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Abstract. We present a maximum-separable-distance (MDS) code suitable for
computing erasure resilient codes for large word lengths. Given n data blocks
(words) of any even bit length w the Circulant Cauchy Codes compute m ≤ w+1
code blocks of bit length w using XOR-operations, such that every combination
of n data words and code words can reconstruct all data words. The number of
XOR bit operations is at most 3nmw for encoding all check blocks. The main
contribution is the small bit complexity for the reconstruction of u ≤ m missing
data blocks with at most 9nuw XOR operations.

We show the correctness for word lengths of form w = p − 1 where p is
a prime number for which two is a primitive root. We call such primes Artin
numbers. We use efficiently invertible Cauchy matrices in a finite field GF [2p]
for computing the code blocks To generalize these codes for all even word lengths
w we use � independent encodings by partitioning each block into sub-blocks of
size pi − 1, i.e. w =

∑�
i=1 pi − � for Artin numbers pi. While it is not known

whether infinitely many Artin numbers exist we enumerate all Circulant Cauchy
Codes for w ≤ 105 yielding MDS codes for all m+ n ≤ 10

62
w.

Keywords: RAID, erasure codes, storage, fault-tolerance.

1 Introduction

Computer systems are prone to data loss in many situations, ranging from the failure of
a hard disk, communication errors in the physical layer, to the incomplete transmission
of large files in overlay networks. Data is often stored in fixed block sizes and many
systems rely on creating extra code blocks, from which one can recover the original
data. A wide-spread example of such codes are RAID storage systems [14], where the
parity of data blocks are stored on extra hard disks to recover the data. If the number of
code blocks and data blocks necessary to restore a message equals the original number of
data blocks, say n, such coding schemes are called maximum distance separable (MDS).

We consider the input data partitioned into n blocks of w bits. We generate m addi-
tional check blocks with w bits each. MDS codes allow by definition to retrieve all n
data blocks from any combination of the n+m data and check blocks. MDS codes have
been studied extensively and the standard method is Reed-Solomon codes [17]. These
codes can be represented as a matrix multiplication over a finite field F[2w]. Addition
in a Galois field is a bitwise XOR operation, while multiplication is a product of poly-
nomials modulo a polynomial (and modulo base 2). The multiplication operation is the
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most time consuming part of such codes and therefore there have been research efforts
to establish MDS codes only based on XOR operations.

It should be noted that Luby has found more efficient codes [11] based on XOR
operations, spawning a lot of work in this area. However, these LT codes and successors
are not MDS codes, and are thus not relevant for many uses, e.g. in RAID systems.
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1.1 State of the Art

For RAID systems, MDS codings are considered where the original data is part of the
encoding and the check blocks are generated by a matrix multiplication. Such MDS
codes use a nw× (n+m)w systematic generator matrix G where the first nw columns
are occupied with the identity matrix I , see (1). For the complexity of such an approach
Blaum has proved in Proposition 3.4 [5] that at least nw(m + 1) nonzero entries are
in the generator matrix, where n is the number of original blocks, m is the number of
check blocks and w is the word length. For F2 he improves his bound in Proposition
5.2 to a minimum of (m + 1)nw + 1

2
mn

1−1/n entries of value 1 in the generator matrix.

This corresponds to nmw + 1
2

mn
1−1/n XOR operations for computing the check blocks,

but does not imply a lower bound, since a small number of XOR operations can con-
struct full matrices. Note that sparser matrices exist, if one drops the systematic matrix
property, see [19].

In [4] MDS codes based on Galois-fields F[2p] with generator polynomials 1 + x +
. . .+ xp, where p is a prime number and 2 is a generator, i.e. {20, 21 mod p, . . . , 2p−1

mod p} = {1, . . . , p−1} are shown. The authors use this approach to establish efficient
coding for up to 8 check blocks. In this paper, we use the same generator polynomial
and extend it to general block sizes and number of check blocks.

Many MDS codes like Even-Odd [3], Row-Diagonal Parity (RDP) [7], and Libera-
tion Codes [15] construct only two parities and optimize on the number of XOR opera-
tion for computing the code blocks. In [2] RDP was generalized to compute up to eight
check blocks while maintaining the optimal encoding complexity of RDP. An MDS
code optimizing the reconstruction complexity has been presented in [12].

