
Strategies for Parallel Unaware Cleaners

Christian Ortolf and Christian Schindelhauer

University of Freiburg, Department of Computer Science, Computer Networks
{ortolf,schindel}@informatik.uni-freiburg.de

Abstract. We investigate the parallel traversal of a graph with multiple robots
unaware of each other. All robots traverse the graph in parallel forever and the
goal is to minimize the time needed until the last node is visited (first visit time)
and the time between revisits of a node (revisit time). We also want to minimize
the visit time, i.e. the maximum of the first visit time and the time between revisits
of a node. We present randomized algorithms for uncoordinated robots, which can
compete with the optimal coordinated traversal by a small factor, the so-called
competitive ratio.
For ring and path graph simple traversal strategies allow constant competitive
factors even in the worst case. For grid and torus graphs with n nodes there is
a O(logn)-competitive algorithm for both visit problems succeeding with high
probability, i.e. with probability 1 − n−O(1). For general graphs we present an
O(log2 n)-competitive algorithm for the first visit problem, while for the visit
problem we show an O(log3 n)-competitive algorithm both succeeding with high
probability.

Keywords: visit time, competitive analysis, mobile agent, robot, multi-robot
graph exploration

1 Introduction

Today, we are used to robotic lawn mowers and robotic vacuum cleaning. The current
best-selling technology relies on robots which have no communication features and in
some cases use maps of the environment. If we model the environment as an undirected
graph, then its traversal by a single robot is an NP-hard minimum Traveling Salesman
problem, for which efficient constant factor approximation algorithms are known [3].
Now, the robot owner deploys additional robots. How well do these robots perform?
Can we guarantee that two parallel unaware lawn mowers will cut all grass better than
one? And how do they compare to a couple of perfectly choreographed mowers? What
about more robots, where each robot has no clue how many co-working devices exist
nor where they are?

Here, we investigate these questions. We model the cleaning area by a graph with
identifiable nodes and edges. All robots know only their own position and the graph.
They will never learn how many robots are involved, nor any other robots’ positioning
data. So, we assume that robots pass each other on the same node without noticing.
We are looking for a traversal strategy of the graph which is self-compatible, since we
assume that all robots are clones performing the same strategy.

It appears apparent that such a strategy must be probabilistic, since robots starting
from the same node would otherwise follow identical routes, which would not allow for
any speedup. However, we will see that this is not the case for all graphs.

Related Work To our knowledge this unaware parallel cleaning model is new, therefore
we will point out similarities to other problems.

The parallel unaware cleaning can be seen as a variation of the multi robot explo-
ration [4, 6, 8, 5, 15]. The goal of the online multi-robot exploration is to steer a group of
robots to visit every node of an unknown graph. The term unknown means that the ex-
ploring algorithm knows only edges adjacent to formerly visited nodes. The performance
of such online algorithms is usually provided by a competitive analysis comparing the
online solution to the optimal offline strategy, where an algorithm is given knowledge
of the whole graph beforehand. This model is close to our first visit time model with
two important differences: In parallel unaware cleaning each robot knows the full graph,
while multi-robot exploration robots know only the explored graph. In our model there is
no communication, while in robot exploration robots exchange their graph information.

It was recently shown that if more than dn robots are used in the multi-robot explo-
ration problem, where d is the diameter of the graph and n the number of nodes, then one
can achieve a constant competitive factor for multi-robot exploration [4]. The competing
offline exploration can explore a graph in time Θ(nk + d), therefore an exploration using
k = n

d robots is of special interest, because it allows the offline algorithm to make full
use of all its robots.

For this scenario Dynia et al. [6] showed the online exploration of trees to be
at best Ω(log k

log log k)-competitive. If algorithms are restricted to greedy exploration an
even stronger bound of Ω(k/ log k) is shown by Higashikawa et al. [11]. This bound
matches the best known upper bound by Fraigniauds et al.’s greedy exploration algorithm
in [8]. For further restricted graphs better bounds have been shown. An algorithm
depending on a density parameter p was presented by Dynia et al. [5] with O(d1−1/p)
competitiveness, e.g. O(d1/2) for trees embeddable in grids. For grids with convex
obstacles, an polylogarithmic competitive bound of O(log2 n) was shown in [15], along
with the lower bound of Ω(log k

log log k) matching the identical lower bound for trees.
Our problem also bears resemblance to the multi traveling salesman problem (mTSP)

[2, 9], a generalization of the well-known traveling salesman problem (TSP) [12]. TSP
is NP-hard even in the seemingly simpler Euclidean version [16], but can be efficiently
approximated if it is allowed to visit nodes more than once [18].

The mTSP trys to cover the graph with a set of tours and minimize the length
of the longest tour. This corresponds to the offline parallel cleaning problem, if we
use the distance between nodes in the graph as cost measure between nodes in mTSP.
Even if salesmen start at different nodes the problem can still be reduced to the regular
mTSP [10].

