
Analyzing Randomly Placed Multiple Antennas for
MIMO Wireless Communication

Thomas Janson
University of Freiburg, Germany

janson@informatik.uni-freiburg.de

Christian Schindelhauer
University of Freiburg, Germany

schindel@informatik.uni-freiburg.de

Abstract—We present an analytical approach for determining
the signal-to-noise-ratio (SNR) of m multiple antennas in the
line-of-sight case. The antennas are placed at random positions
within a disc of given diameter d. We characterize the angular
signal strength with three sectors: the main beam, the side beams
and an area of white Gaussian noise. The SNR and the sector
angles depend on d, m, and the wavelength λ.

It turns out that for randomized antenna positions the analysis
can be reduced to the analysis of a random geometric walk in
two dimensions. The angle of the main beam is approximately
λ/d with a SNR proportional to

√
m. For the side beams the

SNR is proportional to sinc(2αd/λ) where α denotes the angle
deviating from the target. The range of the side beams is limited
to an approximate angle of λ/d

√
m. Beyond this angle we observe

average white Gaussian noise.
Index Terms—MIMO, 2D random walk, signal-to-noise ratio,

channel capacity

I. INTRODUCTION

Among the many merits of multiple-input multiple-output
(MIMO) technology for wireless networks there are higher
data rates, larger communication range, and reduced energy
consumption. These are achieved by the joint use of antennas
for senders and receivers. The senders adapt at the antennas
the signal carrier amplitudes and phase shifts resulting in a
spatially depending attenuation of the signal. The receivers
can produce the symmetric behavior by demodulation. This
can be exploited to increase the signal strength for a desired
sender-receiver connection while reducing the interfering noise
to other network nodes.

Signal processing in such systems with its practical usage
for angular perception of sensor arrays for sonar and wireless
networks have been studied over decades [1]. One field of
interest is the antenna placement [2], [3], [4], [5] for beam-
forming or for an appropriate selection of an antennas subset
for the best beamforming [6], [7], [8], [9], [10], [11], [12],
[13], [14].

Little is known about how the antenna positions at the node
influence the quality of a MIMO transmission. It is known that
the textbook example [15] of a linear equidistant antenna array
can be analyzed, but performs badly when the communication
partner is located perpendicular to the linear array. Then the
sending or receiving beam has a wide angle. In practice this
is only a minor problem since the antenna geometry is neither
used to predict nor solely determines the channel matrix

H1. MIMO benefits from multipath propagation and for the
MIMO transmission the channel matrix is measured. Little
research has been made where the relation between the channel
matrix H and the antenna geometry has been considered.
For example, Foschini et al. assume in [16] the transmitted
signal components to be idealized statistically independent
gaussians caused by a large number of scatterers to deduce
a channel capacity linear to the number of multiple antennas.
This obfuscates the geometry of the original multiple antennas.

In this paper we consider line-of-sight propagation and
discuss the geometric properties of beamforming by reference
to the geometry of multiple antennas. We choose a random
uniform placement of antennas in a disc of diameter d to over-
come the shortcomings of the linear equidistant placement.
This matches a practical scenario where antennas are non
uniformly attached to a device or even are flexible installed.
Furthermore, we do not consider the channel matrix H but
directly compute the signal strengths in a given direction. This
way, we derive bounds which generally describe the signal
beam angle with respect to the antenna geometry parameter d,
the wavelength λ, the number of sender/receiver antennas ms,
resp. mr, and the distance between sender and receiver. We
classify the angles into three classes, the main beam which is
useful for transmission or reception, the side beams which may
cause interferences with other nodes, and the random noise,
which adds only little noise to the system, see Figure 1.

