close to the fileld
checks whether it can store the file

e if yes, it does and sends the store
receipt

» If a node A cannot store the file, it tries
replica diversion

e A chooses a node B in its leaf set
which is not among the k closest asks
B to store the copy

e |f B accepts, A stores a pointer to B
and sends a store receipt

» When A or B fails then the replica is
inaccessible

e failure probability is doubled

15

0.18

g
—
o

0.1 -

0 20 40 60 80 100
Utilization (%)

Figure 5: Cumulative ratio of replica diversions ver-
sus storage utilization, when ¢,,; = 0.1 and t4, = 0.05.

A Policies for Replica Diversion

CoNe
Freiburg

Acceptance of replicas at a node
- If (size of a file)/(remaining free space) > t then reject the file

for different t's for close nodes (tpri) and far nodes (tqiv), where tpr
> taiv

- discriminates large files and far storage
Selecting a node to store a diverted replica
- in the leaf set and
- not in the k nodes closest to the fileld
- do not hold a diverted replica of the same file
Deciding when to divert a file to different part of the Pastry ring
- If one of the k nodes does not find a proxy node
- then it sends a reject message
- and all nodes for the replicas discard the file

A, File Diversion e

CoNe

Freiburg 15728640
. © 10485760 -
If kK nodes close to the chosen fileld o Failed inserton
i — Failure ratio

- cannot store the file 5242880 |

- nor divert the replicas locally in the leafset N ‘ —
then an error message is sent to the client T e

The client generates a new fileld USing different sal Figure 7: File insertion failures versus storage uti-

lization for the filesystem workload, when t,,; = 0.1,

- and repeats the insert operation up to 3 times ~ taw = 0.05.

- then the operation is aborted and a failure is oot
reported to the application o055 | |3 Redrects

3 1 Redirect
— Insertion failure

0.025 I

0.03

Possibly the application retries with small
fragments of the file

0.02

Cumulative ratio

0.015 A

0.01 +

0.005

0 T e — -
Utilization (%)

Figure 4: Ratio of file diversions and cumulative
insertion failures versus storage utilization, t,~; = 0.1
and td-z'v = 0.05.

A, Maintaining Replicas
CoNe
Freiburg

Pastry protocols checks leaf set periodically
Node failure has been recognized

if a node is unresponsive for some certain time
- Pastry triggers adjustment of the leaf set

PAST redistributes replicas

- if the new neighbor is too full, then other nodes in the nodes will be
uses via replica diversion

When a new node arrives
- files are not moved, but pointers adjusted (replica diversion)
- because of ratio of storage to bandwidth

A, File Encoding

CoNe
Freiburg

k replicas is not the best redundancy strategy

Using a Reed-Solomon encoding

- with m additional check sum blocks to n original data blocks

- reduces the storage overhead to (m+n)/n times the file size
if all m+n shares are distributed over different nodes

- possibly speeds upt the access spee

PAST

- does NOT use any such encoding techniques

,A\ Caching

CoNe
Freiburg

Goal:

- Minimize fetch distance

- Maximize query throughput

- Balance the query load

Replicas provide these features

- Highly popular files may demand many more replicas
this is provided by cache management

PAST nodes use ,unused” portion to cache files

- cached copies can be erased at any time
e.g. for storing primary of redirected replicas

When a file is routed through a node during lookup or insert
it is inserted into the local cache

Cache replacement policy: GreedyDual-Size
- considers aging, file size and costs of a file

A\

CoNe
Freiburg

Experimental Results Caching

1 2.5
None: # Hops
0.9 {¢ “
0.8 - YNV "’E*SQ. ~, 0.5 Hit R . 12 §
NP -S : Hit Rate =
ﬁ 0.7 - LRU: Hit Rate AR A E,
5
T 061 15 8
o S
:“; 0.5 - g
= 0.4 G 1
© LRU: # Hops 2
L0 N
S 03 V [—GD-S:HitRate | %\ | &
GD-S: # Hops —~LRU : Hit Rate \ S
0.2 | ——GD-S: # Hops H 05 =
0.1 . ——LRU: # Hops
——None: # Hops
o T T - T T 0
0 20 40 60 80 100

Utilization (%)

Figure 8: Global cache hit ratio and average
number of message hops versus utilization using

Least-Recently-Used (LRU), GreedyDual-Size (GD-
S), and no caching, with ¢,,.; = 0.1 and ¢4, = 0.05.