A similar definition to our first visit time is the notion of cover time for random
walks, likewise visit time can be compared to the hitting time H(i, j), the expected time
starting from node i to reach node j. Our robots are not forced to use random walks. So,
the Lollipop graph, a lower bound construction for the cover time of Ω(n3) [13] and
obtained by joining a complete graph to a path graph with a bridge, can be cleaned quite
efficiently by parallel unaware cleaners.

2

Patrolling algorithms [17] also require robots to repeatedly visit the same area. To
the best of our knowledge no work there has similarly restricted robots.

2 Model

In our model k robots are initially positioned on depot/starting nodes S = (s1, ..., sk)
and their task is to visit all nodes V of an undirected connected graph G = (V,E) and
then repeat their visits as fast as possible. Nodes and edges can be identified and time is
measured in rounds. An algorithm has to decide for each robot r in each round which
edge to traverse to visit another node in the following round. This decision is based on
the starting node sr, the graph and the previous decisions of the robot. Each robot never
learns the number and positions of other robots.

The first visit time of a node is the number of the round, when a robot visits this
node for the first time. The visit time of a node is the supremum of all time intervals
between any two visits of a node (revisit) including the time interval necessary for the
first visit by any robot. The long term visit time of a node is the supremum of time
intervals between any two visits of a node by any robot after an arbitrarily long time.
The corresponding definitions for the full graph is given by the maximum (first/long
term) visit time of all nodes. Note that the robots do neither know and nor are they able
to compute the visit times. These times can only be known by an external observer.

The term with high probability refers to an event which occurs with probability
1 − n−c with constant c ≥ 1. In all of our results, this constant c can be arbitrarily
increased if one allows a larger constant factor for the run-time.

The term distance refers to the number of edges on a shortest path between two
nodes.

The benchmark for our solution is the time of an algorithm with full knowledge, i.e.
the number and positions of all robots. The quotient between the unaware visit time and
the full knowledge visit time is our measure, also known as the competitive factor. The
worst case setting can be seen as an adversary placing the robots for a given algorithm.

3 Simple cleaning examples

As an illustration and starting example we show how differently a circle graph and a
path graph behave in this setting, see Fig. 1 and Fig. 2. The simple algorithm sending
robots in one direction in the circle, or just to one end on the line, then returning to the
other end, performs quite differently for both graphs.

On the circle the right traversal strategy performs very well, the first visit time may
be improved by a knowing algorithm at most by a factor of 2, since the largest distance
r between two robots at the beginning lowerbounds the optimal offline strategy by r/2.
The deterministic right traversal strategy on the cycle visits all nodes in r rounds for the
first round and revisits them in this frequency thereafter.

For the path graph, the overhead of such an algorithm is a factor of n. If one end
node is not covered and all robots walk first to the right end and then return, no robot can
visit the left node in less than n rounds. A smarter oblivious algorithm could improve

3

"Go Right" is 2-competitive

r
"Random direction"

 is O(log n)-
competitive

"smart cow"
 is 9- competitive

Fig. 1. Parallel unaware cleaning algorithms for the cycle graph. Illustrating competitive ratio for
first visit.

this by sending robots into a random direction instead, yielding a competitive factor of
O(log n) in the expectation. However, a deterministic solution exists: the smart cow
algorithm [1], which in the i-th phase for i = 1, 2, . . . , n explores 2i nodes first to the
left and then 2i nodes to right from the starting node. While the smart cow algorithm is
designed to find a hole in a fence, which it does within a competitive factor of nine, the
same competitive factor can be shown for the cycle and the path graph. This shows that
for these simple graphs deterministic competitive visiting strategies exist.

smart cows

right-left traversal

Fig. 2. Parallel unaware cleaning algorithms for the Path graph

However, for the long term visit problem the situation is different. Symmetry cannot
be resolved by any deterministic algorithm. If all robots have the same starting node no
competitive ratio better than O(n) can be achieved for these algorithms. The following
chapter shows a simple solution to the long term visit problem.

4 Canonical cleaning and general observations

Now we present first general strategies and techniques. For u ∈ V let N`(u) denote
the set of nodes in G within distance of at most ` to the node u. For a set A ⊆ V let
N`(A) =

⋃
u∈AN`(u). The following lemma is the key technique, which provides a

lower bound for the number of robots in the vicinity.

4

Lemma 1. Given a graph with a robot placement with a first visit time of tf . Then, for
any set of nodes A the number of robots in the node set N`(A) is at least d|A|/(tf +1)e
for ` ≥ tf .

Proof. First note that for each cleaning strategy it is not possible that robots outside
of Ntf (A) ⊆ N`(A) can reach any node within A in at most tf steps. Let k be the
number of robots that explore A within time tf . At the beginning at most k nodes can be
occupied by k robots. Then, in every subsequent round at most k additional nodes of A
can be visited. In order to visit all nodes in A we have k(tf + 1) ≥ |A|. This implies
k ≥ |A|

tf+1 .

Later on, we use this lemma in a bait-and-switch strategy. We use A as bait to ensure
that enough robots exist in a region for the offline strategy. Then we switch and let these
robots work on other areas.

