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Chapter 1

Intr oduction

The modernworld relieson the availability of hugecommunicatiometworks connectingcomputersand
otherelectronicdevicesworldwide. Clearly, thereis anenormousiumberof problemshatmustbe solved.
Theseproblemscanbe manifoldandvery complex. We will make atheoreticalpproactof somespeci c
issuedn the contet of network communicatiorproblems.

1.1 Broadcastinginformation

Communicationnetworks are often describedas undirectedgraphs. The participantsare nodesand in-
formationtransmissioris modeledby communicatiorinks betweerntwo nodesabstractedy undirected
edges Oneof the basicinformationtasksis to spreadaninformationfrom onenodeto all memberf the
communicatiometwork.

Assumethat somepeople try to organizea party. Everybodyknows only someother
people,e.g. knows , and ,while knows and , knows , and etc. Suchrelations
canbedescribedy agraphwhereaplayeris depictecby anodeand knows s presentedy anedge.
Sucharelationgraphis shovn on thetop of Figurel.1.

Assumethat is the onewho knows the time andlocationof the party In the beginning informs

. In asecondround and caninform two participantsin parallel,namely and . Then,the
informedparticipants , , ,and continueto inform all otherplayers.In Figurel.1lit is shavn how
theinformationspreadsindhow this informationprocesgerminatesaftersix round.

In our simplemathematicamodelevery communicatiorsteplastsonetime unit andonenodecanonly
inform oneneighborechode.Informednodescaninform othernodesn parallel. This procesdeginswith
oneor mary informednodesattime point . Thebroadcastingime is thenumberof time neededo inform
all nodes.Notethatgiventhegraphandtheinformednodesit is not clearhow long it takesuntil all nodes
areinformed. Obsenrein Figurel.2 thatfor the samegraphanimprovedstratgy achievesa broadcasting
time of four.

In this context a variety of questionsariseandwe will discusssomeof them.

Time: How long doesit take until all playershave beeninformedin general?

Figurel.1and 1.2 show thatthetime neededor broadcastingnformationdepend®n the strateyy.
Hence to solve this questionave have to solve thefollowing questionrst:

ScheduleWhichis theshortesscheduldo organizethe broadcast?

It turnsoutthatthereis noknown ef cient algorithmthatcomputesuchschedulefMJ90]. However,
this doesnot meanthatfor a speci ¢ givengraphthe problemcannotbe solvedat all.

For which graphfamiliescanwe solve this problem?

Approximability: If the optimal broadcastingschedulecannotbe computed,canwe determinea
goodstrategyy whichis only someadditionalroundsslower thanthe bestschedule?
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Figurel.1: Player startsthe broadcastingrocess.Usingthis schedulesix roundssufce to inform all
players.
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Figurel.2: An improvedbroadcastingchedulawvith four rounds
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1.2 SpreadingRumor and Viruses

The mathematicainodelingof the spreadingf infectiousdiseasegoesbackto Bernoulliin the 18thcen-
tury. In the rst half of the 20th centuryprobabilisticmethodshave beenusedto predictthe spreading
behaior of diseasesFor anoverview see[Bai75]. In 1987 Pittel [Pit87] analyzedhe expectedcontami-
nationtime for a very simplemodel.

Thevirus spreadsn rounds.In the beginning oneindividual is infected. In eachroundeach
individual contactsarandomotherof the subjectslf the rst individualis infectedthenthe
secondwill be contaminatedhis way andstartsspreadinghevirusin the next round.

