
Optimal Data Distribution for Heterogeneous Parallel
Storage Servers Streaming Media Files

Christian Ortolf
Department of Computer Science, University of Freiburg,

Georges-Koehler-Allee 51, 79110 Freiburg, Germany
Email: ortolf@informatik.uni-freiburg.de

Christian Schindelhauer
Department of Computer Science, University of Freiburg,

Georges-Koehler-Allee 51, 79110 Freiburg, Germany
Email: schindel@informatik.uni-freiburg.de

Abstract—We consider the problem of distributing media
files for streaming on a distributed storage network, where
servers have heterogeneous capacities and bandwidths. Regarding
networking the servers’ bandwidths are the bottlenecks for
streaming. We present an algorithm that computes an assignment
of n files to m servers for distributing media files such that the
streaming speed requirements and capacity constraints are kept.
As an additional feature this assignment algorithm works online,
i.e. it can assign each file without files to be stored later on. Our
algorithm computes the data assignment in time O(nm+m logm)
outperforming linear program solvers.

I. INTRODUCTION

Streaming media files has become a standard application
for PCs and smart TVs in modern homes. Currently, this
requires a dedicated streaming server powerful enough to
provide the bandwidth for high definition multimedia files and
at the same time have enough storage capacity to contain a
large media library. Distributed file systems could render such
servers unnecessary by accumulating the required resources
from multiple potentially less powerful devices like nodes in a
body area network (BAN), which may be too slow or equipped
with too little memory for independently serving the media
files alone. Distributed file systems have the advantage that
they can be built to scale for many large files or access by
many clients in parallel or minimize parallel read time of a
file. None of these optimizations solve the problem posed by
the combination of bandwidth requirement with a restricted
storage on devices with heterogeneous bandwidth capabilities.

Here, we solve the distribution of file fragments across a
heterogeneous network of file servers. This requires a partition
of a media file, and the assignment of the parts to media
servers, which on demand serve their parts with a fixed known
bit rate. The necessity of media files distribution comes from
resource restricted storage servers with limited storage capacity
and storage access rates.

Our objective is to partition and assign the media files to
the servers, either offline or online. Online means that the files
arrive in a random order and need to be assigned once for
all time. In the offline case, we know the sizes and streaming
rates of all files to come and want to compute an optimal
strategy. In a homogenous setting it is obvious that a file can
just be partitioned into equal parts and placed on all server
with same size and speed. But with servers varying in storage
capacity and bandwidth, an equal distribution may clog up
high bandwidth or low storage servers very quickly.

We show in this paper how to achieve an optimal dis-
tribution online. Therefore we can solve this file distribution
problem without incurring any cost for redistributing files later
on. This perfect distribution of data in an infocommunication
system can be used as a tool to efficiently handle data for
representation-bridging communication and mediastreaming,
e.g. sensory data can be distributed and stored in a BAN to
later be played back to its user.

Related Work.: Since the introduction of redundant arrays
of independent discs in the seminal paper by Patterson et al. [7]
distributed storage has evolved. While RAID systems do not
know heterogeneous disc sizes, network connections, hotspot
files, scalability and optimizing energy consumption, modern
distributed storage systems consider such factors.

The Google File System (GFS) [3] was designed to satisfy
the need for a highly scalable and high throughput system
for Google’s web search service. It uses a large number of
commodity computers (chunk servers) combined with a single
controlling server in a homogenous network setting. Files are
split into chunks and distributed to the chunk servers. For file
retrieval a client queries the location of the chunks from the
master server and downloads the chunk directly from the chunk
server. Parallelization comes into play when multiple clients
access different chunk servers and hot spot chunks are copied
to multiple chunk servers.

Dynamo [1] was developed for Amazon and focuses on
parallel write operations and high availability. Instead of a
central master server, it uses consistent hashing [4] to distribute
data onto the servers. By utilizing virtual copies of nodes in
the consistent hashing it can handle servers with heterogeneous
storage capacities. Like GFS it does not handle heterogeneous
bandwidths as all servers are assumed to be in the same local
network.