While randomization is necessary for dispersing the robots, too many probabilistic
decisions are problematic, because the chance that some nodes remain unvisited for
long times may grow over time. Therefore, we present only algorithms that use a finite
number of randomized decisions. This technique is presented in the canonical algorithm,
which is the base for some of our strategies. It requires the algorithms cycle-start-node
and waiting time to provide where and when the robot should start cycling the graph.

Algorithm 1: CANONICAL CLEANING algorithm for robot r using algorithms
cycle-start-node and waiting-time

Traverse the graph by DFS yielding a cycle P with V (P) = V of length 2n
vs ← cycle-start-node(sr)
Move robot r on the shortest path to vs
w ← waiting time(sr, vs)
Wait w rounds
if vs occurs more than once in P then

Choose a random occurrence in P
end
while true do

Walk to the next node of P
end

Because of the coupon collector’s problem, a basic problem of probability theory [14],
one cannot expect a better competitive factor than O(log n). Therefore, in the long run
the problem can be solved by the canonical algorithm.

Theorem 1. Using the CANONICAL CLEANING it is possible to achieve a long-term
visit time ofO((n/k) log n) and a visit time of diameter(G)+O((n/k) log n) with high
probability.

We refer to the Appendix A.1 for the proof.
For graphs with small diameter this results in a logarithmic competitive ratio. E.g. in

balanced trees the diameter is bounded by O(log n). So, the CANONICAL CLEANING
algorithm gives us the following bound.

5

approximated TSP

shortest path to
random start node

robot following cycle

Fig. 3. A canonical algorithm guarantees a O(n
k
logn) long-term visit time.

Corollary 1. Graphs with diameter of O(log n) have a competitive ratio of O(log n)
for the first and revisit visit time with high probability.

Proof. Let cycle-start-node(u) map to a uniform random node v of the tree. And let
waiting-time(u, v) = diameter(G)− |u, v|. Let t∗f and t∗v be the optimal first and visit
times and let k ≤ n be the number of robots.

Theorem 1 states that the first visit and visit time is bounded by diameter(G) +
O((n/k) log n) = O(log n+(n/k) log n) = O((n/k) log n). From Lemma 1 it follows
forA = V that t∗f ≥ n/k−1 and t∗v ≥ n/k. This implies a competitive ratio ofO(log n)
for k ≤ n. If t∗f > 0 it also holds for k ≥ n. In the case of t∗f = 0, the robots already
cover all nodes and every algorithm is optimal for the first visit time.

Another interesting technique is to transform a probabilistic first visit time strategy
into a visit time algorithm succeeding with high probability. The only drawback is, that
the first visit time and the visit probability for all nodes must be known.

Lemma 2. Assume there exists a parallel unaware cleaner algorithm A for k robots on
a graph with n nodes, where for all nodes u the probability that the first visit time is less
or equal than tf is at least p > 0. Furthermore, tf and p are known. Then, this cleaning
algorithm can be transformed into a canonical algorithm having visit time O(1p tf log n)
with high probability.

The proof sketch is the following. Let P (r) with |P (r)| ≤ tf be the resulting path
of robot r performing algorithm A. Then, the cycle-start-node of the canonical algo-
rithm is defined by choosing a random uniform node vs from P (r). We use waiting-
time(sr, vs) = 0. In the Appendix A.2 a detailed proof is given.

5 The Torus and the Grid Graph

Now we consider torus and grid graphs, where we present optimal unaware cleaner
strategies.

6

Define am×m-TorusGT = (V,ET) graph by V = [0, . . . ,m−1]× [0, . . . ,m−1]
and with edges {(i, j), (i+1 mod m, j)} and {(i, j), (i, j+1 mod m)} for (i, j) ∈ V .
Every node has four neighbors, where we call the directions right, left, up, and down in
the standard way. Parallel unaware robots can clean the torus graph with only a small
overhead.

Algorithm 2: Competitive torus cleaner strategy for robot r
(x, y)← (sr.x, sr.y) starting position
for i← 1, 2, . . . ,

√
n do

if random event occurs with probability (x− sr.x + 1)/(i+ 1) then
x← x+ 1

else
y ← y + 1

end
Move to (x, y)

end
H := cycle of Fig. 5.
while true do

Move to the next node of H
end

Theorem 2. Algorithm 2 is a high probability O(log n)-competitive visit algorithm for
the m×m-torus graph.

We refer to the Appendix A.3 for analysis of Algorithm 2.
The first technique, the for loop of Algorithm 2, is that the cleaner uses a probabilistic

process to create a uniform probability distribution over a linear growing and moving set
of diagonal nodes. A pure random walk would create a binomial distribution. So, the
probability distribution “pushes” to the corners, see Fig. 4.

Likewise in the canonical algorithm we switch after some time to a deterministic
cycling algorithm. The difference is, that this cycle is adapted to the first phase and is a
perfect Hamiltonian cycle, see Fig. 5.