If we choosethe contactecbartneruniformly over all participantsthenwith probability two
individualsareinfectedin the secondround (becausevith probability theindividual contactstself).
Thesetwo will infecttwo morein thesecondoundwith probability - —, andsoon. It isintuitively

clearthatthis way thenumberof infectedbeingsgrows exponentiallyunlessa constanfractionof subjects
is infected. Then,the numberof uncontaminategarticipantswill decreasexponentially For this model
Pittel shavedthatthe expectedime until all participantswill beinfectedis

Unlike in the broadcastingnodel discussedibove, herethe information stratey is not the problem
The virus, or the rumor, is spreadas often as possible. Furthermorethe information processs robust.
If in oneround someparticipantsfail to transmitthe rumor, this doesnot changethe generalbehaior.
Thesemay have beenthe argumentsendorsingthe applicationof this spreadingnechanisnto replicated
databasesnderthenameepidemicalgorithms.In thelandmarkpape{DGH 87] Demersetal. introduced
this concepto the public.

They proposedo extendtheinformationprocessasfollows. In theabove describedstandardnodelthe
callerinformsthecallee.In the caseof contagiouslisease is not clearwhy the contactedsubjectshould
notalsoinfect the contactingsubject.This form of transmittinga virus is calleda pull. It is not surprising
thatanadditionaltransmissiomprocesspeedsip therumorspreadingHowever, in thesecondghasevhen
at leasthalf of the subjectsareinformedthe numberof informedplayersdecreasedouble-&ponentially
i.e.if is the numberof uninformedplayersin round then — for someconstant .

If we adoptthe pushandpull transmissiorschemeo broadcasinformation,we ervisagea distributed
systemwhere new rumorspop up locally all the time andwherein a time unit, e.g. one hour, every
participatingsener contactsarandompartnerto exchangenew rumors.So, thefollowing questionsarise:

Whenis arumortoo old to bedistributed?
How mary transmissiongrenecessaryo inform all participants?

Is therea robustterminationmechanisnensuringfastbroadcastingand small numberof transmis-
sions?

1.3 Bandwidth Allocation: Utilization versusFairness

The TransmissiorControl Protocol(TCP) usedin the Internetis an end-to-enccongestiorcontrol mech-
anism. One of its main featuresis the so-calledAdditively Increasingand Multiplicatively Decreasing
algorithm.In asimpli ed settingit worksasfollows:

A routersuccessiely sendacletsin atransmissiomate. For every successfusentpacletan
acknavledgmentappearsafter sometime, this time is calledthe Round-Tip-Time (RTT). If
theacknavledgmentoesnotappearthenasendingailureappearegossiblydueto exceeded
bandwidth.

The AIMD-mechanismworks asfollows. If pacletsare submittedsuccessfullythenthe ac-
quired bandwidthis increasedoy an additive constantamount,if a failure occursthenthe
acquirecbandwidthis reducecby a constanfactor
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[

Time

congestion

opportunity cost

allocated bandwidth of player 1

bandwidth allocated by other player:

update time point of player 1

allocated bandwidth of player 2

bandwidth allocated by other player:

update time point of player 3

allocated bandwidth of player 3

bandwidth allocated by other player:

update time point of player 3

Figurel.3: Schematiallocationbehaior of TCP
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Figurel.3shavs atypical behaior of this protocol. We have threeplayerssharinga link of aspeci ¢
bandwidth.In the beginning player1 startsandafter sometime player2 andthenplayer3 joinsin. They
bothlinearly (additively) increaseheir shareof thebandwidthuntil thesumof theirallocationsxceedshe
bandwidth.In gure 1.3this occursfour times. At the rst occurrenceplayer? is theonewho recognizes
it andhereduceshis allocationby a constanfactor(in our examplehe halveshis pacletrate).

Note thatevenin a bestcasescenaricthis AIMD-mechanismutilizes only a constantportion of the
available bandwidth. One might arguethat this is causedoy the sparsefeedbackusedby the allocation
algorithm,who never learnsthe availablebandwidthleft-over by the otherplayers.The playersonly feed-
backis whetherin thelastroundthe allocatedbandwidthwasat mostashigh asthe availablebandwidth.