Various other distributed storage systems utilize peer-to-
peer networks [2], [5], [12]. These works focus on different
challenges like the reputation of peers, the reliability of stored
files with often disconnected peers or providing byzantine fault
tolerance in the network.

The assumption of an homogenous underlying network in-
frastructure restricts the applicability of these systems. Storage
infrastructures tend to evolve over time and become heteroge-
neous, which standard solutions do not cover. Likewise any
Internet based service will inevitably face a large variety of
different connections.

The Distributed Parallel File System (DPFS) by Shen and
Choudhary [11] was built to handle such an heterogeneous
networking infrastructure. Files to be stored are broken up into
chunks and distributed among the network of chunk servers.
DPFS focuses on how the chunks should be distributed for
optimal performance under expected access pattern, but they
also accommodate for different bandwidths by distributing
chunks proportionally to a given performance factor among
servers using a simple greedy algorithm.

While consistent hashing can be adapted with the help of
virtual servers to heterogeneous settings, Distributed Hetero-
geneous Hash Tables (DHHT) [8] are already designed for
heterogeneity. Servers can be weighted according to capacity
or connection bandwidth and receive a larger number of
chunks. The DHHT was later utilized in a distributed storage
system in [9]. There an optimal solution for the average parallel
transfer time of a document is shown.

In the work by Langner et al. [6] the upload of chunks in a
setting with asymmetric connections is considered. They show
a solution that also minimizes the parallel time for upload and
download. The model presented in this paper is based on the
master thesis of Schott [10]. He presents a similar, but less
efficient algorithm.

II. THE PROBLEM SETTING AND CONTRIBUTION

We consider a fixed set of m servers s1, . . . , sm with
storage capacities c1, . . . , cm measured in bits. Let bi denote
the bandwidth of a server, i.e. the number of bits a storage
server can stream per second.

Now, the media files f1, . . . , fn are added to the storage
servers, where |fj | denotes the size of file fj and dj the
necessary streaming data rate of this file. We assume that the
storage server is the bottleneck. So, the time for downloading
the file fi is determined by the slowest part. Now the file is
assigned to the servers indicated by the assignment matrix

A = (ai,j)i∈[n],j∈[m|

with ai,j ≥ 0 indicates the number of bits of file fi stored
on storage server sj . Clearly, all bits of the file need to be
distributed on all storage servers.

m∑
j=1

ai,j = |fi| for all i ∈ [n] . (1)

Of course, the capacity of the server cannot be exceeded.
n∑

i=1

ai,j ≤ cj for all j ∈ [m] . (2)

We assume that the bandwidth of the storage server is the
bottleneck, while the network does not pose further constraints.
From the minimum data rate di of a file fi it is clear that the
maximum time it may take to retrieve a file is |fi|/di. For each
server sj the minimum time to send its parts of fi is ai,j/bj .
For continuous streaming we need ai,j/bj ≤ |fi|/di for each
assignment. This leads to the main constraint of the parallel
heterogeneous streaming problem:

ai,j ≤ |fi|
bj
di

for all i ∈ [n], j ∈ [m] . (3)

Of course, we also need to consider where to place each
bit of data. For this, the file needs to be partitioned into
blocks of adequate size resulting from a linear selection of
the data. There is a straight-forward solution for this problem
and therefore we do not consider it in this paper. Here, we
concentrate only on the assignment problem.

Definition 1 The parallel, heterogeneous offline streaming as-
signment problem is, given servers s1, . . . , sm and all files
f1, . . . , fn, compute an assignment A which satisfies con-
straints (1), (2) and (3).

This is clearly a linear program. We solve this problem in
time O(nm + m logm), which is faster than any existing
linear program solver. For the online streaming assignment
problem servers s1, . . . , sm are given at the beginning. The
files f1, . . . , fn are given sequentially, such that the assignment
ai,j for file fi must be computed before files fi+1, . . . , fn are
given. The task is to compute an assignment which satisfies
constraints (1), (2) and (3) if possible.

We call an online streaming assignment perfect, if it can
assign the same number of files as an offline assignment. Our
algorithm is an online algorithm, and thus perfect.