Blömer et al. [6] use Cauchy Reed-Solomon matrices to construct check matrices for
systematic MDS codes. It turns out that the number of operations over the Galois field
for reconstructing n data words is bounded by O(nm) operations of the Galois field. In
general, a multiplication in a Galois field can be performed in time w logw2O(log∗ w)

using Fürer‘s integer multiplication algorithm [10]. For small word lengths, such multi-
plication can be performed on modern computers in constant time using table lookups
with table size O(2w) and corresponding precomputing time. In [6] the authors recom-
mend to precompute the factors for coding and decoding and word-parallel computation
which reduces the complexity of computing m check blocks to O(nmw) word-wise
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XOR operations assuming the processor has word size w. Based on the approach of [6]
Plank uses exhaustive search techniques to reduce the XOR complexity of such Cauchy
Reed-Solomon matrices [16].

In [8] the usage of circular Boolean matrices helped to find an efficient MDS code for
tolerating three disk failures. They showed that encoding takes 3wn XOR operations
and decoding can be done within 3wn+9(w+1) XOR operations. Using these Cauchy
Reed-Solomon matrices (aka. Rabin Codes) the same authors generalized this result in
[9] to a MDS code with complexity of 9wn XOR operations for encoding andO(w3m4)
XOR operations for decoding when m disks fail (and (9n + 95)(w + 1) for m = 4).
The approach presented here has a similar coding complexity of 9mn, but reduces the
decoding complexity to 9nuw XOR operations.

1.2 Contribution

We present MDS codes, called Circulant Cauchy Codes, with an asymptotic optimal
bit complexity for computing the check blocks and reconstructing data blocks. Bit com-
plexity denotes the overall number of bit operations used in the calculation. In particular,
we have an encoding bit complexity of 3nmw for computing m check blocks from n
data blocks of word length w. The reconstruction of u data blocks from any n data or
check blocks needs 9unw XOR bit operations. We prove that Circulant Cauchy Codes
are defined for any even word length w.

However the maximum number of check blocks m depends on n and w. We prove
that any number of check blocks can be generated if a conjecture of Emil Artin is true.
It states that there are infinitely many prime numbers with two as primitive root. This
conjecture does not give a good bound on the number of check blocks unless these
prime numbers A = {3, 5, 11, 13, . . .} are dense. At least we can show that for all even
w ≤ 105 we can generate at least m = 10

62w − n check blocks. If w is a power of two
we have evaluated that at least 29

128w − n parity check blocks can be generated for all
w ≤ 220. We conjecture that if w tends to infinity the number of possibly parity check
blocks approaches 1

4w − n.
An implementation can be downloaded from our website [18].

2 Circulant Boolean Matrices

The key to our efficient MDS codes are circulant Boolean matrices. A circulant matrix
n× n matrix A = Cirn(s1, · · · , sn) has the following form

Cir(s0, · · · , sn−1) := (si−j mod n)i,j∈[n] (2)

We consider Boolean circulant matrices encoding bit-strings of lengthn. For si ∈ {0, 1}
we denote by s =

∑p−1
i=0 si2

i the matrix Cirn(s) = Cir(s0, . . . , sn−1) and operations
are defined over F2 (XOR is addition and AND denotes the multiplication of bits). So,
the cyclic shift by one position is denoted by a multiplication with Cir(2). Cir(1) is the
neutral element for multiplication and Cir(0) is the neutral element for addition, see
Fig. 1.
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Cir5(1)Cir5(0) Cir5(2) Cir5(30) Cir5(12)

Fig. 1. Examples for Cir5(x)

It is well known, that Boolean circulant matrices describe a semiring. Cir(2)i =
Cir(2i) describe cyclic rotations by i positions. Since the rank of all Boolean circulant
matrices is at most n− 1, Boolean circulant matrices do not describe a finite field.

An alternative way to describe these semigroups is to consider them as monic poly-
nomials

∑n−1
i=0 siz

i modulo the monic polynomial zn + 1 which is reducible, since
zn+1 = (zn−1+ . . .+ z+1)(z+1) mod 2. Now, zn−1+ . . .+ z+1 is irreducible if
n is a prime number and 2 is a primitive root for p. Such finite fields have been already
considered by Blaum et al. [4]. From now on we assume p to be such a prime with
primitive root 2 and we call this set of numbers A.

Lemma 1. For p ∈ A, i.e. a prime number where 2 is a primitive root modulo p, the
set of all matrices Ep of Cirp(s) for binary strings s ∈ {0, 1}p with even parity forms a
finite field for addition and multiplication as described above.

Proof. If p is a prime number and 2 is a primitive root for m, then the polynomial
1 + z + . . .+ zp−1 is irreducible according to [13].