The proof relies on the bait-and-switch-strategy, where the bait is a diagonal field
of length t and width 2tf . In the neighborhood of such a field at least Ω(t) robots must
be placed at the beginning or the offline strategy does not succeed within first visit time
tf . The first phase of the cleaner strategy moves these robots to a given target node with
probability O(1/t). So, a constant number of robots pass any target node within any
time frame of length O(tf). Since, the robots’ random decisions are independent an
increase of a factor of O(log n) gives the time bound for the first phase.

For the second cycling phase, we have chosen the cycle with respect to the first phase,
such that the same argument can be reused in order to estimate the maximum distance
between two nodes on this cycle. The full proof can be found in the Appendix A.3.

This algorithm can be easily adapted for the grid graph, which consists of the same
node set, but edges {(i, j), (i+ 1, j)} for i 6= m, (i, j) ∈ V and {(i, j), (i, j + 1)} for
j 6= m, (i, j) ∈ V .

7

start
node 1/2

1/2
2/3

1/3

1/3

2/3

3/4

1/4

2/4
2/4

1/4

3/4

4/5
1/5

3/5

2/5

2/5

3/5

4/5

1/5

1/2

1/3

1/4

1/5

Fig. 4. Torus cleaner strategy

Fig. 5. Final cycle through the torus

Theorem 3. There exists a high probability O(log n)-competitive visit time cleaning
algorithm for the m×m-grid graph with n = m2 nodes.

Proof. We embed a 2m× 2m-torus graph GT on the m×-grid graph GG by mapping
the four nodes (x, y), (2m−x+1, y), (x, 2m− y+1), (2m−x+1, 2m− y+1) onto
the node (x, y) ∈ V (GG). Note that the edges of the torus map to edges in the grid.

At the beginning we choose for a robot a random representative in the torus graph
and then we follow the algorithm for the torus graph. The proof is analogous to the one
of the torus graph presented in the appendix except to a constant factor increase of the
competitive factor.

6 Unaware Parallel Traversal of General Graphs

For general graphs we use a partition of the graph, which balances the work load of the
robots. For the randomized partition we are inspired by the techniques of embedding
tree metrics for graphs [7].

We partition the graph into disjoint recruitment areas R1, . . . , Rn ⊆ V . All robots
in a recruitment area Ri have to visit the nodes in a working area Wi which is a proper
subset of Ri. These sets are defined by a random process such that each node has a
constant probability to be contained in a working area and we show that the number of
robots in the recruitment area is large enough to ensure that this node is visited with
constant probability. This constant probability will be increased later on by repeating the
partitioning several times.

We give a formal description of the sets used in Algorithm 3. The recruitment
partition uses center nodes c1, . . . , cn which are given by a random permutation π of all
nodes V = {v1, . . . , vn}, i.e. ci = vπ(i). The partition is based on the neighborhood set
N`(u), which is the set of nodes v for which the distance to u is at most `. So, we define
for a radius ` and for all i ∈ {1, . . . , n}.

Ri := N`(vπ(i)) \
i−1⋃
j=1

N`(vπ(j)) . (1)

8

The working areas are defined for radius ` and an estimation of the first visit time
t ∈ [tf , 2tf] as

Ui := Nl−2t
(
vπ(i)

)
\
i−1⋃
j=1

N`+2t

(
vπ(j)

)
(2)

Wi := Nt (Ui) (3)

We denote by W =
⋃n
i=1Wi the set of nodes that will be worked on and let U :=⋃n

i=1 Ui.
These definitions are used for a probabilistic cleaning Algorithm 3, which covers

a constant part of the graph. The ONE-SHOT-CLEANING algorithm makes use of an

Algorithm 3: ONE-SHOT-CLEANING G = (V,E) using V = R1∪̇ · · · ∪̇Rn and
W1, . . . ,Wn ⊆ V

Choose i such that sr ∈ Ri
Ti ← STEINER-TREE-APPROXIMATION(Wi)
Ci ← DFS-Cycle(Ti)
Move to a random node of Ci
Walk on Ci for 68t logn rounds
Move back to sr

straight-forward constant factor Steiner-tree approximation based on Prim’s minimum
spanning tree algorithm, presented as Algorithm 4.

Algorithm 4: STEINER-TREE-APPROXIMATION with input G = (V,E), W ⊆ V
(C1, . . . , Cp)← connected components of W in G
while p > 1 do

Choose the component Cj with the nearest node to C1

W ←W ∪ (node set of shortest path between C1 and Cj to W)
(C1, . . . , Cp)← connected components of W

end
return spanning tree of C1

The following lemma shows that every node is chosen with probability of at least 1
4

to be the target of a robot cleaning in some area Wi.

Lemma 3. For a graph G, a node v ∈ V , β chosen randomly from [1, 2], a random
permutation π over {1, . . . , n}, and for l = 8βt log n the probability that v ∈W is at
least 1

4 .