III. AN EFFICIENT OFFLINE AND ONLINE SOLUTION

The key to our solution is the notion of sustainability.

Definition 2 The sustainability σj of a storage server sj is
defined as the time it needs to read out all data, i.e. σj :=
cj/bj .

Servers with equal sustainability can be split and joined
without affecting the solvability of the problem.

Lemma 1 For any set of files the assignment problem onto
servers S = {s1, . . . , sm}, where σm−1 = σm can be
solved if and only if the assignment problem to servers
S′ = {s1, . . . , sm−2, s′} can be solved, where the capacity of
s′ is cm−1 + cm and the bandwidth of s′ is b′ = bm−1 + bm.

Proof: Assume that (ai,j)i∈[n],j∈[m] is an assignment of
the files to S. Then the assignment (a′i,j)i∈[n],j∈[m] to S′ is
valid where

a′i,j =

{
ai,j , j ∈ [m− 2]

ai,m−1 + ai,m , j = m− 1

Clearly, constraints (1) and (2) hold. For constraint (3) we
observe

ai,m−1 + ai,m ≤ |fi|
bm−1 + bm

di
= |fi|

b′

di
.

Now assume that an assignment (a′i,j)i∈[n],j∈[m] for S′ is
given, then an assignment for S can be computed as follows

ai,j =

a′i,j , j ∈ [m− 2]

a′i,m−1
bm−1

bm−1 + bm
, j = m− 1

a′i,m−1
bm

bm−1 + bm
, j = m

Again constraints (1) and (2) are straight-forward. For con-
straint (3) we have

ai,m−1 = a′i,m−1
bm−1

bm−1 + bm

≤ |fi|
bm−1
di

and analogously for ai,m.

The first step to solve the assignment problem is to sort all
storage servers with respect to their sustainability σi, such that
σ1 ≥ σ2 ≥ . . . for storage servers s1, . . . , sm. Let ti = |fi|/di
denote the playtime of file fi.

In real-world applications files are continuously added or
removed from storage server systems. Then, it is costly to
redistribute and recompute all assignments when a new file
arrives. So, we consider the case where assignments are made
for each file separately without the knowledge of future files.
Hence, rearranging the set of files, e.g. according to their
playtime is not allowed.

One might think that this reduces the possible solution
space. However, we present with Algorithm 1 an online al-
gorithm which also computes valid assignments for the offline
problem. So, this algorithm reveals a structural property of the
assignment problem.

The algorithm sorts all servers according to their sustain-
ability. Then it computes for each file fi an assignment in the
for-loop between lines 7 and 45. The basic idea is a sweep
line that moves over the storage servers depicted in Fig. 1.
The vertical sweep line moves continuously from the right to
the left. When it moves over the rectangle representing a server
the area to the right of the sweep line indicates the assigned
amount of data. However, if it has reached an area of size
bj |fi|/di, which corresponds to distance ti after touching a
rectangle for the first time, it will stop the assignment to this
server because of constraint (3). The sweep line stops, if the
sweep line has collected area of size |fi| or it reaches the
vertical axis. In the first case assignment of the file can be
computed, in the second case there is no assignment.

An efficient implementation of such a sweep line technique
uses so-called events. These events are the beginning of
rectangles at σi−1,j1+1, the constraint (3) at σi−1,j2+1− ti, or
the halt of the sweep line when the complete file is assigned to
the servers in line 27. The sweep line starts from the maximum
value σi−1,1 and chooses the next event by maximizing over
these three cases. Then, the next rectangle will be added to
the assignments in line 26. The currently active servers in the
sweep while loop are sj1 , . . . , sj2 . Each event needs a special
treatment for the next round, i.e. removing a storage server by
increasing j1, adding a storage server by increasing j2. The
sweep line stops when all storage is assigned or it runs out of
servers j1 > m.