In the Internetpaclet failuresare causedy the allocationbehaior of otherprotocols. In Figure1.3
playerl recevesanunfair high shareof thebandwidthcomparedo player2 and3 althoughall playersuse
the AIMD-scheme.Onereasorfor this situationmight be that playerl updatesis bandwidthmoreoften
thanthe otherplayerswhich mightbe causedy differentroundtrip times(RTT). It seemghatthetiming
behaior of updateds oneof the obstacledo achieve fairnessandfull utilizationin thelnternet.

We will investigatehefollowing questions:

Isit possibleto corvergeagainstfull utilization for suchrestrictedfeedback?
Isit possibleto enablefairnesunderadversarialtiming?

Canwe achieve fairnessandfull utilization?

1.4 Cost-distanceTrees

Assumethatthe locationsof the terminalsitesof a network are givenandthe questionis, how theinter-
connectingnetwork hasto bechosenThen,thefollowing parameterareimportant:

Thesize/cospf the network.
Thedistancebetweertwo terminalsites,if oneusesonly the network edges.

Thetopology. Is thenetwork planar or evenatree.

In Figure1.4 and1.5 two different(subway) network structuresanbe seen.In Figure1.4 we seea
densenetwork, allowing shortroutesbetweerall stations.In the othersubway network in Figure1.5the
network is sparser|ong detoursoccurbetweersomestations.However, thetree-like network topologyof
theseconchetwork may simplify mary coordinationproblems.

In generalpneexpectsthattreeswill increasehesizeof thenetwork or thelengthof necessargetours.
Clearly, longdetourscannotbe preventedatall. Thereforetheweighteddistancewill beconsideredvhich
describesheaveragdengthof aroute.

We considera mixedmeasurdghatsumsover two typesof costs:the x edcostsproportionako thesize
of the network andthe dynamiccostsproportionalto the averagelengthof a routein the network. This
measuras calledthe weightedcost-distanc€ WCD). Givena non-ngyative weighting

andanodeset we de ne it by thefollowing equation:
WCD
where denoteghelengthof theshortespathfrom to in

In this context spanneigraphshave beeninvestigated. Thesearegraphs wherefor all nodes it
holds

wherethe constant is calledthe stretchfactor Suchspanneigraphscanbe constructedef ciently. Fur-
thermore additionalconstraintsuchassmallsizecanbeful lled. Suchaspanneis calledalight spanner
if for the sizeof thegraphit holdsfor aconstant :

MST
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Figurel.4: Thesubway network of New York downtown

Figurel.5: Thesubway network of Hanover
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Figurel.7: A mobileadhocnetwork. Mobile phonesanconnecto closelylocatedpartners

whereMST  denotegheminimumspanningreeof
Clearly, suchlight spannersapproximatethe optimal weighted cost-distancegraph by a factor of
. Howeverthequestiorremains:

How well cantreesoptimizetheweightedcost-distance?

1.5 Mobile ad hoc Communication

The standardapproachfor wirelesscommunicatiometworks is to install a centralradio stationthat re-
lays communicatiorbetweenpartnersand connectthe mobile communicatiorpartnersto the otherwired
communicatiorpartnersseefFigurel.6.

Obviously, this network topology hasa numberof disadwantages.First of all, the relay stationis a
naturalbottleneck All informationmustpasghis stationandif thenumberof mobilephonedncreaseshe
capacitywill be exhaustedat somepoint. Anotherproblemis thatthe positionandthetransmissiorpower
of thecentralantennaleterminesreaswithoutreception.

A differentapproachs to usemobile ad hoc networkswhich useneighboredradio stationsasrelay
stations,seeFigure1.7. Communicatiorbetweenmobile phonescanbe donewithout a designatedadio
stationusing multiple hopsbetweenneighboredmnobile devices. This decreasethe transmissiorpower
neededy eachmobiledevice. Furthermorenincreasen thenumberof participantawill alsoincreasehe
availablebandwidth.

