
A Recursive Approach to
Multi-Robot Exploration of Trees

Christian Ortolf and Christian Schindelhauer

University of Freiburg, Department of Computer Science, Computer Networks
{ortolf,schindel}@informatik.uni-freiburg.de

Abstract. The multi-robot exploration problem is to explore an unknown graph
of size n and depth d with k robots starting from the same node. For known graphs
a traversal of all nodes takes at most O(d + n/k) steps. The ratio between the
time until cooperating robots explore an unknown graph and the optimal traversal
of a known graph is called the competitive exploration time ratio.
It is known that for any algorithm this ratio is at least Ω ((log k)/ log log k). For
k ≤ n robots the best algorithm known so far achieves a competitive time ratio of
O (k/log k).
Here, we improve this bound for trees with bounded depth or a minimum num-
ber of robots. Starting from a simple O(d)-competitive algorithm, called Yo-
yo, we recursively improve it by the Yo-star algorithm, which for any 0 <
α < 1 transforms a g(d, k)-competitive algorithm into a O((g(dα, k) log k +
d1−α)(log k + logn))-competitive algorithm. So, we achieve a competitive

bound of O
(
2O(
√

(log d)(log log k))(log k)(log k + logn)
)

. This improves the
best known bounds for trees of depth d, whenever the number of robots is at least

k = 2ω(
√

(log d)(log log d)) and n = 2O(2
√

log d).

Keywords: competitive analysis, robot, collective graph exploration

1 Introduction

Maintenance robots are nowadays common for households and every day life. One of the
most basic tasks such robotic lawn mowers, vacuum cleaners, and underwater cleaning
robots is to explore a new environment. Besides the technical problem of localization,
orientation and communication it is not clear how to make use of the full potential of the
parallel exploration. This is the problem setting of multi-robot exploration.

The Model. The multi-robot exploration takes place on a labeled, connected, undirected
graph G = (V,E) with |V | = n and diameter d. In each round an algorithm has to
decide for each of the k robots which edge it traverses to a neighboring node. The
algorithm knows the positions of all robots and is not computationally restricted. The
goal is to visit all nodes of the graph as fast as possible at least once.

An offline algorithm has full knowledge ofG, while an online algorithm can only use
the induced subgraph defined by the already visited nodes of V and their neighboring
nodes. The efficiency of an online algorithm is measured by comparing its run-time

against the asymptotically optimal offline algorithm. The maximum of the ratio between
the run-time of the online and the offline exploration time is called the competitive ratio
of an algorithm.

Our Results In this paper we present two algorithms. The first, called Yo-yo, achieves
competitive ratio of 4d, while the second, called Yo*, recursively improves this bound up
to a ratio of O

(
2O(
√

(log d)(log log k))(log k)(log k + log n)
)

. This is an improvement
of the best known results for a minimum number of k = dc robots for c > 0 up to a ratio
of kε log n for any ε > 0.

Related work Exploration is a more than a century old problem (for a survey we
recommend [18]) closely related to the Traveling Salesman and the Hamiltonian cycle
problem. But most work on exploration only handles various cases concerning a single
robot.

For the single robot case asymptotically optimal exploration up to a factor of two is
possible with depth-first-search DFS. Using a map the exploration of a line or tree can
be improved by preventing double traversal of edges. Desmark et al. show in [8] various
competitive constants that can be gained depending on if an anchored, unanchored or no
map at all is available.

If graphs are not labeled, DFS cannot be directly used. M.A. Bender presents solu-
tions for this scenario in [3, 4] using a pebble or a second robot for bookkeeping.

In 2006, Fraigniaud et al. consider the multi-robot exploration problem for trees
in [12]. They present an algorithm that with a run-time of O(k/ log k) is far apart from
their lower bound ofΩ(2+1/k) and quite close the trivial upper bound ofO(k) achieved
by executing a depth first search using a single robot. While the lower bound is improved
by Dynia et al. in [10] to Ω(log k

log log k) the upper bound still is the state of the art and the
exponential gap remains open between these two bounds.

Several restrictions for the exploration can improve the bounds. If algorithms are
restricted to greedy exploration an even stronger bound of Ω(k/ log k) is shown by
Higashikawa et al. [15].