Note that (z + 1)(1 + z + . . . + zp−1) ≡ zp + 1 (mod 2). Operations modulo
the polynomial zp + 1 do not describe a field, since the polynomial is not irreducible.
However, addition and multiplication modulo zp + 1 correspond to the addition and
multiplication of circulant Boolean matrices.

Given Cirp(a) with binary representation a0, . . . , ap−1 we prove an operation pre-
serving isomorphism described by the mapping f : Ep → {0, 1}p−1 where

f(Cirp(a0, . . . , ap−1)) = (ai + ap−1)i∈{0,...,p−2} (3)

and the inverse function is

f−1((ai)i∈{0,...,p−2}) = Cirp

((∑
j∈{0,...,p−2}\{i} aj

)
i∈{0,...,p−1}

)
(4)

We prove that

f(Cirp(a) + Cirp(b)) ≡ f(a) + f(b) (mod 1 + z + . . .+ zp−1) (5)

f(Cirp(a) · Cirp(b)) ≡ f(a)f(b) (mod 1 + z + . . .+ zp−1) (6)

Note that for a, b ∈ Ep we have a+ b ∈ Ep and a · b ∈ Ep. From the irreducibility of
1 + z + . . .+ zp−1 the claim follows since we have an isomorphism to a finite field.

It remains to prove (5) and (6).

1. Addition

f(Cirp(a) + Cirp(b))

= (ai + bi + ap−1 + bp−1)i∈{0,...,p−2}
= f(Cirp(a)) + f(Cirp(b)) (7)
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2. Multiplication: Note that f(Cirp(2p − 3)) = (0, 1, 0, . . . , 0) = x, f(Cirp(2p −
1)) = 1, f(Cirp(0)) = 0, f(Cirp(2p − 3)i) = f(Cirp(2p − 1 − 2i mod p−2)) = xi.
Furthermore,

f(Cirp(2p − 3)) · a = f(Cirp(ai−1 mod p)i∈{0,...,p−1}
= (ai−1 mod p + ap−2)i∈{0,...,p−2}

=

p−2∑
i=0

(ai + ap−1)x
i+1

= f(Cirp(a)) · x (8)

since xp−1 ≡∑p−2
i=0 xi (mod 1 + x+ x2 + . . .+ xp−1).

So, for Cirp(b) =
∑p−1

i=0 biCirp(2)i we have

f(Cirp(a) · Cirp(b)) = f

(
Cirp(a) ·

p−1∑
i=0

biCirp(2)
i

)

= f

(
p−1∑
i=0

biCirp(a)Cirp(2
p − 3)i

)

=

p−1∑
i=0

bif(Cirp(a)Cirp(2
p − 3)i))

=

p−1∑
i=0

f(Cirp(a))bix
i

=

p−2∑
i=0

f(Cirp(a))(bi + bp−2)x
i

= f(Cirp(a)) · f(Cirp(b)) (9)

Using the observation that Circulant matrices with even parity form a finite field,
one can reduce the number of XOR operations. For this, we use the complement of an
element as an alternative representation. So, define for each element a ∈ [0, 2p−1 − 1]:
[a] := {Cir(a),Cir(2p−1−a)}. Define the addition over these sets [a]+[b] = {x+y |
x ∈ [a], y ∈ [b]} and similarly, [a]·[b] = {x·y | x ∈ [a], y ∈ [b]}. Now, the observation
of Figures 2 and 3 can be generalized as follows.

[a+ b] = [a] + [b] , (10)

[a · b] = [a] · [b] . (11)

When coding or decoding all inputs a ∈ {0, 1}p−1 of word size p− 1 are mapped to
such sets [a] of word size p at the beginning. All subsequent operations will be done on
the increased word size p since in the representation fewer XOR operations are needed.
Therefore, we do not distinguish between both representations [a] = {a, 2p − 1 − a}.
Eventually, we eliminate the ambiguity by a final computation where we choose the
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+ =

even
parity

odd
parity

+ ====

Fig. 2. Example for addition [a+ b]

× =

even
parity

odd
parity

=× =

Fig. 3. Example for multiplication [a] · [b]

element of which the least significant bit is 0. This final operation costs p − 1 XOR
operations and reduces the output to the original word length p − 1. See Fig. 4. The
transition from the data to one of its representation can be denoted by multiplication
with matrix R, which is just a copy operation and its reverse operation with matrix L
where p− 1 XORs are needed.