The capacity C of a communication channel between a
sender-receiver pair is determined by both the SNR at the
receiver and the properties of the channel respectively channel
matrix H, e.g. C = log2 (1 + SNR · hh∗) Bit/s/Hz [17]
for a SIMO system with single input and multiple output
with channel vector h for multiple receiver antennas and its
conjugate transpose h∗. With our model, the noise of the SNR
relation influenced by parallel transmissions can be described
more precisely. The beamforming gain specially dominates the
capacity improvement of multiple antennas when the angular
spread between communication partners is too small and the
channel matrix H has a low rank [18].

II. RELATED WORK

Krim and Viberg summarize in [1] the development in
signal processing and consider uniform linear and circular

1Each entry hij in the channel matrix H denotes the channel gain between
the i-th transmit antenna and j-th receive antenna.
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Fig. 1. Example for seven randomly placed antennas (black dots) in a disc
(white disc in the center) showing the signal strength h (α) around the disc
(bold blue line) depending on the angle. Sending direction is α = 0 (along
the x-axis) with the main beam in angle range [−κ, κ], side beams within
angle range [−γ, γ], and average white Gaussian noise in other directions.

array geometries. Indeed they focus on sensor arrays but the
geometric derivations can be applied to antenna arrays in
the same way. Tse and Viswanath describe in [15] multiple
antenna arrays limited to uniform linear arrays and derive the
channel capacity under the the Rayleigh fading model.

In [19] Pollock et al. extend the MIMO channel capacity
calculation with parameters of the antenna positioning and the
angular spread. In theory the capacity grows linearly with the
number of antennas for Rayleigh fading channels. But they
show for realistic scenarios that the capacity is significant
lower because of insufficient antenna spacing and angular
spread.

In [20] Foschini and Driesen investigate the impact of the
array geometry of multiple antennas on the channel matrix.
They consider line-of-sight propagation for linear arrays, ar-
rays with antennas spread along an arc and uniform circular
arrays. Additionally, they analyze linear arrays located on a
street with two reflecting building walls alongside the street.
They also compute the capacity for Ricean channels.

The authors of [5] categorize placing the transmit and
receive antennas of a MIMO system for highest capacity as
fundamental design issue. With Particle Swarm Optimization,
they search for the antenna placement with highest channel
capacity which they derive from the properties of the channel
matrix H. They include scattering objects as isotropic radiators
in their model which are uniformly distributed. Olgun et al.
present numerical results for the placement of antennas in two-
dimensional plane and three-dimensional space where each an-
tenna can be placed at 1002 respectively 1003 discrete points.
They compare the capacity of arrays created with Particle
Swarm Optimization (PSO) with the capacity of uniform linear
arrays (ULA) and uniform circular arrays (UCA). For up

to six antennas per array, PSO outperforms UCA and UCA
outperforms ULA. For more than six antennas per array, PSO
barley improves the capacity level of UCA and the authors
conclude that uniform circular arrays are a good design option.

III. PHYSICAL MODEL

First, we introduce mathematical notations used in this
paper. We use the Euler’s constant e, the constant π, the
imaginary number j =

√
−1, and the speed of light c ≈

3 · 108 m/s. Bold written variables with small letters e.g.
u define two-dimensional vectors representing the (x, y)-
coordinates in the plane. Respectively, bold written capital
letters are matrices, e.g. channel matrix H. The Euclidean
distance between two points u and v in the plane is stated

as ‖u,v‖ =
√

(ux − vx)
2

+ (uy − vy)
2. P [X = x] denotes

the probability that a random variable X has the value x,
E [X] is the expectation of X , Var [X] is the variance of X ,
and

√
Var [X] is the standard deviation of X respectively. We

use the Landau notation O (·) and Ω (·) to describe asymptotic
behavior.

The following model is presented in [15] and adapted to our
needs. The physical input-output-model of a MISO channel
(Multiple Input Single Output) with m transmit antennas and
a single receiver antenna with output signal y is

y =

m∑

i=1

hi · xi + w

where xi is the input signal of the i-th transmit antenna. We
assume that all transmit antennas emit the same input signal
x = xi with the same amplitude but different phase shifts (to
produce beamforming). The parameter w defines white noise
which is Gaussian distributed w ∼ N

(
0, σ2

)
with variance

σ2. The baseband channel gain hi for the i-th transmit antenna
is

hi =
ai
m
· e− j2πλ ·‖u[i],v‖.