The following notations are useful for analyzing the algo-
rithm. Define the residual storage ci,j after inserting i files as
follows.

c0,j := cj for all j ∈ [m]

ci,j := ci−1,j − ai,j for all i ∈ [n], j ∈ [m]

Algorithm 1 Sweep Line Algorithm for Streaming Assignment
Input: storage servers s1, . . . , sm with capacity c1, . . . , cm

and bandwidth b1, . . . , bm and files f1, . . . , fn with data
rates d1, . . . , dn

1: Sort storage servers such that σ1 ≥ σ2 ≥ . . . ≥ σm
2: for j ← 1 to m do
3: σ0,j ← cj/bj
4: c0,j ← cj
5: end for
6: σ0,m+1 ← 0
7: for i← 1 to n do
8: for j ← 1 to m do
9: ai,j ← 0

10: end for
11: ti ← |fi|/d
12: j1 ← 1
13: j2 ← 1 /* R1 ← R1 ∪ {i} */
14: s← 0
15: tlast ← σi−1,1
16: while s < |fi| and j1 ≤ m and tnew ≥ 0 do
17: tnew ← σi−1,j1 − ti
18: if j2 < m then
19: tnew ← max{tnew, σi−1,j2+1}
20: end if
21: if j2 ≥ j1 then

22: tnew ← max

{
tnew, tlast −

|fi| − s∑j2
j=j1

bj

}
23: end if
24: if tnew ≥ 0 then
25: for j ← j1 to j2 do
26: ai,j ← ai,j + (tlast − tnew)bj
27: s← s+ (tlast − tnew)bj
28: end for
29: tlast ← tnew
30: if tnew = σi−1,j1 − ti then
31: j1 ← j1 + 1 /* Rj1 ← Rj1 \ {i}
32: Fj1 ← Fj1 ∪ {i} */
33: else if tnew = σi−1,j2+1 then
34: j2 ← j2 + 1 /* Rj2 ← Rj2 ∪ {i} */
35: end if
36: end if
37: for j ← 1 to m do
38: σi,j ← σi−1,j − ai,j/bj
39: end for
40: σi,m+1 ← 0
41: end while
42: if j1 > m or tnew < 0 then
43: return File cannot be assigned
44: end if
45: end for
46: return (ai,j)j∈[m]

The residual sustainability of the server j after inserting i files
is denoted by σi,j .

σi,j :=
ci,j
bj

for all i ∈ [n], j ∈ [m]

The assignment of a server measured in playtime is denoted
by zi,j .

zi,j :=
ai,j
bj

for all i ∈ [n], j ∈ [m]

Note that constraint (3) translates into the condition zi,j ≤ ti
for all i, j. In the commentary section the assignments are
classified by the sets

Rk = {i : 0 < zi,k < ti} for all k ∈ [m]

Fk = {i : zi,k = ti} for all k ∈ [m]

where Fk (full playtime) denotes the set of file indices where
the maximum block size is assigned to server sk according
constraint (3). Rk (rest of the file) denotes the set of file indices
with other non-zero assignments of blocks to server sk.

If these sets are given, then the assignment can be presented
in closed form, see Algorithm 2.

Algorithm 2 Alternative presentation of Algorithm 1
Input: storage servers s1, . . . , sm with capacity c0,1, . . . , c0,m

sorted according σj = cj/bj in descending order
bandwidth b1, . . . , bm and files f1, . . . , fn with data rates
d1, . . . , dn
sets R1, . . . , Rm, F1, . . . , Fm from Algorithm 1

1: for i = 1 to n do
2: for all j : i ∈ Fj do

3: ai,j ← |fi|
bj
di

4: end for

5: tsweep ←
∑

j′:i∈Fj′
bj′ti +

∑
j′:i∈Rj′

ci−1,j′ − |fi|∑
j′:i∈Rj′

bj′

6: for all j : i ∈ Rj do
7: ai,j ← ci−1,j − tsweepbj
8: end for
9: for j ← 1 to m do

10: ci,j ← ci−1,j − ai,j
11: end for
12: end for

Lemma 2 If Algorithm 1 computes an assignment, then Algo-
rithm 2 computes the same assignment.

Proof: If i ∈ Fj , then zi,j = ti and therefore ai,j/bj =
|fi|/di.