[Cir5(12)] = {Cir5(12), Cir5(19)}

12

4
8

+

+

12R

L × =

R ×

=

×

L

Fig. 4. Example for representation of 12 in [Cir5(12)]

Lemma 2. The basic operations in the table below need the given number of XOR
operations for input word length w = p− 1, where i and j are constants and a, b input
variables.

Operation XOR operations

R · a = Cirp(a) 0
L · Cir(a) = a w
Cir(a) + Cir(b) w + 1

Cir(2)i · a 0
Cir(2i + 2j) · a w + 1

[Cir(2i + 2j)−1 · a] 2w − 1

Proof. 1. a �→ Cirp(a): For this operation we simply append a constant 0 to the rep-
resentation.

2. Cir(a) �→ (ai + ap)i∈{0,...,p−1}: This operation is necessary to produce the out-
put and to transform the representation of a by Circulant Boolean matrices to the
corresponding finite field element. Clearly, p XORs are sufficient to compute the
result.

3. Cir(a) + Cir(b): We compute pairwise XORs of the corresponding bits of a and b.
4. Cir(2)i · a: For constant i this constitutes a clock-wise right shift by i steps. No

XOR operations are necessary.
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5. Cir(2i + 2j) · a: The complexity follows by computing Cir(2)i · a+ Cir(2)j · a.
6. [Cir(2k + 2�)−1 · a] : This is the only non-trivial case. Note that

Cir(2k + 2�) ·

⎛
⎜⎝

b0
...

bp−1

⎞
⎟⎠ =

⎛
⎜⎝

a0
...

ap−1

⎞
⎟⎠ . (12)

This is equivalent to

ai+� +
∑
j

aj = bi mod p + bi+(�−k) mod p (13)

for all i ∈ {0, . . . , p− 1}.

Since, any of the two elements of [a] = {a, 2p − 1 − a} is allowed as result we
choose b0 = 0. So we get for i ∈ {0, . . . , p− 2}

b(i+1)2(�−k) mod p = b2i(�−k) mod p

+ a2(i+1)(�−k)+k mod p

+ a(2i+1)(�−k)+k mod p . (14)

The calculation for an example can be seen in Fig. 5
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Cir11(21 + 23) a
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+

+

+

+

+

+

+

+

+

+

set to 0

a or aa

=

b=

Fig. 5. Multiplication and division by Cir11(9)

It is straightforward that the result is either b or 2p−b. The result might be inverted,
but this is acceptable, as we have described above.

3 Circulant Cauchy Matrix

Cauchy Reed-Solomon matrices have been introduced for MDS codes by Blömer et al.
[6]. For n data blocks and m check blocks of word length w we use a m × n Cauchy
matrix where each entry is a Boolean Circulant matrix defined as

Mij =
1

xi + yj
(15)
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for xi �= yj for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. For the Circulant Cauchy matrix
we choose xi = Cirp(2i−1) for i ∈ {1, . . . ,m} and y1 = 0, yj = Cirp(2p−j) for
j ∈ {2, . . . , n}. Therefore for n+m ≤ p+ 1 the sets {x1, . . . , xn} and {y1, . . . , ym}
are distinct which is the prerequisite for the full rank property of the Cauchy matrix.

So the check blocks c1, . . . , cm ∈ {0, 1}p−1 are computed from the data block
d1, . . . , dn ∈ {0, 1}p−1 by

⎛

⎜
⎝

L 0
. . .

0 L

⎞

⎟
⎠ ·M ·

⎛

⎜
⎝

R · · · 0
...

. . .
...

0 · · · R

⎞

⎟
⎠ ·

⎛

⎜
⎝

d1
...
dn

⎞

⎟
⎠ =

⎛

⎜
⎝

c1
...
cm

⎞

⎟
⎠ (16)

where L is a (p − 1) × p matrix with Lii = 1, Li,p = 1 for i ∈ {1, . . . , p − 1} and
Li,j = 0 elsewhere. R is a p× (p− 1) matrix with Rii = 1 and Ri,p = 0 elsewhere.

Theorem 1. The computation of m check blocks of the Circulant Cauchy matrix from n
data blocks of block size w can be computed with (3m−2)nw+n−m = (3+o(1))nmw
XOR-operations.