For restricted graphs several better algorithms exist. Dynia et al. showed in [9] a faster
exploration for trees restricted by a density parameter p, enforcing a minimum depth for
any subtree depending on its size. For example trees embeddable in p-dimensional grids
could be explored with competitiveness of O(d1−1/p).

For 2-dimensional grids with only convex obstacles we improved the competitive
bound to O(log2 n) in [17]. Also note that despite this strong restrictions to a graph the
same lower bound of Ω(log k

log log k) as for trees holds.

In Brass et al.’s work an upper bound of O(nk + dk−1) [5] is shown, they implement
an algorithm that moves robots similar to the method of Fraigniaud et al. [12], but also
works on graphs using only a local communication model with bookkeeping devices.

Dereniowski et al. discuss in their work very large values of k. They show how many
more robots need to be invested to explore in asymptotically optimal time. They show a
minimum of k = dn1+ε for an ε > 0 robots to be necessary and improve with this the
trivial bound of O(nd) required to explore any graph in time d with flooding [7].

2

Exploration of directed graphs is not discussed here. Competitive analysis done by
Albers et al. [1], Fleischer et al. [11], Papadimitriou et al. [6] and Förster et al. [13]
indicates this to be a harder problem than the undirected case.

Some works model the exploration geometrically, this is useful if robots have a sense
of sight enabling to see additional nodes before visiting them [14, 16] or having to move
around corners to make everything visible in case of unlimited vision [2].

A constant factor offline approximation. A very basic observation is the constant factor
offline approximation presented in Algorithm 1, which establishes a constant approxima-
tion factor of four.

Algorithm 1: Offline 4-competitive multi-robot exploration of trees for robot j
1: Compute a cycle of length 2n using DFS covering the tree
2: Divide the cycle into k intervals of size at most d2n/ke
3: Go to the j-th interval
4: Traverse the interval

Lemma 1. Algorithm 1 needs at most d+ d2n/ke robot moves and has a competitive
factor of four.

Proof. Every exploration algorithm needs at least max{dn/ke, d} steps. The number of
robot moves of Algorithm 1 is d+ d2n/ke ≤ 2max{d, d2n/ke} ≤ 4max{d, dn/ke}.
Hence, it is 4-competitive.

2 The Yo-yo Exploration

The basic idea of the Yo-yo exploration algorithm is to successively explore every set of
nodes in the tree with the same depth. After each exploration step all robots return to
the root and are perfectly rebalanced for the next exploration step. For most trees this
algorithm is not very efficient, since most of the time the robots commute between the
root and the leafs of the so far known sub-tree. We denote the number of nodes in depth
i by ni.

Algorithm 2: The Yo-yo Algorithm: 4d-competitive multi-robot exploration of a
tree

1: All robots start at the root of the tree
2: for i← 2, . . . , d do
3: Partition all ni nodes in depth i into k subsets Vi,1, . . . , Vi,k with |Vi,j | ≤ dnik e.
4: for all j ← 1, . . . , k do in parallel
5: for all u ∈ Vi,j do
6: Move robot j to u
7: Move robot j to the root
8: end for
9: end for

10: end for

3

The main motivation of this algorithm is that the competitive ratio 4d only depends
on the depth d, which we can improve later on by a technique which does not work with
a competitive factor only depending on k. Note that for at least k = Ω(d log d) robots
Yo-yo is asymptotically at least as good as the best known algorithm of Fraigniaud et
al. [12].

Lemma 2. The Yo-yo algorithm needs at most d(d+ 1) + 2dn/k rounds to explore a
graph with n nodes, depth d and k robots, and thus has a competitive exploration ratio
of at most 4d.