The signal is attenuated with factor ai during the transmission.
This includes a radiation pattern of the antenna in space where
the signal fades with factor ‖u[i],v‖−1 for distance ‖u[i],v‖
between the transmit antenna located at u[i] and target position
v. Respectively, the power per area fades with ‖u[i],v‖−2 in
the far field, a.k.a. path loss2. We norm hi with 1/m where m
is the number of transmit antennas. The signal is demodulated
on a carrier frequency f and is propagated in space with speed
of light c ≈ 3 · 108 m/s resulting in a wavelength λ = c/f .
Common carrier frequencies of the 802.11 IEEE standards
for wireless communication are around 5 Ghz and 2.4 GHz
respectively carrier wavelengths 6 cm and 12.5 cm. Due to
different path lengths ‖u[i],v‖ between transmit antenna u[i]
and a target position v, the signals of the different transmit
antennas u[i] are time-displaced at v. We only consider the

2In practice, the path loss exponent depends highly on the environment e.g.
obstacles absorbing the energy. We also neglect the path loss induced by the
antenna geometry.
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phase shift for the carrier wavelength λ expressed by a com-
plex value ejκ with phase angle κ. The phase angle κ effects a
modulo computation of the time for propagation ‖u[i],v‖ /c
between a transmit antenna u[i] and position v modulo the
period 1/f = λ/c. The superpositioned time-displaced signals
of the antennas u[i] produce a spatial attenuation of the signal.
This effect is called beamforming where the signal is strong
in certain spatial beams and attenuated otherwise.

IV. RANDOM ANTENNA PLACEMENT

Let u denote a network node with m multiple antennas and
let u [i] denote the (x, y)-position in the plane of the i-th an-
tenna with i ∈ [1,m]. The antennas are placed independently
and uniformly at random on a disc in the plane with diameter
d and u denotes the centroid of the disc. Thus, the maximum
distance between two antennas placed at positions u [i] and
u [`] is

d ≥ max
i,`∈[1,m]

‖u [i] ,u [`]‖ .

We require that diameter d is at least Ω (λ · √m) for carrier
wavelength λ and the number of antennas m.

We assume that two communication nodes u and v are in
far distance compared to d, i.e. ‖u,v‖ � d. So, we estimate
the received signal strengths from all sender antennas u [i]
(i ∈ [1,m]) at position v as

y =
a

m

m∑

i=1

e−
j2π
λ ·‖u[i],v‖xi + w . (1)

For this input-output model, we optimize the signal strength
of a given sending antenna array in the next Section IV-A, e.g.
Eq. 1 is resolved to y = a ·x+w for the target position. Then,
we identify the angular ranges of the main and side beams
where such a strong signal can be received (Section IV-B). In
the remaining angle range, we estimate the attenuated signal
by average white Gaussian noise (Section IV-C).

The superpositioned output signal strength of the multiple
antennas of Equation 1 is calculated from the addition of
complex values which can be represented as two-dimensional
vectors. Assuming unit power at all antennas all vectors have
unit length and only the angles differ caused by the phase
shift. Figure 2 shows an example for the different cases
with maximum signal strength in the main beam where the
signals of all antennas arrive with the same phase angle.
In the side beams, which are spatially close to the main
beam (compare Figure 1), the phase angles are again highly
correlated. Otherwise for a radiation angle differing more from
the target direction (α ≥ γ, see Sec. IV-C) we observe random
phase angles resulting into a strong attenuated signal which we
denote as average white Gaussian noise (dark grey).