Howeverit is notclearwhatkind of basicnetwork is thebestchoiceto optimizeparameterbk e dilation,
enegy anddatathroughput.

Which mobileadhocnetworks optimizedilation, enegy anddatathroughput?

Canall of thesemeasurese optimizedatthe sametime?



Chapter 2

Main Results

In the previous chapterof this habilitationthesiswe presentedomeintroductoryexamplesof communi-
cationnetwork problems.This chapteris dedicatedo a comprehensie summaryof the main resultsand
modelspresentedn chapters4-10. In the next chapter3 we clarify somemathematicabnd computer
scienti ¢ notations.

2.1 Overview
In this habilitationthesiswe discusscommunicatiometwork problemsof the following areas.

1. Broadcastinformation

Broadcastingn processometworks meansdisseminatinga single piece of information, which is
originally known only at somenodes o all membersf the network. Thisis donein a sequencef
roundsby pairwisemessagexchangeover the communicatiorines of the network.

In this thesiswe considertwo differentmodels:

In chapte#t and5 we consideibroadcastingn thetelephonenodelfor agivenundirectedyraph
describinghebidirectionalconnectiorbetweemrocessorstHere,in oneroundeachprocessor
cansendamessagéo atmostoneof its neighbors Thegoalis to inform all processorsisingas
few roundsaspossible. This numberis calledthe minimumbroadcastingime of the network.
Giventhe network structureandthe informednodewe areinterestedn the optimal strateyy,
whenwhich neighborechodehasto beinformedto minimizethe numberof rounds.We char
acterizethealgorithmiccomplexity andwantto nd graphfamilieswheretheoptimalsolution
canbefound.

Forrandomizedumor spreading presentedh chapte6 theconnectionbetweemodeschange
in everyroundandaregivenby arandomaddressindunction. In onerounda processohasto

decidewhetherto sendits information. Thus,in additionto minimizing the numberof rounds
for broadcastingnformationwe have to take careof the quantity of messagesThis mustbe
doneby adistributedalgorithmbecaus®f therandomizedcommunicatiorstructure.

2. Distrib uted allocation of network bandwidth

The transportcontrol protocol (TCP) of the Internetusesa distributed algorithmto determinethe
paclet rate of connectiondbetweencomputers and . Here adjuststhe paclet rate by an
algorithmthat usesonly informationwhetherthe lasttransmissiorwas successfuli.e. pacletsare
notdropped.

Wewill investigatawo typesof questionsin chaptef7 we generalizehis modelby agame-theoretic
approactdealingwith a player, representin@ host,andanadwersaryrepresentingll otherhostson
thenetwork. In ourmodeltheadwersarychooseshe availablebandwidthto maximizethe costof the
player Theplayercanchoosea pacletrate,i.e. allocatebandwidth,andsufferstwo typesof costs:

9
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Allocationof morebandwidththanavailable: Thentheplayer'scostaccounfor re-transmission
delayandoverhead

Allocation of lessbandwidththanavailable: Thenthe playersuffers opportunitycosts

Thealgorithmwill neverlearnthe availablebandwidthin aroundandthuscannotcomputethetotal
costit is actually suffering. However, we presenta probabilisticalgorithm which usesthe little
feedbacknformationavailable,i.e. whetherthe allocatedbandwidthwassmallerthanthe available
bandwidth.

It turnsout that suchan algorithmsolvesa generalclassof online predictiongamesof all discrete
forecastingproblemsthat provide sufcient feedbackinformation. This algorithm canboundthe
relative loss,calledregret comparedo the bestconstanthoiceof pacletrate.We canshow thatthe
averageregretof aroundtendsto whenthe numberof roundsincreases.