Proof. The success of the exploration algorithm follows by an easy induction over the
tree depth. For the number of rounds, note that in lines 6 and 7 each of the k robots
moves for 2i rounds in order to explore a node in Vi,j and return to the root. This is
repeated in the loop starting at line 5 for at most dni/ke times. Therefore, the overall
number of rounds for the outer loop starting at line 2 is the following.

d∑
i=1

2i
⌈ni
k

⌉
≤

d∑
i=1

2i
(
1 +

ni
k

)
= d(d+ 1) +

d∑
i=1

2i
ni
k

≤ d(d+ 1) + 2d
n

k
,

where we use
∑d
i=0 ni = n. Now, every exploration algorithm needs at least

max{d, dn/ke} ≥ 1
2 (d+ n/k) rounds. So, the competetive factor is at most

d(d+ 1) + 2dnk
max{d, dn/ke}

≤
2d2 + 2dnk
1
2 (d+ n/k)

≤ 4d

ut

3 The Yo* Algorithm

Starting from the Yo-yo algorithm (Algorithm 3) we use a recursive approach to improve
the efficiency of the exploration. To avoid the rebalancing step passing the root in each
step we divide the graph into the uppermost segment of depth c and b segments of depth
a such that d = ab + c which values are to be chosen later on, see Fig. 1. The first
segment will be explored by the base algorithm, e.g. the Yo-yo algorithm. One can easily
see that if the competitive ratio grows with the depth of the tree we can bound the ratio
with a smaller term now.

All deeper unexplored segments will be handled together with the last explored
segment,see Fig. 2. These two segments form a forest of trees. If the number of trees is
greater than the number of robots, we can use DFS to efficiently explore them. However,
the size of the trees can differ and therefore, we rebalance the robots if half of the trees

4

have been explored by DFS. The rebalancing costs at most d steps and this has to be
repeated at most log n times.

If the number of trees has been reduced to be smaller than the number of robots, we
use the base algorithm and rebalance again, if half of the trees have been completely
explored. So, we have log k iterations for all the b segments.

unexplored

explored
by base

algorithm

to be
explored

unexplored

unexplored

c

a

a

a

Fig. 1. The first round of the Yo-star algorithm

explored

explored

to be
explored

unexplored

explored
by base

algorithm

explored
by base

algorithmexplored
by base

algorithm

R
c

a

a

a

Fig. 2. The principle of the Yo-star algorithm

Taking the Yo-yo algorithm and choosing segments of depth a = c = d
1
2 a back-

on-the-envelope calculation gives us a competitive ratio of O(d
1
2) for the first segment

and a ratio of O(d
1
2 (log n + log k)) for all the other segments. So, after one iteration

of the Yo* algorithm we improve the depth-dependent factor in the ratio from d to d
1
2 .

Now, if we take this new algorithm as base algorithm and choose segments of size d
1
3 we

improve the ratio to d
1
3 . However, there is an overhead in the iteration, where constant

factors grow exponentially over the number of iterations and thus must be carefully
analyzed.

So, we assume we start from a g(d, k)(d + n
k) time bounded algorithm and try to

turn it into a more efficient one using the Yo* algorithm. From g(d, k) we only know that
it is a monotone increasing function with respect to d and k, e.g. for the Yo-yo algorithm
we have g(d, k) = 4d.

Lemma 3. Given a g(d, k)(d + n
k)-time bounded base algorithm for a graph with

unknown number of nodes n, given depth d = ab+ c, a, b, c ∈ N, and k exploring robots,
then the Yo* algorithm can explore such a tree within the following number of rounds(

d+
n

k

)
(8g(2a, k) log k + g(c, k) + 2b(log k + log n) + 4 log n) .

5

Algorithm 3: The Yo* algorithm using a base algorithm
1: All k robots start at the root of the tree
2: Explore the subtree of depth c with the base algorithm
3: for j ← 1, . . . , b do
4: R← set of nodes in depth max{0, c+(j−2)a}, which are ancestors to at

least one unexplored succeeding node in depth [c+(j−1)a, c+ ja]
5: while R 6= ∅ do
6: if k ≤ |R| then
7: Equally partition all nodes in R into sets V1, . . . , Vk such that |Vi| ≤

⌈
|R|
k

⌉
8: for i← 1, . . . , k do
9: Ti ← minimum tree connecting all unexplored nodes in depth

[c+ (j − 1)a, c+ ja] with an ancestor in Vi
10: end for
11: while less than k/2 subtrees of R are explored do
12: for all i← 1, . . . , k do in parallel
13: Perform a DFS exploration step in Ti with robot i
14: end for
15: end while
16: else
17: for i← 1, . . . , |R| do
18: Equally assign ki robots to node vi of R such that ki ∈