A. Set up beamforming for arbitrary placed antennas

To achieve maximum signal strength of multiple input
antennas at a given target y = a · x + w, one can adjust the
phases of the multiple antennas in such a way that they are
highly correlated at the target. For that, the signal is delayed at

� (z)

� (z)

main beam

side beam

side beam

average white

Gaussian noise

average white

Gaussian noise

Fig. 2. Example for calculating the signal strength h (α) with z =(
a
m
·
∑
i e
jβi
)

for different angles α. The signal of all antennas has the
same signal amplitude a

m
(same complex vector length) but different phase

angles βi.

the input antennas in such a way that the delay time plus the
transmission time from each antenna to the target is the same.
For an explanation consider the antenna array in Figure 3 with
two antennas positioned at u[1] and u[2] where u[1] has a
longer path to the target in direction φ than u[2].

Reflections can be seen as additional signal sources but with
an attenuated and time shifted signal. The running time from
an antenna via a reflecting obstacle to the target and the line-
of-sight time from the antenna to the target depend on each
other. Thus, we cannot adjust both signals in any way that both
arrive at the same time at the target. A reflected signal always
arrives delayed at the target in comparison to the line-of-sight
signal and produces additional noise. We will only consider
the line-of-sight case in the latter.

Now we will define how to set up the phase shift on
an antenna array with arbitrary antenna positions to gain
maximum signal strength in a certain target direction. This the-
oretic approach neglects reflection and similar effects, which
is the reason why in existing MIMO systems the measured
channel matrix is the target for optimization. Here, we consider
the simplified scenario of line-of-sight communication in the
plane.

We assume the node-to-target distance to be much larger
than the maximum distance of each nodes’ antennas. So,
the antennas’ rays reach the target nearly as parallel lines
3. Assume a virtual antenna in the centroid of the antenna
array u with phase 0. The target direction of this array is φ.
The signal x is shifted in time at all antennas such that it
reaches the target in direction φ at the same time. The time
shift of each antenna u[i] can be derived from a geometrical
argument, i.e. the difference of distances between u and u[i]
and the target divided by the speed of light. For distant targets
this time shift can be approximated by a function depending
only on the sender antenna positions and the sending angle φ.
In Figure 3, this time shift is shown for the positions u[1] and

3When we apply both assumptions of far distant communication nodes and
no angular spread between multiple antennas to a MIMO channel, the channel
matrix H has rank 1. Hence, beamforming, respectively the SNR, dominates
then the channel capacity.
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Fig. 3. Phase shift between reference antenna u1 and antenna u2, target
direction φ, spatial shift c · shift (u1,u2, φ) between both antennas towards
target (c is the speed of light).

u[2] with label c · shift (u[1],u[2]).
Let vector v with an arbitrary non-zero length and angle φ

describe a ray towards the target with

v := |v| ·
(

cosφ
sinφ

)
.

We can use the scalar projection of (ui − u) and v and angle
φ to compute the spatial shift

c · shift (u,u[i], φ) = (u[i]− u) · v

|v|
where c denotes the speed of light. The time shift or delay is
then

shift (u,u[i], φ)

=
1

c
(ux − u[i]x) cosφ+

1

c
(uy − u[i]y) sinφ. (2)

W.l.o.g. the centroid is at (0, 0). So, the phase shift of
the signal for antenna u[i] for a communication partner in
direction φ is then

shift (u[i], φ) =
1

c
u[i]x cosφ+

1

c
u[i]y sinφ. (3)

We assume that we send the same signal long enough and
therefore we can represent time shifts as phase shifts. Produc-
ing beamforming with these phase shifts will give the signal
strength y = a · x+ w at the communication partner.

B. Characterization of the main beam and side beams

If the phases of signal x at multiple antennas are optimized
for a transmission in one particular direction, the phase angles
around that sending angle are still correlated and not random
and the superpositioned output signal strength fades from the
maximum signal strength y = a · x+w with increasing angle
difference. We claim that the signal strength is proportional to
the maximum signal strength in an angle range α ∈ [−κ, κ]
(see Figure 1).