Theallocationbehavior of sucha bandwidthallocationalgorithmtriesto reachfull utilization, i.e.

the paclet rate equalsthe available bandwidth,while it doesnot guaranteghat every participating
processorecevesafair shae of theavailablebandwidth.Onthe otherhand, TCPtriesto distribute
fair sharesvhile it doesnotcorvergeagainsfull utilizationevenin abestcasesituation.In chapter8

we concentrateon the relationshipof full utilization and fairness. It hasbeenobsened that the
allocationbehaior of TCP dependsighly on the time pointswhena hostreevaluatesand adjusts
its paclet rate. To describerobust allocationalgorithmswe consideran advessarial timing for the
updatef the participatingplayers.It turnsoutthatin this modelfairnessandfull utilization cannot
be both satis ed and we presentfair distributed allocationschemesf the algorithmsreceve the
residualbandwidthasfeedbackinformation.

. Designingef cient communication networks

Givenanodesetin Euclidearnspacewne areinterestedn nding thenetwork thatoptimizesthecosts
of the network. In this thesiswe considetthe following two optimizationconstraints.

Theweightedcost-distancenodelis ameasureéhatappliesalsoto othernetworks,e.g. streetor
railway networks. In chapter9 we describeheoverall costof a network by a staticcomponent,
calledcost,anda dynamiccomponentcalledweighteddistance.The costsimply dependon
thesizeof thenetwork, i.e. thesumof theedgelengths.While theweighteddistancecombines
a non-neative weightingbetweemetwork nodesdescribingthe demandor occurringtraf c,
andthe shortestlistancebetweemodesusingthe network.

We will seethatthe optimizationproblemcanbe approximatedy so-calledspannersThen,
we concentratdow theweightedcost-distancéncreased we restrictthe network topologyto
trees.It turnsoutthatthisincreasecanbe upperboundedandlower-boundedoy alogarithmic
factor

In chapterl0 we concentraten the questionhow mobilead-hocnetworkscanbe optimized.
Suchnetworks consistof radio stationswhich establisha node-to-nodecommunicatiomet-
work. For this, every node,i.e. radio station,canadjustthe transmissiorpower suchthatthe
transmissiomadiusis givenby thedistancdo theaddressedode.Becaus®nly onefrequeny
is available, radio signalscaninterfereandthus additionalconstraintsappearfor the routing
problem.

We de ne the pathsystemof amobileadhocnetwork asthe unionof all pathsusedfor routing
information. Becauseof the radio interferenceshe choicesof thesepathscannotbe done
independentlyThereforeawve wantto nd restrictedbasicnetworks,whoseedgegyive anatural
upperboundon the numberof interferenceof path systemghat useonly edgesof this basic
network.

We presenteasonablele nitions for enegy, dilation andcongestionof pathsystemsandgive
algorithmsthat outputoptimal or nearly-optimalnetworks for thesemeasuresWe show that
two of thesemeasuresannotbe optimizedby the samepathsystem.
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2.2 Broadcastingin Planar and Decomposablesraphs (Chapter 4)

Broadcastingn processonetworks meangdisseminating singlepieceof information,whichis originally

known only atsomenodesto all member®of thenetwork. Thisis donein asequencef roundsby pairwise
messag@xchangeover the communicatiorines of the network. In oneroundeachprocessocansenda

messagéeo at mostoneof its neighbors.Thegoalis to inform everybodyusingasfew roundsaspossible.
This numberis calledthe minimumbroadcastingtime of the network. This shortdescriptionconstitutes
thetelephonemodelfor broadcastingn undirectedyraphs.

Givenagraphandasubsebf nodesthesourcesthe problemis to determinats speci ¢ broadcastime,
ormoregenerallyto nd abroadcasschedulef minimallength.Thisisknownasaan  -hardproblem.
We areinterestedo nd out moreaboutthe computationatompleity of this problem. In particulay we
askwhich graphtopologyallows the ef cient computationof a broadcasscheduleandfor which graph
familiesthe problemgemains  -hard.