{⌊
k
|R|

⌋
,
⌈
k
|R|

⌉}
19: Ti ← minimum tree connecting all unexplored nodes in depth

[c+ (j − 1)a, c+ ja] with ancestor vi
20: end for
21: while less than k/2 subtrees of R are fully explored do
22: for all i← 1, . . . , |R| do in parallel
23: Perform one step of the base exploration algorithm

on Ti with ki robots
24: end for
25: end while
26: end if
27: R← set of nodes in depth max{0, c+(j−2)a}, which are ancestors to at

least one unexplored succeeding node in depth [c+(j−1)a, c+ ja]
28: end while
29: end for

6

Proof. We denote by n0 the number of nodes in depth at most c. By nj we denote the
number of nodes of the tree with depth in the interval [1 + c + (j − 1)a, c + ja]. By
definition

∑b
j=0 nj = |V |.

We use the base algorithm to explore the first segment, which needs at most

t1 = g(c, k)
(
d+

n0
k

)
(1)

rounds.

In all other rounds we use the base algorithm several times when k > |R|. After each
iteration of the while-loop from lines 21-25 the number of |R| is reduced by a factor
of 2, which implies at most log k iterations. The variable ν = 1, . . . , log k counts the
iterations of this loop. Let Rj,ν be the variable R in the j-th loop and the ν-th iteration.
Let kj,ν be the smallest number of robots in this phase, i.e. kj,ν = bk/|Rj,ν |c.

The trees connecting all unexplored nodes with an ancester node in Rj,ν are named
Tj,ν,i for i ∈ {1, . . . , |Rj,ν |}. Now define

nj,ν := median(|V (Tj,ν,i)| , i ∈ {1, . . . , |Rj,ν |})

where for even number m the median refers to the m/2-th largest element. Note that the
median implies that

nj,ν
|Rj,ν |
2
≤
|Rj,ν |∑
i=1

|V (Tj,ν,i)| ≤ nj−1 + nj

So, we can conclude that

log k∑
ν=1

nj,ν |Rj,ν | ≤ 2(nj + nj−1) log k .

The run-time of one invocation the base algorithm is by definition at most

g(2a, kj,ν)

(
2a+

⌈
nj,ν
kj,ν

⌉)

by design of the loop in line 21. Since kj,ν ≥ |Rj,ν | and nj,ν ≥ 1 we can use
⌈
x
byc

⌉
≤

2xy + 1 for x, y ≥ 1.

⌈
nj,ν
kj,ν

⌉
=

⌈
nj,ν

bk/|Rj,ν |c

⌉
≤ 2

nj,ν |Rj,ν |
k

+ 1

7

The run-time over all invocations of all these loops is therefore

t2 ≤
b∑
j=1

log k∑
ν=1

g(2a, kj,ν)(2a+ dnj,ν/kj,νe)

≤ g(2a, k)

2ab log k + b log k + 2

b∑
j=1

log k∑
ν=1

nj,ν |Rj,ν |
k


≤ g(2a, k)

2ab log k + b log k + 2

b∑
j=1

2(nj−1 + nj) log k

k


≤ g(2a, k)

(
2(d− c) log k + b log k + 8

n

k
log k

)
≤
(
2d+ b+ 8

n

k

)
g(2a, k) log k .

It remains to count all rebalancing moves of the robots. It takes at most 2d steps to
reassign a robot to its new tree. For the case k > |R|, this iterates at most b log k times,
resulting in

t3 ≤ 2bd log k

steps.
Now we analyze the case k ≤ |R|. After each iteration of the loop of line 11 the

number of nodes in |R| is halved. Hence, the number of loops is bounded by log n. The
sum of all iterations of the loop 11 is bounded by 4(nj−1 + nj)/k rounds, since k/2
robots successfully explore the graph in parallel. So, summing over all j we get

t4 ≤
b∑
j=1

4(nj−1 + nj)

k
≤ 8

n

k
log n

for the DFS-exploration. Again we have to rearrange the robots between the trees which
costs at most

t5 ≤ 2bd log n

additional steps.
So, for c ≤ 2a and d ≥ 1 the cost is bounded by:

run-time = t1 + t2 + t3 + t4 + t5

≤ g(c, k)
(
d+

n0
k

)
+ g(2a, k)

(
2d+ b+ 8

n

k

)
log k

+ 2bd log k + 4
n

k
log n+ 2bd log n

≤ d
(
g(c, k) +

(
2 +

b

d

)
g(2a, k) log k

)
+
n

k
(g(c, k) + 8g(2a, k) log k + 4 log n) + 2db(log k + log n)

≤
(
d+

n

k

)
(g(c, k) + 8g(2a, k) log k + 2b(log k + log n) + 4 log n)

ut

8

We use polynomials of d for a and b, which results in the following Lemma.