We refer to the appendix A.4 for the proof.
Now, we investigate whether there are enough robots in the recruitment area Ri

in order to explore Wi. The number is large enough if a given node is explored with
a constant probability. However, there is a major problem: Ui, Wi, or Ri might be
disconnected. So robots might travel long routes between the nodes in Wi outside of Wi

or even Ri.
Therefore, we need an upper bound on the size of these connecting routes. This has

been the motivation to extend U with a surrounding of t neighborhood nodes. So, for
β ∈ [1, 2] we have the following lemma.

9

Lemma 4. For ` = 8βt log n, let Ti be the tree connecting all nodes in Wi constructed
in Algorithm 4. Then,

|V (Ti)| ≤ 17|Wi| log n .

Proof. Each of the p connected components C1, . . . , Cp of Wi has at least one node
of U and its t-neighborhood. So, Cj has at least t nodes, implying |Wi| ≥ pt. Every
node of Wi has distance of at most ` = 8βt log n to vπ(i). The maximum distance
between two components is thus at most 16βt log n because of the triangle inequality.
Which implies that at most 16(p− 1)βt log n nodes are added to connect the original p
connected components. So,

|V (Ti)| ≤ 16(p− 1)βt log n+ |Wi|

≤ 16
p− 1

p
|Wi| log n+ |Wi|

≤ 17|Wi| log n .

The following lemma shows that the ONE-SHOT-CLEANING algorithm needs only a
logarithmic overhead.

Lemma 5. The number of moves of a robot using ONE-SHOT-CLEANING for ` =
8βt log n and β ∈ [1, 2] is at most 100t log n.

Proof. The maximum distance of any node from u to Wi is at most `− t = 8βt log n−
t ≤ 16t log n. So, moving to the start node and moving back to the start node needs
at most 32t log n rounds. Moving on Ci needs 68t log n rounds resulting in 100t log n
rounds.

Now, we need to show that the number of robots in the recruitment area Ri is large
enough. This follows by Lemma 1 substituting A =Wi.

Lemma 6. If the robots are placed such that a first visit time of tf is possible, and
t ∈ [tf , 2tf], then for the number ki of robots originally placed in Ri we have

ki ≥
|Wi|
tf + 1

≥ |Wi|
2t

.

Proof. A single robot can explore at most tf + 1 nodes in the first tf rounds. Therefore
the minimum amount of nodes to be explored by all robots in Ri is ki(tf + 1) ≤ 2kitf .

These observations allows us to find a general strategy for the first visit problem for
unaware parallel cleaners.

Theorem 4. Algorithm 5 is a high probabilityO(log2 n)-competitive first visit algorithm
for every undirected graph.

Repeating the ONE-SHOT-CLEANING O(log n) times gives us high probability. The full
proof can be found in Appendix A.5.

The visit time problem needs more moves, since a robot may make a fast first visit,
but does not know when to end. Our solution is to guess the first visit time.

10

Algorithm 5: High probability first visit cleaner of G = (V,E)

for i ∈ {1, 2, . . . , logn} do
t← 2i

for j ∈ {1, . . . , 4(c+ 1) lnn} do
Choose randomly β ∈ [1, 2]
Choose random permutation π over V
ONE-SHOT-CLEANING(G, ` = 8βt logn, t, π)

end
end

Algorithm 6: High probability visit of G = (V,E)

Choose uniform at random i ∈ {1, 2, . . . , logn}
t← 2i

Choose randomly β ∈ [1, 2]
Choose random permutation π over V
ONE-SHOT-CLEANING(G, t, β, π)
Traverse the graph by DFS yielding a cycle C with V (C) = V of length 2n
Go to a random node visited during the one shot cleaning
while true do

Walk to the next node of C
end

Theorem 5. Algorithm 6 is an high probability O(log3 n)-competitive visit algorithm
for every undirected graph.

Proof. Lemma 3 implies that P (w ∈Wi) ≥ 1
4 if ` = 8βt log n. The probability that a

robot chooses the correct value t = 2i ∈ [tf , 2tf] is 1/ log n. So, the probability that a
node is visited within first visit time 800ctf log n is at least p = 1

4 logn . By Lemma 2
this implies a visit time algorithm with high probability with time O(tf log3 n).

7 Conclusion

We discuss a central question of distributed algorithms: How much do we benefit
from communication? Or to put it otherwise: Can we cope with a parallel problem if
communication is not available? We have shown that first visit can be achieved with an
overhead of O(log2 n) and visit with O(log3 n) in general graphs. This means that we
can cope quite well without any communication.

For the grid and torus we show an even stronger bound ofO(log n). This matches the
lower bound of Ω(log n) given by the coupon collector’s problem. Unlike the algorithm
presented for general graphs the parallel unaware cleaner strategy for torus and grids
have only small constant factors involved. Furthermore, the grid represents a typical
application areas for such robots. So, we can very well envisage our cleaning strategies
to be implemented onto current room cleaning and lawn mowing robots.

11

References

1. R. Baezayates, J. Culberson, and G. Rawlins. Searching in the Plane. Information and
Computation, 106(2):234 – 252, 1993.