For the lower boundswe considerthe decisionproblem of broadcasting:The MULTIPLE SOURCE
BROADCASTING DECISION PROBLEM (MB) is: Givenasetof sourcesanundirectedyraphandadeadline,
determinewhetherthereexists a broadcastingtratgy informing all nodeswithin the deadline. Further
morewe considerthe SINGLE SOURCE BROADCASTING DECISION PROBLEM (SB), whichis MB reduced
to the caseof a singlesource We shaw thefollowing results:

MB restrictedto planargraphswith degree4 anddeadlined is -complete.
SBrestrictedo graphswith degree3 andis -completeevenwhenthe deadlineis logarithmic.
SBrestrictedo planargraphsof degree3 is -complete.

On the otherhand,we investigatefor which classeof graphsthis problemcanbe solved ef ciently
andshaw thatbroadcastingndevena moregeneralersionof this problembecomegasyfor graphswith
gooddecompositiomproperties.The solutionstrateyy canef ciently beparallelizedtoo.

For this purposewe have to extendthe notion of graphdecompositiorto measurets propertiesmore
exactly. A carefulinspectiorof thepossibilitieshow informationcan o w within acomponenaindbetween
differentcomponentf a graphwill be required. For the internal o w componentghat are connected
behae mostfavorably, butin generakonnectvity cannotalwaysbeachiezedby atreedecompositiorinto
smallcomponents.

In particular we considerthe following two typesof treedecompositions:

Edgedecomposition:
For a graph an edgedecompositiongraph providesthe following
properties:

— Thenodes of represeninducedsub-graphs of suchthatthe are

pairwisedisjointand
- iff thereis anedgebetweeranodeof  andanodeof

A graph is —edgedecomposableif there exists an edgedecompositiongraph

suchthat for all cut , and where
denoteshe numberof connecteccomponent®f . Thecutof anode istheunionof all edges
of thatconnect toothercomponents.

Suchanedgedecompositiorgraph is calledan —edgedecompositiontreeof if s
atree.

Nodedecomposition:

Foragraph agraph is anodedecompositiongraph if

— Thenodes of represensub-graphs of suchthat and
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— For eachnode holds: if then containsapath from to  suchthat
belongsgto everynode in

A graph is called —nodedecomposabldf thereexists a nodedecomposition

graph suchthatfor all holds cut , , and .

Here,we de ne thecut of anode  astheunionof all cutscut to neighboredsub-grap
, Wherecut

Suchadecomposition is calleda —nodedecompositiontreeof if isatree.

We presengtlgorithmsthatconstructhe optimalbroadcastingchedulén polynomialgraphsjf oneof
thefollowing decompositiongs known for thegivengraph:

Thegraphhasa —edgedecompositioriree.
Thegraphhasboundediegree anda _ —edgedecompositioriree.
Thegraphhasa _ —nodedecompositioriree.
Thegraphhasmaximaldegree ———— anda -
nodedecompositioriree.

Thegraphhasconstantiegreeanda _ —nodedecompositioriree.

Thealgorithmevenworksfor amoregeneralersionof the broadcastingroblem.Furthermoreit can
beparallelizedef ciently toyield  -algorithms.

A preliminaryversionof this chaptethasbeenpublishedin [JRS94]anda journal versionappearedn
the Journalof DiscreteApplied Mathematic§JRS98.

2.3 On the Inapproximability of Broadcasting(Chapter 5)

Then, we investigatethe computationalcompleity of approximatingthe broadcastingime of a given
graph.We shaow thefollowing results.

Thereis noefcient - approximatioralgorithmfor the broadcastime of a network with a single
sourceunless Ltis -hardto distinguishbetweergraphshaving broadcastime smaller
than andgraphswith broadcastime largerthan - for ary andsome ,

where denoteghenumberof nodes.