A Summa
CoNe ry
Freiburg

PAST provides a distributed storage system

- which allows full storage usage and locality features

Storage management
- based ond Smartcard system
provides a hardware restriction

- utilization moderately increases failure rates and time
behavior

A

CoNe
Freiburg

DAAD Summerschool Curitiba 2011

Aspects of Large Scale High Speed Computing Building Blocks of a Cloud
Storage Networks

6: Optimizing Heterogeneous Data Distribution

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

,A\ Literature

CoNe
Freiburg

André Brinkmann, Kay Salzwedel, Christian Scheideler, Compact,
Adaptive Placement Schemes for Non-Uniform Capacities, 14th

ACM Symposium on Parallelism in Algorithms and Architectures
2002 (SPAA 2002)

Christian Schindelhauer, Gunnar Schomaker, Weighted Distributed
Hash Tables, 17th ACM Symposium on Parallelism in Algorithms
and Architectures 2005 (SPAA 2005)

Christian Schindelhauer, Gunnar Schomaker, SAN Optimal Multi
Parameter Access Scheme, ICN 2006, International Conference on
Networking, Mauritius, April 23-26, 2006

A The Problem in Storage Networks

CoNe
Freiburg

Ads: Number of bytes of document d assigned to storage s
Distributed Algorithm:

- Use DHHT to split each document into |S| parts

- Store corresponding blocks on the server

Can be also achieved by a centralized algorithm

Straight forward generalization of fair balance

- Distribute data according to a (m x n) distribution matrix A where
Vs: > Adsls 13N Va0 Asi=ld)

DHHT
- assigns As.s(1x¢€) elementsofdeDtose S
- Information needed: File-IDs, Server-IDs, and matrix A

- If matrix Achanges to A" (1+ e)z Ads—A'as
d.,s
data reassignments are needed

,A\ How to Balance

CoNe
Freiburg

. | s
A fair balance like Acs=ldl —

to do I
Servers are different in capacity and bandwidth
Documents are different in size and popularity

IS not always the best

Goal: Optimize Time

Assumption

- All sizes can be modeled as real numbers

A, Which Time ?

CoNe
Freiburg

b(s) = bandwidth of server s

- b(s) = number of bytes per second

p(d) = popularity of document d

- p(d) = number of read/write accesses

Sequential time for a document d and an assignment A
SeqTimea(d) = E Ad

. <5 b(s)
Parallel time for a document d and an assignment A

ParTimea(d) := maxses Ad
b(s)

Observation
- Popular bytes cause more traffic than less popular once
- Costs are defined by the traffic per byte

A, Sequential Time

CoNe
Freiburg

Sequential time
- load all parts of a document from all servers sequentially

SeqTime 4 (d) :=

Worst case sequential time

WSeqTime := maxq {SeqTimea(d)}

Average sequential time

AvSeqTime :=) p(d) SeqTimea(d)
where deD
- S: set of servers with bandwidth b(s) and capacity |s| for each server s

- D: set of documents with size |d| and popularity p(d) for each document

,A\ Parallel Time

CoNe
Freiburg

Parallel time
- load all parts of a document from all servers simultaneously

. Ad,s
ParTime 4 (d) := I?Eagc{ b(s) }

Worst case parallel time

WParTime := maxq {ParTimea(d)}

Average parallel time

AvParTime := » "p(d) ParTimea(d)
where deD
- S: set of servers with bandwidth b(s) and capacity |s| for each server s
- D: set of documents with size |d| and popularity p(d) for each document

A, Sequential Bandwidth

CoNe
Freiburg

Sequential time
- load all parts of a document from all servers sequentlally

SeqTime 4 (d Z b(s d °
Sequential bandwidth sES
- download speed of a document d
. d
SeqBandwidth 4 (d) :=
eqBandwidth 4 (d) SeqTime 4 (d)

Worst case sequential bandwidth
WBandwidth := mind {SeqgBandwidthA(d)}

Average sequential bandwidth
AvBandwidth := " p(d) SeqBandwidth(d)

where deD
- S: set of servers with bandwidth b(s) and capacity |s| for each server s
- D: set of documents with size |d| and popularity p(d) for each document

A\ Parallel Bandwidth

CoNe
Freiburg

Parallel time
- load all parts of a document from all servers in parallel

Ad,s
ParTime 4(d) := max{ 4 }

Parallel bandwidth s€S | b(s)
- download speed of a datum d
d
ParBandwidth 4 (d) := | |
ParTime 4 (d)

Worst case parallel bandwidth
WParBandwidth := ming {ParBandwidtha(d)}

Average parallel bandwidth time

AvParBandwidth:=) " p(d) ParBandwidtha(d)

where d€D

- S: set of servers with bandwidth b(s) and capacity |s| for each server s

- D: set of documents with size |d| and popularity p(d) for each document

A\ Most Reasonable Time Measures

CoNe
Freiburg

Minimize the expected sequential time based on
popularity of the document:

AvSeqTime(p, A) Z Z p(d

deD seS

Minimize the expected parallel time based on the
popularity of the document

AvParTime(p, A) = max Ad,s p(d)

i~ s€S b(s)

A\

Solution by Linear Program

CoNe
Freiburg
Vs: Y Aasslsl Vd:y Ass=ld|
Measure Linear programm|Add. variables Additional restraint Optimize
. . A
AvSeqTime yes — — min) s> 4cp P(d) b_f'.!g’}_
WSegTime yes m VdeD:> ‘:(ds:; <m |minm
AvParTime yes (ma)aep |Vs€S,YVdeD: :‘E‘:; <mg|min), p p(d)ma
WParTime yes m VseS,VvdeD: A“‘S;‘ < m |min M
AvSeqBandwidth no — — AR S %
ZsES Te:}
WSegBandwidth yes m Ve D), .o |;§{f:} < m |min m
AvParBandwidth no (ma)acp |(VdED:), . bAtilf:il < Mg |max ZdE,D I:,—El
WParBandwidth yes m VseS,VdeD: Ad(;} < m|min m

/ How to Describe AvParTime as a LP

S OINE

Ereiburg

\/Gm,'q_lD /9) .
’R°§‘(’wa\‘qﬂ‘{ls ;

AvParTime

=D el man At

AeD S€S bG)

- a ? (A) .t
AeD Additional
Restraints /W'o(‘> /\
55,

UNI
FREIBURG

A\

CoNe
Freiburg

Example

» Storage device
¢ 51: 500 GB, 100 MB/s
e 51 100 GB, 50 MB/s
e s3: 1 GB 1000 MB/s

» Documents
e di: 100 GB, popularity 1/111
e do2: 5 GB, popularity 100/111
e ds: 100 GB, popularity 10/111

Ad,s S1 S2 S3 z
d 100 0 0 100
d2 2 2 1 S
ds 2 98 0 100
2 |=500 (<100 =1

SeqTime Sz’qigf; 4 |ParTime Ps\:g?: d
di 1000 100 1000 100
ds 61 82 40 125
ds 1980 51 1960 51
Av 1864 121 1827 160
Worst 1980 51 1960 51
case

35

A Excursion: Linear Programming

CoNe
Freiburg

Linear Program (Linear Optimization)
Given: m x n matrix A
m-dimensional vector b
n-dimensional vector c
Find: n-dimensional vector x=(x1, ..., Xn)
such that
-x20,ie.forallj:x;=20
-Ax=b,i.e. SN Ay, = b,

mn
- z=c' x is minimized, i.e. z=)_c;z; is minimal
j=1

A, Linear Programming 2

CoNe
Freiburg

Linear Programming (LP2)

Given: m x n matrix A
m-dimensional vector b
n-dimensional vector ¢

Find: n-dimensional vector x=(x1, ..., Xn)

such that

-x20

- AX<b

- z=c' x is maximal

A Performance of Linear Programming

CoNe
Freiburg

Worst case time behavior of the Simplex algorithm
IS exponential

- A simplex can have an exponential number of edges

For randomized inputs, the running time of
Simplex is polynomial on the expectation

The Ellipsoid algorithm is a different method with
polynomial worst case behavior

- In practice it is usually outperformed by the Simplex
algorithm

é%:e ParTime = SeqTime with virtual servers

Freiburg

»Reduce optimal solution for LP of ParTime
to the optimal solution of LP of SeqTime

— Combining capacity of many disks in I A S
parallel : : : - .

»Define new sequential virtual servers
s,1 y mmmy S,m

—Sort s; such that |51 < |8j+1]
b(s;) ~ b(sj+1)

- Server s’; parallelizes servers Sj>--»S|g|

—Virtual servers s’; are then sorted such
that b(s’;)>b(s’;,1)

- Size of s’;:
5 Z
/ /
(s5) i1

39

£ Solve the LP of AvSeqTime

CoNe
Freiburg

Documents sorted

» Simple optimal greedy solution
according to p(d)

: Idsl

Popularity

» Repeat until all documents are
assinged:

dz
d3 d-‘. m m

¢ Assign most popular document on
fastest sequential (virtual) server

e Reduce the storage of the server by
the document size and remove the

document

Vi

40

é%?e Applications 1n Storage Networks

Freiburg

» Object storage with different
popularity zones

e ¢.9. movies with varying popularities
over time

* Fragmentation is done automatically

¢ Includes dynamics for adding and
removing documents

e The same for servers

» Use different bandwidth
e Fach disk has different bandwidths

e Exporting different zone classes as
sequential servers

41

A

CoNe
Freiburg

DAAD Summerschool Curitiba 2011

Aspects of Large Scale High Speed Computing Building Blocks of a Cloud
Storage Networks

6: Optimizing Heterogeneous Data Distribution

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