Theorem 1 The angle range of the main beam tends to
Θ(λ/d) when d/λ grows to infinity.

To analyze the signal strength in the angle range α ∈ [−κ, κ]
around the target direction φ, we shift in time the input signal

x on the multiple antennas with the delay time of Equation 3
for angle φ to optimize the signal strength towards angle φ.
Furthermore, we insert an additional delay for angle (φ+ α)
into the equation to calculate the signal strength in direction
(φ+ α) which we want to analyze. The signal strength is then

h (φ, α) =
a

m
·
m∑

i=1

e−j2πfshift(u[i],φ) · ej2πfshift(u[i],φ+α)

where the additive Gaussian noise w is only omitted in the
equation for a simpler presentation. Notice that if the receiver
is in the target direction φ with α = 0, both delays in
the previous equation eliminate each other and we get the
maximum signal strength. W.l.o.g. we set the target direction
φ = 0 resulting into

h (φ = 0, α) =
a

m
·
m∑

i=1

e−j
2π
λ (u[i]x·(cosα−1)+u[i]y sinα) (4)

≈ a

m
·
m∑

i=1

e−j
2π
λ u[i]y·α. (5)

The last approximation in Equation 5 uses sinα = α,
cosα = 1 for small α. For α = 0 all antennas have the
same phase angle 0 and varying α rotates the phase angles
with different speed depending on the vertical position u[i] of
the i-th antenna. At direction α the phase angle is then limited

� (z)
for all u[i]

� (z)

(a) α = 0

� (z)

� (z)

τ−τ

u[2]
u[1]

u[3]

u[4]
u[5]

(b) α > 0

Fig. 4. Illustration how complex vectors change their phase angle when
varying angle of radiation α with (a) α = 0 and all phase angles equal 0 and
(b) α > 0 and phase angles in the range [−τ, τ ].

by range [−τ, τ ] with

τ :=
2π

λ
· d · α.

Based on our assumption of randomly distributed antennas
we further assume equally distributed phase angles in range
[−τ, τ ]. Thus, we can estimate the sum by an integral over the
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range [−d, d] resulting into

h2 (φ = 0, α)

≈ a ·m
m
·

d∫
−d

e−j
2πα
λ y dy

2τ

= −a ·m
m
·
[
e−j

2πα
λ y

j 2πα
λ · 2d

]d

y=−d

= −a ·
[

cos
(
− 2πα

λ y
)

+ j sin
(
− 2πα

λ y
)

j 2πα
λ · 2d

]d

y=−d

= a · sin
(

2πα
λ · d

)
2πα
λ · d

= a · sinc
(

2d

λ
· α
)
.

According to the sinc (·)-function, the main beam is
bounded by angle region

α ∈ [−κ, κ] with κ =
λ

2d
.

For instance, when the antennas are placed on a disc with
radius 2λ and a typical wavelength λ = 12.5 cm the main
beam has the range [−κ′, κ′] with angle κ′ ≈ 7 degree.

Besides, the main beam at α = 0 there are recurrent side
beams at the maxima of the sinc (·)-function. The signal gain
of these side beams is limited according to the sinc (·)-function
by λ/(2π · d · α). In the next section we will show that the
side beams are within angle range [−γ, γ] with γ ≈ λ

d

√
m.

C. Average white Gaussian noise produced by multiple anten-
nas

Now we will analyze the random noise of a sender with an
angle outside of the side beams. Recall that for u[i] chosen
uniformly from a disc of diameter d

h (0, α) =
a

m
·
m∑

i=1

e−j
2π
λ (u[i]x·(cosα−1)+u[i]y sinα). (6)

Let βi = 2π
λ (u[i]x · (cosα− 1) + u[i]y sinα) denote the

random variable of the phase angle. Figure 5 shows the
distribution of this random variable for λ = 2π. Note that
for growing d/λ the range of the random variable increases
linearly. Let [−`, `] denote the range of βi. The maximum
value for ` is 4π