If i ∈ Rj , then the rest of the file is distributed onto the
servers j1, . . . , j2. For this the position tsweep of the sweep line
is computed which satisfies∑

j′:i∈Rj′

(σi−1,j′ − tsweep)bj′ +
∑

j′:i∈Fj′

bj′ti = |fi|

The assigned storage from ai,j is then given by (σi−1,j −
tsweep)bj .

We prove the correctness of the algorithm by an induction
over the set of servers.

Lemma 3 Algorithm 1 is correct for a single server s1.

Proof: For one server Algorithm 1 has only two kind
of events for the sweep line: checking for constraint (3) and
checking for constraint (1). So, the algorithm decides correctly,
whether the files can be assigned.

Theorem 1 The Online Algorithm 1 computes a valid assign-
ment for every set of files f1, . . . , fn if it is possible. Therefore,
it provides a perfect solution to the online problem in time
O(nm+m logm).

Proof: The sorting of all servers requires time
O(m logm). The sums

∑j2
j=j1

bj used in line 22 can be pre-
computed when the interval [j1, j2] is changed with amortized
constant costs. For the run-time of the while loop observe
that in each round either j1 or j2 is incremented or the loop
terminates. Therefore, the inner statements of the loops are
performed 2m + 1 times. Thus, assigning each of the n file
takes O(m) steps.

We will now prove that for any set of files f1, . . . , fn that
Algorithm 1 finds a valid assignment if possible. For this we
take a closer look when a part of a file is assigned to a server
maximizing constraint (3), i.e. i ∈ Fk, or when it is below but
not zero, i.e. i ∈ Rk.

If i ∈ Fk+1, then we have also i ∈ Fk since σi−1,k ≥ σi,k.
By this argument, it follows that i is an element of all the sets
F1, . . . , Fk. Furthermore, if i ∈ Rk+1 then the assignment
to sk is non-zero, i.e. i ∈ Fk ∪ Rk. Again i has non-
zero assignments for servers s1, . . . sk. Furthermore, the f1
has always a non-zero assignment to the first server s1, i.e.
1 ∈ F1 ∪R1.

Lemma 3 states that Algorithm 1 is correct for a single
server. We prove the correctness by an induction over the
number of servers and assume that it computes a possible valid
assignment for m− 1 servers.

Assume that an assignment exists and that the algorithm
does not find one. Then, we distinguish two cases. Let n′ be the
number of files that can be assigned by the algorithm before
it aborts.

1) For all i ∈ [n′], j ∈ [m− 1] : σi,j > σi,j+1:

Consider the server sm. So, either σn′,m < 0 or∑m
j=1 tn′+1bj < |fn′+1|. In the later case no valid

assignment is possible. The first case is equivalent to

n′+1∑
i=1

ai,m > cm ,

where for all i ∈ Rm ∪ Fm (i.e. ai,m 6= 0) we have
i ∈ F1 ∩ . . . ∩ Fm−1 and therefore

ai,m = |fi| −
m−1∑
j=1

bj
|fi|
di

Assume that a′i,j is a valid assignment of all files.
Then, constraint (3) implies a′i,j ≤ bj

|fi|
di

. Further-
more

∑
j∈[m] a

′
i,j = |fi| and thus,

a′i,m ≥ |fi| −
m−1∑
j=1

bj
|fi|
di

Constraint (2) implies
∑n

i=1 a
′
i,m ≤ cm and therefore∑

i∈Rm∪Fm
a′i,m ≤ cm which implies

∑
i∈Rm∪Fm

|fi| −
m−1∑
j=1

bj
|fi|
di
≤ cm .

This contradicts ∑
i∈Rm∪Fm

ai,m > cm

and therefore in this case Algorithm 1 must find a
valid assignment.

2) There exists i ∈ [n′] and j ∈ [m− 1] : σi,j = σi,j+1

We show that servers sj and sj+1 can be replaced
by a single server s′ such that Algorithm 1 chooses
the very same assignment, i.e. if a′i denotes the
assignment of file i to the new server s′ then a′i =
ai,j + ai,j+1. Let

` := min{i : ∃j ∈ [m− 1] : σi,j = σi,j+1}
. The capacity of the new server is cj + cj+1 and the
bandwidth is b′ = bj + cj+1 and the sustainability
σ′ = cj+cj+1

bj+bj+1
is thus

σj =
cj+1

bj+1
≤ cj + cj+1

bj + bj+1
≤ cj
bj

= σj+1 .