Lemma 4. Given a g(d, k)(d + n
k)-time bounded base algorithm for a graph with

unknown number of nodes n, given depth d and k exploring robots, then the Yo* algo-
rithm provides a (d+ n

k)(9g(2d
α, k) log k+8d1−α(log k+ log n))-time bounded robot

exploration algorithm.

Proof. We choose a = bdαc, b = bd/ac, and c = n − ab. Note that c ≤ a and
b ≤ 2d1−α. From Lemma 3 it follows that the run-time of Yo* is the following:

time ≤
(
d+

n

k

)
(g(c, k) + 8g(2a, k) log k + 2b(log k + log n) + 4 log n)

≤
(
d+

n

k

) (
g(dα, k) + 8g(2dα, k) log k + 4d1−α(log k + log n) + 4 log n

)
≤
(
d+

n

k

) (
9g(2dα, k) log k + 8d1−α(log k + log n)

)
Starting from the 4d-competitive Yo-yo algorithm we choose α = 1

2 and obtain by
the last Lemma a O(d 1

2 (log k + log n))-competitive multi-robot exploration algorithm.
This algorithm can be also asymptotically improved by the same lemma. For this we can
choose α = 2

3 and get a O(d 1
3 (log k)(log k + log n)) algorithm. Of course this process

can be iterated using the following lemma.

Lemma 5. For k ≥ 2, c ≥ 4, β ∈ [0, 1], γ ≥ 0 and a base exploration algorithm with a
run-time of

(
d+ n

k

)
cdβ(log k)γ(log k + log n), the Yo-star algorithms can achieve an

exploration time bound of
(
d+ n

k

)
20c · dβ/(β+1)(log k)γ+1(log k + log n).

Proof. We choose α = 1
1+β such that αβ = 1 − α. This observation will be used for

the run-time of an iteration the Yo* algorithm.

time
d+ n

k

≤ 9g(2dα, k) log k + 8d1−α(log k + log n)

≤ 9c2βdαβ(log k)γ+1(log k + log n) + 8d1−α(log k + log n)

≤ 18cdβ/(β+1)(log k)γ+1(log k + log n) + 8dβ/(β+1)(log k + log n)

≤ 20cdβ/(β+1)(log k)γ+1(log k + log n) ,

where we use 2β ≤ 2 and 18c+ 8 ≤ 20c for c ≥ 4. ut

Note that the iteration β 7→ β/(β + 1) with starting point β = 1 results in the series
1, 12 ,

1
3 ,

1
4 , Let β1 := 1 and βi+1 := βi/(βi + 1). If βi = 1

i , then

βi+1 =
1
i

1
i + 1

=
1

i+ 1
.

So, after ` iterations of the Yo-star algorithm, starting from the Yo-yo algorithm we
have the following ratio:

time
n
k + d

≤ 4 · 20`d
1
`+1 (log k)`(log k + log n) .

9

So far, we have assumed to know the depth. This is not necessary, since we use
exponential doubling to find it. This introduces an additional factor of log d which we
will take into account from now on. This competitive factor is only taken into account
once, since after a correct guess the recursive approach invokes the next exploration
algorithm with the correct depth value.

Theorem 1. The Yo-star multi-robot exploration algorithm with ` iterations can explore
an unknown tree with depth d and size n with a competitive ratio of at most

O
(
20`d

1
`+1 (log k)`(log k + log n)(log d)

)
.

Proof. Since the depth of tree is unknown we iteratively restart the Yo-star exploration
algorithm with an assumed depth of d′ = 1, 2, 4, An exploration is canceled if a
node with depth larger than d′ has been found, then the exploration starts from scratch.
In the final step the time for the exploration is therefore at most (assuming d′ = 2d− 1
in the worst case)(

2d− 1 +
n

k

)
4 · 20`(2d− 1)

1
`+1 (log k)`(log k + log n) .