λ d, for small α. We can approximate ` by
` ≈ 2π

λ αd, since sinα ≈ α and cosα ≈ 1 for small α.
We approximate this random variable by a uniform dis-

tribution over [−`, `]. The following Lemma shows that for
` ≥ 2π

√
m the absolute value of the random variable H has

an expectation of at most a√
m

and a standard deviation of
2 a√

m
. For uniform βi the signal strength can be reduced to

the length of a 2-dimensional geometric random walk with
unit steps in the plane. Here, the diameter d of the disk for
antenna placement has to be in the order of Ω (λ · √m) that
the phase angles βi are uniformly distributed.
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i e

−jβi of Equation 4
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Lemma 1 Let Hm,` :=
∑m
i=1 e

jβi for uniformly distributed
βi from [−`, `].

1) E
[
|Hm,`|2

]
= m for ` 6= 0 which are a multiples of 2π

2) E [|Hm,`|] = O(
√
m) for all ` ≥ 2π

√
m

3) E
[
|Hm,`|2

]
= O(m) for all `

Proof: If ` > 0 is a multiple of 2π all angles are uni-
formly distributed. A two-dimensional geometric walk starts
at s0 = (0, 0) and continues for m steps at points s1, . . . , sm
where each step si+1−si has unit length and an independently
randomly chosen direction. Such geometric walks have been
studied for a long time, see [21] and the following theorem is
well-known and its proof can be found in standard textbooks.

Each vector si with unit length 1 and direction βi can be
represented as complex value si = ejβi = j sinβi + cosβi
where j =

√
−1. The distance between start and end point of

the random walk is then the vector length of the sum of all
vectors.

h =

∣∣∣∣∣∣

n∑

j=1

ejβi

∣∣∣∣∣∣

Let h denote the complex conjugate of h.

|h|2 = h · h

=

m∑

i=1

ejβi

︸ ︷︷ ︸
h

·
m∑

k=1

e−jβk

︸ ︷︷ ︸
h̄

=

n∑

i=1

m∑

k=1

ej(βi−βk)

= m+

m∑

i=1

m∑

k=1,
i 6=k

ej(βi−βk)

For each index tuple (i, k) with i 6= k there exists a symmetric
(k, i) with the negated imaginary value.

∀i 6= k : =
(
ej(βi−βk)

)
+ =

(
ej(βk−βi)

)
= 0
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So, we get only a sum of real numbers.
n∑

i=1

n∑

k=1,
i 6=k

ej(βi−βk) =

n∑

i=1

n∑

k=1,
i 6=k

cos (βi − βk)

We have assumed that angles βi ∈ [0, 2π) are independently,
identically and uniformly distributed over [0, 2π). So the
expectation of cos (βi) is

1

2π

2π∫

β=0

cosβ dβ = 0.

And, the expected value of the sum is

E
[
|Hm|2

]
= m+

n∑

i=1

n∑

k=1,
i 6=k

E [cosβi − βk]︸ ︷︷ ︸
0

= m.

The root mean square of h is therefore

|Hm|rms =
√
m.

For the expectation there is no closed form known. Notice
that even for small number of hops the analysis is complex,
i.e. for m ≤ 4, see [22]. A good approximation has been
presented in 1905 by Lord Rayleigh [23] with the the proba-
bility distribution 2x

m e
−x2/m for large m. The expectation of

this approximation is 1
2

√
π
√
m. Using the local central limit

theorem leads to Proposition 2.1.2 (2.7) in [24]:

P
[
|Hm| ≥ s

√
m
]
≤ c · e−βs2

in accordance with Rayleigh’s approximation for some positive
constant c and β. So, E(|Hm|) = O (

√
m) follows from this

proposition.
If ` is not a multiple of 2π, note that E [|Hm,`|] is possibly

non-zero. We observe for βi ∈ [−`, `] for ` = 2π b`/(2π)c the
expectation above. The other case happens with probability
(` − `)/` ≤ 2π/`. So, the expected value of |βi| is at most
2π/`. So, the overall expected number of |H`,m| is bounded
by 2πm/`. For ` > 2π

√
m we have

E [|H`,m|] ≤
√
m.