2. T. Bektas. The multiple traveling salesman problem: an overview of formulations and solution
procedures. Omega, 34(3):209 – 219, 2006.

3. N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, DTIC Document, 1976.

4. D. Dereniowski, Y. Disser, A. Kosowski, D. Pajak, and P. Uznanski. Fast Collaborative Graph
Exploration. In Automata, Languages, and Programming, volume 7966 of Lecture Notes in
Computer Science, pages 520–532. Springer Berlin Heidelberg, 2013.

5. M. Dynia, J. Kutylowski, F. Heide, and C. Schindelhauer. Smart Robot Teams Exploring
Sparse Trees. In Mathematical Foundations of Computer Science 2006, volume 4162 of
Lecture Notes in Computer Science, pages 327–338. Springer Berlin Heidelberg, 2006.

6. M. Dynia, J. Lopuszanski, and C. Schindelhauer. Why robots need maps. In Proceedings of
the 14th international conference on Structural information and communication complexity,
SIROCCO’07, pages 41–50, Berlin, Heidelberg, 2007. Springer-Verlag.

7. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. In Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pages 448–455. ACM, 2003.

8. P. Fraigniaud, L. Ga̧sieniec, D. R. Kowalski, and A. Pelc. Collective tree exploration. Netw.,
48:166–177, October 2006.

9. G. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms for some routing
problems. In Foundations of Computer Science, 1976., 17th Annual Symposium on, pages
216–227, Oct 1976.

10. Y. GuoXing. Transformation of multidepot multisalesmen problem to the standard travelling
salesman problem. European Journal of Operational Research, 81(3):557 – 560, 1995.

11. Y. Higashikawa, N. Katoh, S. Langerman, and S.-i. Tanigawa. Online graph exploration
algorithms for cycles and trees by multiple searchers. Journal of Combinatorial Optimization,
pages 1–16, 2012.

12. R. M. Karp. Reducibility among combinatorial problems. Springer, 1972.
13. L. Lovász. Random Walks on Graphs: A Survey. In D. Miklós, V. T. Sós, and T. Szőnyi, editors,

Combinatorics, Paul Erdős is Eighty, volume 2, pages 353–398. János Bolyai Mathematical
Society, Budapest, 1996.

14. D. J. Newman. The double dixie cup problem. American Mathematical Monthly, pages
58–61, 1960.

15. C. Ortolf and C. Schindelhauer. Online Multi-robot Exploration of Grid Graphs with Rectan-
gular Obstacles. In Proceedings of the Twenty-fourth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’12, pages 27–36, New York, NY, USA, 2012. ACM.

16. C. H. Papadimitriou. The Euclidean travelling salesman problem is NP-complete. Theoretical
Computer Science, 4(3):237 – 244, 1977.

17. D. Portugal and R. Rocha. A survey on multi-robot patrolling algorithms. In L. Camarinha-
Matos, editor, Technological Innovation for Sustainability, volume 349 of IFIP Advances in
Information and Communication Technology, pages 139–146. Springer Berlin Heidelberg,
2011.

18. D. Rosenkrantz, R. Stearns, and P. Lewis. Approximate algorithms for the traveling salesper-
son problem. In Switching and Automata Theory, 1974., IEEE Conference Record of 15th
Annual Symposium on, pages 33–42, Oct 1974.

12

A Appendix

A.1 Canonical Cleaning

Theorem 1. Using the CANONICAL CLEANING it is possible to achieve a long-term visit time of
O((n/k) logn) and a visit time of diameter(G) +O((n/k) logn) with high probability.

Proof. We choose for each robot an independent uniform random choice of the nodes of the cycle
P as the cycle-start-node. The waiting-time is defined as diameter(G) − |sr, vs|. So, all nodes
start the traversal at the same time.

Let g be a subpath on the cycle P of length at most 2n. The probability that no robots are in
this subpath is (1− g

|P |)
k . For k robots a subpath g ≥ 2cn lnn

k
is empty with probability(

1− g

|P |

)k
≤ exp

(
− gk|P |

)
≤ exp

(
− gk
2n

)
≤ exp (−c lnn) ≤ n−c .

Hence, the maximum gap between two nodes on the cycle P is at most O((n/k) logn) with high
probability.

So, the long term visit time is bounded by this gap. From the waiting time, the first visit time
follows. Note that after the first visit, the revisit time matches the long term visit time.

A.2 Canonical Algorithm First Visit

Lemma 2. Assume there exists a parallel unaware cleaner algorithm A for k robots on a graph
with n nodes, where for all nodes u the probability that the first visit time is less or equal than
tf is at least p > 0. Furthermore, tf and p are known. Then, this cleaning algorithm can be
transformed into a canonical algorithm having visit time O(1

p
tf logn) with high probability.

Proof. Let P (r) with |P (r)| ≤ tf be the resulting path of robot r performing algorithmA. Then,
the cycle-start-node of the canonical algorithm is defined by choosing a random uniform node vs
from P (r). We set waiting-time(r)=0.