So, the alternative set of servers are sorted as
s1, s2, . . . , sj−1, s′, sj+1, . . . , sm according to their
sustainability. So, server s′ simply replaces sj and
sj+1.
We consider the following cases and check whether
Algorithm 1 chooses the same assignment, i.e. a′i =
ai,j + ai,j+1 without changing all other assignments
by an induction over i.

a) i > `:
Then, σi−1,j = σi−1,j+1 and therefore i ∈
Rj ⇔ i ∈ Rj+1 and i ∈ Fj ⇔ i ∈ Fj+1.
Therefore from Algorithm 2 and the equiv-
alency of both algorithms it follows that
a′i = ai,j + ai,j+1 since b′ = bj + bj+1.

b) i = `: Then i ∈ Rj and i ∈ Rj+1. Let j1 ≤ j
and j2 ≥ j+1 be the participating servers at
the sweep line event.
Then for all ` ∈ [j1, j2]:

ai,` = ci−1,` −
b`∑

j′:i∈Rj′
bj′
P , where

P =
∑

j′:i∈Fj′

bj′ti +
∑

j′:i∈Rj′

ci−1,j′ − |fi|

Since by induction c′i−1 = ci−1,j + ci−1,j+1

and b′ = bj + bj+1, we have a′i = aj +aj+1.

For the other assignments in the interval
[j1, j2] the values do not change either.

c) i < `, i ∈ Rj ∩Rj+1

This case is impossible since otherwise
σi,j = σi,j+1 which leads to the contradic-
tion i < ` = min{i : σi,j = σi,j+1}.

d) i < `, i 6∈ (Rj ∪ Fj) and i ∈ (Rj+1 ∪ Fj+1)
This case is impossible by the design of the
Algorithm 1.

e) i < `, i ∈ Rj and i ∈ Fj+1

This case is also not possible.
f) i < `, i 6∈ (Rj ∪ Fj) and i 6∈ (Rj+1 ∪ Fj+1)

Then a′i = ai,j = ai,j+1 = 0.
g) i < `, i ∈ (Rj ∪ Fj) and i 6∈ (Rj+1 ∪ Fj+1)

So, the rest of the file is stored on server sj
(and alternatively server s′). Then ai,j+1 = 0
and

ai,j = |fi| −
∑

j′:i∈Fj′

bj′ti

The very same formula computes a′j and
therefore a′j = ai,j + ai,j+1

h) i < ` and i ∈ Fj and i ∈ Rj+1 If i ∈ Rj+2,
then σi,j+1 = σi,j+2 which contradicts the
minimality of `. Therefore, j + 2 > m or
i 6∈ Rj+2 ∪ Fj+2.
So, we get

ai,j = |fi|
bj
di

ai,j+1 = |fi| −
j∑

j′=1

bj′
|fi|
di

while a′i = |fi| −
j−1∑
j′=1

bj′ti

Therefore a′i = ai,j + ai,j+1.
i) i < `, i ∈ Fj and i ∈ Fj+1

Then a′i = |fi| bj+bj+1

di
= a′i,j + a′i,j+1.

By induction over i it follows that all assignments of
all servers j′ < j and j′ > j+1 remain the same for
both sets of servers.
We have assumed that an assignment (ai,j) exists
for the set of servers S = {s1, . . . , sn}. Then,
there also exists an assignment for the set of servers
S′ = {s1, . . . , sj−1, s′, sj+2, . . . , sn}, namely

a′i,k =

ai,k , k < j

ai,j + ai,j+1 , k = j

ai,k+1 , k > j

By the induction hypothesis, Algorithm 1 finds such
an assignment. However, we have assumed that Al-
gorithm 1 does not compute an assignment for m+1
storage devices. Then, we have proved that for the
given files the algorithm behaves identical as in the
case of m storage devices. So, it should also not
compute an assignment for m storage devices which
is a contradiction.
So, it always finds a solution if it exists.