Therefore the standard deviation for general ` remains
O (
√
m) since the random variables β are independent.

Clearly the distribution of phases differs from the uniform
distribution. However, the simulations of the next chapter give
some evidence that this behavior also holds for the correct
distribution. For ` ≥ 2π

√
m and ` ≈ 2π

λ αd (for small enough
α) we get α ≥ λ

d

√
m as the minimum angle for the random

noise area. This bounds the side beams in our model to be
within an angle range [−γ, γ] with γ ≈ λ

d

√
m.

We assume a unit power of 1 for all antennas and each
antenna gets the same fraction 1

m of that overall power. Then
the overall noise of the sender at a random angle outside the
main and side beam area is

hsend =
1

m
· √m =

1√
m
.

To this point we have only considered directed sending. When
we also consider that the receiver has directed reception with
multiple antennas in a random direction the overall attenuation
is

h =
1√
m︸︷︷︸

sender

· 1√
m︸︷︷︸

receiver

=
1

m
.

Conjecture 1 In SIMO (Single Input Multiple Output) the
expected noise produced by a sender with a single antenna
is O (1/

√
m) when the receiver has m multiple antennas

randomly placed in the plane on a disk with diameter d and
the receiving angle is at random.

Conjecture 2 In MISO (Multiple Input Single Output) the
expected noise produced by a sender with m multiple antennas
randomly placed in the plane on a disk with diameter d
is O (1/

√
m) at a receiver with a single antenna when the

sending angle is at random.

Conjecture 3 In MIMO (Multiple Input Multiple Output) the
expected noise produced by a sender with ms multiple anten-
nas randomly placed in the plane on a disk with diameter d is
O
(
1/
(√
ms ·

√
mr

))
at a receiver with mr multiple antennas

randomly placed in the plane on a disk with diameter d when
sending respectively receiving angle are at random. If sender
and receiver antennas are homogenous with m = mr = ms

the noise is O (1/m).

V. SIMULATION

In this chapter we present numerical simulations to support
the estimations presented in the analysis. Figure 6 shows the
angle-dependent signal strength of a multiple antenna array
where angle α = 0 is the sending direction for directed
communication. The signal strengths are normalized with
maximum value 1 and computed for infinite distant targets
to obtain our assumptions without an error. We compute

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3.14159 1.5708  0  1.5708  3.14159

N
or

m
ed

 S
ig

na
l S

tre
ng

th

Angle

m=2
m=3
m=5
m=9

m=25
m=100

Angle α

0 π/2 π−π −π/2

N
or

m
al

iz
ed

si
gn

al
st

re
n
gt

h
|h

|

Fig. 6. The graph shows the normalized angular signal strength |h| in the
plane for different number of antennas m. Angle α = 0 is always the target
direction. The disc diameter for antenna placement is d = 2λ

√
m.

the radiation pattern for different numbers of antennas m ∈
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{2, 4, 6, 8, 10, 100, 1000}. The diameter of the antenna arrays
is d = 2λ

√
m. For each number of antennas we average

over 10, 000 simulations with a random positioned antenna
array and a random transmission direction. The random noise
is 1/

√
m as expected. The angle range of the main beam

around α = 0 decreases with increasing number of antennas.
Especially for a high number of antennas one can spot two
major side beams around the main beam. The distances of the
side beams to the transmission direction α = 0 also decrease
with increasing number of antennas because of an increasing
disc diameter d.