Proof. The transformation from di to a circulant matrix does not use any operations.
The multiplication with the first row of the Circulant Cauchy matrix is a cyclic shift op-
eration since x1 = Cirp(0) which does not involve any XOR bit operation. For the mul-
tiplication of the residual m−1 operations we divide by terms of the form Cirp(2k+2�).
Lemma 2 states that 2w−1 XOR operations are sufficient resulting in (m−1)n(2w−1)
XOR operations. For adding all results we need (n − 1)m(w + 1) XOR operations. A
multiplication with an L matrix needs w XOR operations resulting in mw operations.

So, the overall number of XOR operations is (n − 1)m(w + 1) + n(m − 1)(2w −
1) +mw = 3mnw − 2nw −m+ n.

Theorem 2. The Circulant Cauchy matrix is an MDS code, i.e. from every set of n data
or check blocks the data can be recovered, if n+m ≤ p+ 1.

Proof. The determinant of a n× n Circulant Cauchy matrix Mij =
(

1
xi+yj

)
is

det(M) =

∏
i<j(xi + xj)(yi + yj)∏

i,j xi + yj
(17)

Let Crs = Mrs be the adjugate matrix of M (deleting row i and column j). Note
that the adjugate matrix is again a Circulant Cauchy matrix.

det(Crs) =

∏
i<j,i,j �=r(xi + xj)

∏
i<j,i,j �=s(yi + yj)∏

i�=r,j �=s xi + yj
(18)

Now for the inverse matrix dij we have

dij =
det(Cji)

det(M)
=

∏
u xj + yu

∏
u xu + yi∏

u�=j(xu + xj)
∏

u�=i(yu + yi)

1

(xi + yj)
(19)

For computing the data blocks, we choose the square submatrix B of the generator
matrix corresponding to the indices of the u unknown data blocks and the k given check
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blocks. Note that B is a Circulant Cauchy matrix and thus invertible. The k × n − k
submatrix A corresponds to the given data blocks and unknown check blocks. So, we
can calculate the missing data blocks by

⎛
⎜⎝

di1
...

diu

⎞
⎟⎠ = B−1

⎛
⎜⎝

⎛
⎜⎝

cj1
...

cju

⎞
⎟⎠+A ·

⎛
⎜⎝

dg1
...

dgn−u

⎞
⎟⎠

⎞
⎟⎠ (20)

where i1, . . . , iu are the indices of the unknown data blocks, j1, . . . ju the indices of the
given check blocks, and g1, . . . , gn−u the indices of the given data blocks.

Our main contribution is the efficiency of this operation.

Theorem 3. Given n− u data blocks and u check blocks of a Circulant Cauchy Code
the missing u data blocks can be computed with at most 3nuw + 6u2w ≤ 9nuw XOR
bit operations.

Proof. Using Equation 20 the given input dg1 , . . . , dgn−k
is multiplied with the subma-

trix k × (n− k)A. From Theorem 1 this can be done with 3u(n− u)w− 2(n− u)w+
n− 2u = 3nuw− 3u2w− 2nw+ 2uw− 2u XOR operations. With another uw XOR
operations the result is added to the given u check blocks of word size w giving the
intermediate result y1, . . . , yu ∈ {0, 1}w+1.

Then, the Circulant Cauchy matrix is reduced to the u×u sub-matrix B correspond-
ing to the check blocks which results in a smaller Circulant Cauchy matrix. Following
the approach in [6] the inverse (dij)i,j∈1,...,n of a Circulant Cauchy matrix ( 1

xi+yj
)i,j

can be computed as follows.

ak =
∏
i�=k

(xi + xk) , bk =
∏
i�=k

(yi + yk) , ek =

n∏
i=1

(xk + yi) ,

fk =

n∏
i=1

(xi + yk) , dij =
eifj

aibj(xi + yj)
.

(21)

We multiply the inverse with the intermediate result y1, . . . , yu. We have to compute
the data blocks d1, . . . , du (WLOG we assume that the first u data blocks need to be
restored) such that for all j ∈ {1, . . . , u}

di =

u∑
j=1

dijyj =

u∑
j=1

eifj
aibj(xi + yj)

yj =
ei
ai

u∑
j=1

1

(xi + yj)

fj
bj
yj . (22)

First we compute for all i ∈ {1, . . . , u}

C′
j =

fj
bj
Cj =

∏n
i=1(xi + yj)∏
i�=j(yi + yj)

Cj (23)

This results in u2 multiplications with terms of the form Cir(2ν + 2η) and u(u − 1)
divisions by Cir(2ν + 2η). Some factors or divisors may be of form Cir(2ν) since we
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choose x1 = 0. This case only reduces the complexity and is from now on omitted
for simplicity. The number of XOR operations is therefore at most u(u − 1)(w + 1) +

u2(2w − 1) = 3u2w − uw − u. Then, we compute all terms of the form
C′

j

xi+yj
which

takes at most u2(2w − 1) = 2u2w − u2 XOR operations.
The following sum costs u(u− 1)(w + 1) = u2w − uw + u2 − u XOR operations.