IV. CONCLUSION

We have presented a solution for optimally distributing
files in a distributed storage system for media streaming.
Our Algorithm optimally distributes files online in O(nm +
m logm), thus is a vast improvement over an offline linear
programming solution. This allows storing files with known
bandwidth requirement to a distributed storage system such
that redistributing data after the assignment is never necessary.

REFERENCES

[1] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
highly available key-value store. SIGOPS Operating Systems Review,
41(6):205–220, 2007.

[2] Peter Druschel and Antony I. T. Rowstron. Past: A large-scale,
persistent peer-to-peer storage utility. In HotOS, pages 75–80, 2001.

[3] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. In SOSP ’03: Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, pages 29–43, New York,
NY, USA, 2003. ACM.

[4] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. Consistent hashing and random trees:
distributed caching protocols for relieving hot spots on the world wide
web. In STOC ’97: Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pages 654–663, New York, NY,
USA, 1997. ACM.

[5] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim
Weatherspoon, Chris Wells, and Ben Zhao. Oceanstore: An architecture
for global-scale persistent storage. In ASPLOS-IX: Proceedings of the
Ninth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 190–201, New York,
NY, USA, 2000. ACM.

[6] Tobias Langner, Christian Schindelhauer, and Alexander Souza. Opti-
mal file-distribution in heterogeneous and asymmetric storage networks.
In Proceedings of the 37th international conference on Current trends in
theory and practice of computer science, SOFSEM’11, pages 368–381,
Berlin, Heidelberg, 2011. Springer-Verlag.

[7] David A. Patterson, Garth Gibson, and Randy H. Katz. A case
for redundant arrays of inexpensive disks (raid). In SIGMOD ’88:
Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data, pages 109–116, New York, NY, USA, 1988.
ACM.

[8] Christian Schindelhauer and Gunnar Schomaker. Weighted distributed
hash tables. In SPAA 2005: Proceedings of the 17th ACM Symposium
on Parallelism in Algorithms and Architectures, pages 218–227, Las
Vegas, Nevada, USA, 17 - 20 July 2005. ACM Press, New York, NY,
USA.

[9] Christian Schindelhauer and Gunnar Schomaker. SAN optimal multi
parameter access scheme. In ICNICONSMCL ’06: Proceedings of the
International Conference on Networking, International Conference on
Systems and International Conference on Mobile Communications and
Learning Technologies, page 28, Washington, DC, USA, 2006. IEEE
Computer Society.

[10] Steffen Schott. Datenverteilung auf heterogene speicher unter
dem datenstrom-ansatz. Master’s thesis, Albert-Ludwigs-Universität
Freiburg, Germany, 2010.

[11] Xiaohui Shen and Alok Choudhary. DPFS: A distributed parallel file
system. In ICPP ’01: Proceedings of the International Conference
on Parallel Processing, page 533, Washington, DC, USA, 2001. IEEE
Computer Society.

[12] The Wuala Project. Wuala. http://www.wuala.com, 2008. [Online;
accessed 22 July 2010].

time

bandwidth

�1

�2�3

s1

s2

s3

b1

0

b2

b3

�1 � t

d

t = |f |
d

f

�2 � t

s4

�4

file

sweep
line

b4

time

bandwidth

�1

�2�3

s1

s2

s3

b1

0

b2

b3

�1 � t

d

t = |f |
d

f

�2 � t

s4

�4

filesweep
line

b4

time

bandwidth

�1

�2�3

s1

s2

s3

b1

0

b2

b3

�1 � t

d

t = |f |
d

f

�2 � t

s4

�4

filesweep
line

b4

time

bandwidth

�1

�2�3

s1

s2

s3

b1

0

b2

b3

�1 � t

d

t = |f |
d

f

�2 � t

s4

�4

file
sweep
line

b4

�1

�2�3

s1

s2

s3

b1

0

b2

b3

�1 � t

d

t = |f |
d

f

�2 � t

s4

�4

file

sweep
line
stopsb4

Fig. 1. Sweep Line Online Algorithm distributing file f onto servers
s1, . . . , s4.