Now 2d − 1 + n/k ≤ 2(d + n/k) and (2d − 1)
1
`+1 ≤ (2d)

1
`+1 ≤ 2d

1
`+1 results in an

additional factor of 4. It takes log d iterations until d′ ≥ d and therefore we have a total
run-time of at most

16
(
d+

n

k

)
· 20`d

1
`+1 (log k)`(log k + log n) log d

The competitive factor originates from the observation that the minimal time for offline
exploration is max{d, n/k} ≥ 1

2 (d+ n/k). ut

This is the main result of this paper. What follows is a discussion of how many
iterations are necessary to achieve best possible asymptotical bounds. It turns out that the
relationship between the depth and the number of robots is crucial. If d = O((log k)c)
then already the Yo-yo algorithm provides a competitive ratio of O((log k)c). If the
depth is larger with respect to the number of robots, then Yo* provides better bounds.

Theorem 2. The Yo-star algorithm can achieve a competitive factor of

2(2+o(1))
√

(log d)(log log k)(log k)(log k + log n)

for a k-multi-robot exploration of graphs of size n and depth d.

Proof. Again we test the depth of the tree by performing the ` iterations of the Yo*
algorithm, where we double a depth parameter d′ every time we finde a node in depth
d′ + 1. Then, we relaunch the exploration. As the iteration depth of Yo* we choose

` =
⌈√

log d′

log log k

⌉
, because

(log k)` = 2

⌈√
log d′

log log k

⌉
log log k

≤ 2
√

(log d′)(log log k) log k

10

and
d′2/(2`+1) ≤ 2(log d)

√
log log k/

√
log d = 2

√
(log d)(log log k)

Now
20`(log d′) ≤ 2

√
log d+log log d = 2o(1)

√
(log d)(log log k)

for large enough k. So, the only remaining relevant factor is log k + log n which implies
the result. ut

This bound is not always smaller than the best known competitive ratio ofO(k/ log k).
Yet, for trees with depth d = 2(

1
4−ε)

(log k)2

log log k , ε > 0 and size n = 2O(2
√
d), which includes

the interesting cases of d = O(kc) and n = 2d
o(1)

for any c > 0, the Yo-star algorithms
is currently the best available multi-robot exploration algorithm. See the appendix for a
proof of this observation.

4 Conclusions

We discussed in this work the collaborative multi-robot exploration of trees. The al-
gorithms know the positions of all robots and are not restricted in computation. Until
now a wide gap was open between upper bound of O(k

log k) and the lower bound of

Ω(log k
log log k). While these bounds could not been improved for nearly a decade and the

only improvements have been happening on more restricted models, we finally were
able to present new upper borders for the collective tree exploration.

The first, rather simple, Yo-yo algorithm has a competitive ratios of 4d and improves
this bound for d = o(k/ log k) robots. If the number of robots is smaller, then our Yo-star
algorithm provides a new bound of

2(2+o(1))
√

(log d)(log log k)(log k)(log k + log n) .

This hard to understand bound needs some interpretation and one can be derived the
bounds for k ≤ n shown in Table 1 for any constant c > 0. A proof of the results in this
table is given in the Appendix.

k d n competitive factor algorithm

2d
1/c

(log k)c 4(log k)c Yo-yo
dΩ(1) kO(1) ko(1) logn Yo*

dΩ(1) kO(1) 2d
o(1)

ko(1) Yo*

2
c2

4
(log k)2/ log log k kc(1+o(1)) logn Yo*

2ω(
√
log d log log d) 2O(2

√
log d)

ko(1) Yo*

22
O(
√

(log d)(log log k))

2O(
√

(log d) log log k) Yo*

Table 1. Competitive exploration time ratios for the Yo-yo and the Yo* algorithm

We presented in this work the first collaborative exploration for trees reaching
subpolynomial competitive ratio of o(kε) for any constant ε > 0 and k < n, especially

11

this is the case for the Jellyfish tree with k = d and n/k = d, which is used to establish
the lower bound of O(log k/ log log k) [10]. This is an important step closing the gap
between the upper and lower bound. Future work will be dedicated to the multi-robot
exploration of general graphs using the Yo-yo and Yo* approach.