We now show that this algorithm fulfills the time behavior.

1. The first visit time can be proved as follow.
Each node is visited with probability of at least p

tf
. However, there are dependencies between

these events, since nodes might be visited by the same robot. So, we consider the subpath
before a node v of length 2ctf lnn

p
on a cycle C of length 2n with V (C) = V . Then, at

least c lnn different robots have positive probabilities to visit this interval. Let 1, . . . , k be
these robots and let pi be the probability that one of these robots visits this interval. For these
probabilities we have

∑k
i=1 pi ≥

p
tf

ctf lnn

p
= c lnn, since otherwise a node exists which is

visited with smaller probability than p
tf

.
The probability for not visiting this interval is therefore

k∏
i=1

(1− pi) ≤
k∏
i=1

exp (−pi) ≤ exp

(
−

k∑
i=1

pi

)
≤ exp (−c lnn) ≤ n−c .

Since with high probability a cycle-start-node is chosen on the cycle P at most (2ctf lnn)/p
nodes before v, v will be visited after tf + 2 c

p
tf lnn steps for the first time w.h.p. From the

union bound the claim follows.
2. The visit time follows by the following observation: From the observations above we know

that the subpath of length 2ctf lnn on P before and after any node is visited within time tf .
Therefore the visit time of a node is at most 4ctf lnn+ 2tf .

13

A.3 Analysis of Torus Algorithm

Theorem 2. Algorithm 2 is a high probability O(logn)-competitive visit cleaning algorithm for
the m×m-torus graph.

Proof. The following Lemma shows that the torus algorithm distributes the robots with equal
probabilities.

Lemma 3. For all t ∈ {1, . . . ,
√
n}, i ∈ {0, . . . , t} the probability that a robot starting at node

(sr.x, sr.y) is at node (sr.x + i, sr.y + (t− i)) after t rounds is 1/(t+ 1).

Proof. This follows by induction. For t = 0 the probability is 1 that the robot is at the start node
(sr.x, sr.y). Assume that at round t− 1 the claim is true.

For the induction we have to consider three cases:

– If x = sr.x and y = sr.y + t then the probability to move to this point is the product of
the stay probability at (x, y − 1) and the probability to increment y. By induction this is
1
t

(
1− 1

t+1

)
= 1

t+1
.

– If y = sr.y and x = sr.x + t then the probability to move to this point is the product of the
stay probability at (x, y − 1) and the probability to increment x. By induction this is again
1
t

(
1− 1

t+1

)
= 1

t+1
.

– For all other cases we have to combine the probability to increment x and y, the sum of which
is t
t+1

. By induction we get as probability 1
t

t
t+1

= 1
t+1

claim follows.

Assume that tf is the first visit time time for a robot placement in the torus. For the cleaning
of a target node (x, y) we choose a set of nodes S with t− 4tf nodes at a diagonal in distance t,
see Fig. 6. A = Ntf (S) is now the bait, i.e. the area, which guarantees the minimum number of
robots the recruitment area Ntf (A). Lemma 1 states that at least |A|/(tf + 1) robots must be in
this recruitment area Ntf (A). Now, the cleaning algorithm makes sure that all these robots pass
through the target node during the time interval [t− 2tf , t+ 2tf] with a probability of at least
1/(t+ 2tf + 1). Now, the size of |A| is at least 2tf (t− 4tf). So, the expected number of robots
passing through the target node is at least

|A|
(tf + 1)(t+ 2tf + 1)

≥ 2tf (t− 4tf)(t+ 2tf + 1)

tf + 1
≥ t− 4tf
t+ 2tf + 1

.

So for t ≥ 10tf we expect at least a constant number of 1
2

robots passing through any node
in a time interval of length 3tf . If we increase the time interval to the size of some ctf logn for
some appropriately chosen constant c, applying a Chernoff bound ensures us to visit this node
with at least one robot with high probability.

This proves that in the first phase of the algorithm we visit (and revisit) each node in every
time intervals of length O(tf logn).

It remains to show that in the second phase, where the algorithm enters the cycle the distance
on the cycle is bounded by O(tf logn). For this, we consider 4tf <

√
n consecutive nodes on

the cycle, which lie on 4tf consecutive diagonals, see Fig. 7. So, all of the |A|/(tf + 1) robots in
the recruitment area have a target node, which can be reached after

√
n steps. For each of these

target nodes, the probability to be reached by a robot on the corresponding diagonal is at least 1√
n

.
The minimum size of |A| is at least

√
n− 2tv , which results in an expected number of at least

2tf (
√
n− 2tf)

(2tf + 1)
√
n
≥ 1− tf√

n

14

target node

robot
recruitment area
for target node

bait A
t

core diagonal
at distance t

Fig. 6. The robot recruitment area for robots ex-
ploring the target node.

robot
recruitment area
for target node

bait A

core diagonal
at distance t

target nodes
 on the cycle

p
n

Fig. 7. The robot recruitment area for robots on
the cycle.

robots on the target nodes of the cycle. For tf ≤ 1
2

√
n this means that the expected number of

robots in an interval of length 4tf is at least 1
2

. So, the longest empty interval has length of at
most O(tf logn) by applying Chernoff bounds on O(logn) neighbored intervals.