In the next experiment in Figure 7 we keep the disc area
constant with a radius of d = 2λ instead of increasing the
area with the number of antennas m. The result shows that

Angle α
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Fig. 7. The graph shows the normalized angular signal strength |h| in the
plane for different number of antennas m. Angle α = 0 is always the target
direction. The disc diameter for antenna placement is d = 2λ.

the main and side beams have for all numbers of antennas m
the same angle range. But the average white Gaussian noise
decreases with 1/

√
m and strength of the side beam increases

with increasing number of antennas m.
In the simulation presented in Figure 8 we keep the number

of antennas constant to m = 9 and vary the disc area by
increasing the disc diameter d = k · 2λ · √m with a constant
factor k ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The average white Gaussian
noise keeps the same for all chosen k but the angle range of
the main beam and side beams decreases with increasing disc
diameter d.

The signal strength in target direction α = 0 is set up to
be maximum and thus has variance 0 for random antenna
placements under the given assumptions. We analyze the
variance of the signal strength in the range of average Gaussian
noise with angle α = π in Figure 9. We test the signal strength
h for the number of antennas m ∈ [2, 1000] and 10, 000
random antenna placements each. The blue colored function
is the standard deviance of the normalized signal strength h
multiplied with

√
m and turns out to be constant with the

conclusion of an average white Gaussian noise in the order of
1/
√
m as expected.

Only considering angular transmission simplifies indeed the
network model since we only need to know the direction of
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Fig. 8. The graph shows the normalized angular signal strength |h| in the
plane. Angle α = 0 is always the target direction. The number of antennas
is m = 9. The disc for antenna placement has diameter d = 2k ·

√
m · λ.
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Fig. 9. The graph shows the standard deviation
√

Var [|h|] of the normalized
signal strength |h| at angle α = π when α = 0 is the target direction. We
estimate the average white Gaussian noise to be in order of 1/

√
m.

the target and not the actual location with additional distance
information. But neglecting the distance leads to a small
angle error resulting in not completely synchronized phases
in the main beam. Figure 10 shows the simulation results
for the signal strength in the main beam depending on the
distance between the multiple antenna array and the target
location. This is the result likewise for MISO and SIMO with
communication between m multiple antennas with a single
antenna. The m multiple antennas are randomly placed on
a disc with diameter d = 2λ with the wavelength λ. The
distance between the array and the single antenna is measured
from the centroid of the disc. The estimation error is maximum
when placing the target position in the centroid of the disc of
the antenna array with distance 0. Here, the signal strength
|h| decreases with 1/

√
m comparable to the average white

Gaussian noise in a random direction. With increasing distance
the error fades away and the signal strength converges to the
maximum value possible 1.

VI. CONCLUDING REMARKS

We present a multiple antenna model specializing on the
beamforming capabilities of multiple antennas. In our setting
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(a) Mean normalized signal strength |h|
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Fig. 10. Optimizing the signal for a target direction and not considering
the distance to the target causes an angle error. The simulation results show
the impact on the signal strength |h| depending on the distance for different
antenna numbers m.

the m antennas of a network node are randomly positioned on
an area of Ω

(
m · λ2

)
where λ is the wavelength of the carrier

frequency. This achieves equally distributed phasing except
for the main transmission beam. We estimate the width of the
main transmission beam, where phases are highly correlated,
with an angle in range [−κ, κ] with κ = λ/ (2d) around the
transmission angle. Beyond an angle of λ

d

√
m the phasing is

random and on the base of two-dimensional walk we estimate
the expected noise to be attenuated by factor 1/m for MIMO
and 1/

√
m for MISO respectively SIMO for m antennas in

comparison to the signal with maximum gain in transmission
direction. Between the noise and the main beam we detect√
m side beams in the analytic estimation and simulations.

So, we classify the angles into three classes: the main
beam is useful for transmission or reception; the side beams
may cause interferences with other nodes; and the random
noise range adds only little noise to the system. Another
conclusion is that the beamforming capabilities of such MIMO
systems can be improved by increasing the distance between
the antennas or using frequencies with smaller wavelengths.
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