5 Acknowledgments

We are very grateful for the comments of the anonymous reviewers pointing out numerous
mistakes in the first version.

References

1. S. Albers and M. R. Henzinger. Exploring Unknown Environments. SIAM Journal on
Computing, 29(4):1164, 2000.

2. S. Albers, K. Kursawe, and S. Schuierer. Exploring unknown environments with obstacles. In
Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’99,
pages 842–843, Philadelphia, PA, USA, 1999. Society for Industrial and Applied Mathematics.

3. M. A. Bender. The power of team exploration: Two robots can learn unlabeled directed graphs.
In In Proceedings of the Thirty Fifth Annual Symposium on Foundations of Computer Science,
pages 75–85, 1994.

4. M. A. Bender, A. Fernández, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. Information and Computation, 176(1):1 – 21, 2002.

5. P. Brass, F. Cabrera-Mora, A. Gasparri, and J. Xiao. Multirobot tree and graph exploration.
Robotics, IEEE Transactions on, 27(4):707–717, Aug 2011.

6. X. Deng and C. Papadimitriou. Exploring an unknown graph. In Foundations of Computer
Science, 1990. Proceedings., 31st Annual Symposium on, pages 355 –361 vol. 1, oct 1990.

7. D. Dereniowski, Y. Disser, A. Kosowski, D. Pajak, and P. Uznanski. Fast collaborative graph
exploration. In Automata, Languages, and Programming, volume 7966 of Lecture Notes in
Computer Science, pages 520–532. Springer Berlin Heidelberg, 2013.

8. A. Dessmark and A. Pelc. Optimal graph exploration without good maps. Theor. Comput.
Sci., 326:343–362, October 2004.

9. M. Dynia, J. Kutylowski, F. Heide, and C. Schindelhauer. Smart robot teams exploring sparse
trees. In Mathematical Foundations of Computer Science 2006, volume 4162 of Lecture Notes
in Computer Science, pages 327–338. Springer Berlin Heidelberg, 2006.

10. M. Dynia, J. Lopuszanski, and C. Schindelhauer. Why robots need maps. In Proceedings of
the 14th international conference on Structural information and communication complexity,
SIROCCO’07, pages 41–50, Berlin, Heidelberg, 2007. Springer-Verlag.

11. R. Fleischer and G. Trippen. Exploring an unknown graph efficiently. In G. Brodal and
S. Leonardi, editors, Algorithms – ESA 2005, volume 3669 of Lecture Notes in Computer
Science, pages 11–22. Springer Berlin / Heidelberg, 2005. 10.1007/11561071_4.

12. P. Fraigniaud, L. Ga̧sieniec, D. R. Kowalski, and A. Pelc. Collective tree exploration. Netw.,
48:166–177, October 2006.

13. K.-T. Förster and R. Wattenhofer. Directed graph exploration. In R. Baldoni, P. Flocchini,
and R. Binoy, editors, Principles of Distributed Systems, volume 7702 of Lecture Notes in
Computer Science, pages 151–165. Springer Berlin Heidelberg, 2012.

14. Y. Gabriely and E. Rimon. Competitive on-line coverage of grid environments by a mobile
robot. Comput. Geom. Theory Appl., 24(3):197–224, Apr. 2003.

12

15. Y. Higashikawa, N. Katoh, S. Langerman, and S.-i. Tanigawa. Online graph exploration
algorithms for cycles and trees by multiple searchers. Journal of Combinatorial Optimization,
pages 1–16, 2012.

16. A. Kolenderska, A. Kosowski, M. Malafiejski, and P. Zylinski. An improved strategy for
exploring a grid polygon. In S. Kutten and J. Őerovnik, editors, Structural Information
and Communication Complexity, volume 5869 of Lecture Notes in Computer Science, pages
222–236. Springer Berlin Heidelberg, 2010.

17. C. Ortolf and C. Schindelhauer. Online multi-robot exploration of grid graphs with rectangular
obstacles. In Proceedings of the Twenty-fourth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’12, pages 27–36, New York, NY, USA, 2012. ACM.

18. N. S. V. Rao, S. Kareti, W. Shi, and S. S. Iyengar. Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-12410:1–58,
Oak Ridge National Laboratory, July 1993.

13