For tf ≥ 1
2

√
n we consider

√
n consecutive nodes on consecutive diagonals. Every robot

ends the first phase and starts the cycle within this interval with probability 1√
n

. The minimum
number of robots to explore all n nodes is at least n

tf+1
, which follows by Lemma 1 for A = V .

Now, for c tf√
n
logn neighbored intervals on the cycle each of length

√
n the probability that a

single robot chooses a node in this interval is at least

tf√
n

c logn√
n

= c
tf
n

logn .

So, the expected number of robots is c n
tf

tf
n
logn = c logn for an time interval of length

c
tf√
n

√
n logn = ctf logn. Now, by Chernoff bounds the probability that we find this interval to

be empty has a probability of at most n−c
′

for some constants c, c′.
So, the maximum distance of two robots on a cycle in the first and second phase is at most

O(tf logn) with high probability. Since the visit time is at least the first visit time the competitive
ratio of O(logn) follows.

A.4 Proof of Lemma 3

Lemma 3. For a graph G, a node v ∈ V , β chosen randomly from [1, 2], a random permutation
π over {1, . . . , n}, and for ` = 8βt logn the probability that v ∈W is at least 1

4
.

Proof. We will prove that P (v ∈ U) ≥ 1
4

, which implies the claim because U ⊂W .
Consider the first nodew in the `+2t-neighborhood of v according to the random permutation

π, i.e. w = uπ(i∗) where i∗ = min{i | |v, uπ(i)| ≤ ` + 2t}. If w is closer than ` − 2t to v, i.e.
|v, w| ≤ ` − 2t, then v is in the working area of w (and U), since no node with smaller index
can be closer than w, i.e. w ∈ Ui∗ ⊆ U . On the other hand if this node is in the critical distance
|v, w| ∈ (`− 2t, `+ 2t], then it is excluded from Ui∗ and since i∗ has the smallest index in the
vicinity it is also not in any other working area, i.e. v 6∈ U . Since π is a random permutation the
probability of v ∈W is given by the number of elements in the closer vicinity:

P`(v ∈ U) =
|N`−2t(v)|
|N`+2t(v)|

15

This implies
2 logn∏
i=0

P`+4it(v ∈ U) =
|N`−t(v)|

|N`+8t logn+2t(v)|
≥ 1

n
(4)

Now, we choose β randomly from {1, 1 + 1
2 logn

, 1 + 2
2 logn

, . . . , 1 + 2 logn−1
2 logn

} and compute
` = 8βt logn. Hence,

P (v ∈ U) =
1

2 logn

2 logn−1∑
i=0

P8t logn+4it(v ∈W)

Assume that P (v ∈ U) < 1
4

, then at least half of all values of
(P8t logn+4it(v ∈W))i∈{0,...,2 logn−1} are smaller than 1

2
. Then, we observe the following.

2 logn∏
i=0

P8t logn+4it(v ∈ U) <

(
1

2

)logn

=
1

n
,

which contradicts (4). Therefore P (v ∈W) ≥ P (v ∈ U) ≥ 1
4

.
The same argument holds, if we choose β randomly from the real interval [1, 2].

A.5 Analysis of Algorithm 5

Theorem 3. Algorithm 5 is a high probability O(log2 n)-competitive first visit algorithm for
every undirected graph.

Proof. Consider the round of the outer loop, where t = 2i ∈ [tf , 2tf], where tf is the first visit
time of the optimal algorithm. We show that in this round all nodes will be explored with high
probability. Lemma 5 states that the number of robot moves of ONE-SHOT-CLEANING is bounded
by 100 · 2i logn. So, the overall number of each robot moves is bounded by 800(c+ 1) log2 n.

For any node u the probability, that the ONE-SHOT-CLEANING algorithm for ` = 8βt logn
chooses u ∈ W is at least 1

4
following Lemma 3. If u resides in Wi, the number of robots

performing the cleaning is at least |Wi|/(2t) implied by Lemma 6. These ki robots have to explore
a cycle of length at most twice the size of the connected Steiner-tree computed in Algorithm 4.
These are at most 34|Wi| logn nodes. Now, Algorithm 3 starts with a random node node and
explores 68t logn nodes. So, after one execution of the ONE-SHOT-CLEANING algorithm the
probability of a node not to be explored is at most

1− 1

4

68t logn

34|Wi| logn
= 1− t

2|Wi|

The cleaning is be independently repeated for ki ≥ |Wi|
2t

times.

(
1− t

2|Wi|

) |Wi|
2t

≤ e−
1
4

Hence, the maximum probability of a node not to be explored after 4(c+ 1) lnn repetitions is at
most 1

nc .

16