Finally each of the u sums need to be multiplied by

ei
ai

=

∏
j(xi + yj)∏u

j �=i(xi + xj)
(24)

So, u2 multiplications by terms of the form Cir(2i + 2j) are necessary (w + 1 single
XOR operations each) and u(u−1) divisions by terms of form Cir(2i+2j) with (2w−1
XOR operations). Hence, u2(w+1)+u(u−1)(2w−1) = 3u2w−2uw+u operations
suffice.

Finally, the size of the u data bits of word length w+ 1 need to be reduced to size w
adding another uw Xor operations.

The overall number of XOR bit operations is therefore at most 3nuw + 6u2w −
2nw − 4u ≤ 3nuw + 6u2w ≤ 9nuw.

Because of the run-time of 3nmw for computing the check blocks and 9nuw for
reconstructing the data, the length of w does not play any role. It is advisable to choose
w as large as possible, since it increases the number of possible code words and does
not change the run-time, e.g. if the input consist of N bits, then the complexity for
computing all the m check blocks is 3N

w nw = 3Nm and similarly for reconstruction
N data bits from u check blocks: 9N

w uw = 9Nu. One might argue that usually the
input size is not a multiple of w (since we have a restriction on w + 1 being an Artin
number). However, we overcome this problem in the next section where we show that
w can be chosen to be any even number.

4 Generalizing the Word Length

While Artin numbers do not appear to be scarce, it is an open problem first conjectured
by Emil Artin in 1927 [1] (p. 246) whether an infinite number of such prime numbers
exist. On the positive side there are efficient methods to test the Artin number property.

Most notably, the run-time grows only linearly with the length of the words. There-
fore, for the time complexity partitioning the data in word size w = 4 or w = 1018 does
not make a difference for the run-time. Since larger word sizes allow more redundancy
and the combination of more data blocks, it is advisable to increase it as large as the
CPU cache and the block size of the data allows.

We now overcome the restriction that the word size has the form w = p− 1, where
p is an Artin number.

Fact 1. A partition of an integer w is valid if

w =

�∑
i=1

(pi − 1) , (25)
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where pi are Artin primes, i.e. 2 is a primitive root of pi.

– There exists a valid partition for every even numberw ≤ 105 such that the minimum
term is at least 10

62w.
– If w ≤ 220 is a power of two the minimum term of a valid partition is at least 28

128w.

We have verified this fact using computer algebra programs and exhaustive testing.
To overcome the word size restriction we us a valid partition and apply the Circulant

Cauchy codes for each of the sub-words separately. The MDS property is preserved
and also for the run-time we get 3nm(w1 + . . . + wk) = 3nmw XOR operations for
encoding and 9nuw for decoding. Since, the number of reconstructable blocks is limited
by wi + 1 it is desirable to maximize the smallest term. While it is an open question
whether infinitely many Artin primes exist, the above fact shows that the density for
numbers up to 105 is high enough to guarantee good partitions.

Clearly, the most interesting word lengths are powers of two. The following valid
partitions maximize the size of the smallest subword size.

8 = 4 + 4 16 = 4 + 12
32 = 10 + 10 + 12 64 = 28 + 36

128 = 28 + 100 256 = 60 + 196
512 = 196 + 316 1024 = 372 + 652
2048 = 940 + 1108 4096 = 2028 + 2068
8192 = 3796 + 4396 16384 = 8116 + 8268

(26)

5 Conclusions

We have presented a new approach to MDS codes using long word lengthsw which after
adding a parity bit to a given word uses only cyclic shift operations and bit-wise XOR-
operations. Our method allows the generation of arbitrarily many check blocks and
arbitrarily large word sizes. It is based on the isomorphism between Boolean circulant
matrices and finite fields where w + 1 is a prime number and 2 is a primitive root
modulo w + 1. We show how this method can be applied to arbitrary word length by a
partitioning of the words without an impact to the coding and decoding complexity. We
use Cauchy Reed-Solomon codes and present the first MDS scheme with asymptotical
optimal XOR complexity for computing the check blocks and recovering data blocks.
Furthermore, the constant factors are small and these codes can be easily implemented
on existing computer architectures.
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