For the additive approximationof the broadcastime we show a tight lower boundof ", i.e., we
shaw thatit is -hardto distinguishbetweergraphswith broadcastime smallerthan andlarger
than N

For graphswith degree3 we show thatit is -hardto decidewhetherthe broadcastime is

or in the caseof multiple sourcesFor graphswith singlesourcesanddegree3,
it is -hardto distinguishbetweergraphswith broadcastime smallerthan ~ andlarger
than

We prove thesestatementdy polynomialtime reductiondrom set-cowerandE3-SAT. A preliminary
versionof this chaptemwaspresentedt the 3rd InternationaMorkshopon ApproximationAlgorithmsfor
CombinatorialOptimizationProblemqSch00R.
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2.4 RandomizedRumor Spreading (Chapter 6)

In this chapterwe discussthe problemof broadcastingnformationin a processonetwork in a different
communicatiormodel. We investigatethe classof so-calledepidemicalgorithmsthatarecommonlyused
for the lazy transmissiorof updateso distributed copiesof a database.Thesealgorithmsusea simple
randomizeccommunicatiormechanisnto ensurerobustnessSuppose playerscommunicaten parallel
roundsin eachof which every playercalls a randomlyselectedccommunicatiorpartner In every round,
playerscangenerateumors(updatesihatareto be distributedamongall players.Whene&er communica-
tion is establishedbetweertwo players eachonemustdecidewhich of therumorsto transmit.

The communicationgraph of round is obtainedby a distributed,
randomizecprocess.n eachround,eachplayer chooses communicatiorpartner from atrandom
and calls . Inround , therumorandotherinformationcanbe exchangedn bothdirectionsalongthe
edgenf . Wheneeraconnections establishedetweerntwo players,eachoneof them(if holdingthe
rumor) hasto decidewhetherto transmitthe rumorto the otherplayer, typically without knowing whether
thisplayerhasrecevedtherumoralready Regardingthe o w of information,we distinguishbetweerpush
andpull transmissionsAssumeplayer callsplayer .

Therumoris pushedf tells therumor.
Therumoris pulledif tells therumor.

The major problem(arisingdueto the randomization)s that playersmight not know which rumors
their partnershave alreadyreceved. For example,a standardalgorithmbasedon push-communication,
i.e. forwardingeachrumorfrom thecalling to the calledplayers for roundsneeddgo transmitthe
rumor timesin orderto ensurahateveryplayer nally recevestherumorwith high probability.

We investigatewhethersucha large communicatioroverheads inherentto epidemicalgorithms.On
the positive side,we showv thatthe communicatioroverheadcanbe reducedsigni cantly if we usepush
andpull-communications:

We startwith asimplepush&pull algorithm thatterminatesgransmissionvhentherumoris
roundsold. It turnsoutthatthis algorithmneedsonly transmissionsnd
broadcasttherumorwith high probability; i.e. with probabilityof atleast — forary x ed

Shenler proposeda distributed terminationmechanismusing a counterindicating indirectly the
spreadof the rumor. We shaw that this min-counter algorithm performsaswell asthe pushé&-
pull algorithm.

In orderto improve the robustnessye devise a distributedterminationschemecalledthe median-
counter algorithm, thatis provably robust againstadwersarialnodefailuresaswell as stochastic
inaccuraciesn establishingherandomconnections.

In particular we shawv that the ef ciency of the algorithm doesnot rely on the fact that players
choosdheircommunicatiorpartnersuniformly from thesetof all players.We show thatthemedian-

counteralgorithmtakes roundsandneedsonly transmissionsegardlesof

the probability distribution usedfor establishinghe randomconnectionsaslong asall playersact
independentlyandeachplayeruseshe samedistribution to selectits communication
partner

Onthengyative side,we shav thatany address-obliviousalgorithm(i.e., analgorithmthatdoesnot
usetheaddressesf communicatiorpartnersheedso send messagefor eachrumor
regardlesof thenumberof rounds.

Furthermorewe give a generalower boundshoving thattime- andcommunication-optimalitgan-
not be achieved simultaneouslysingrandomphonecalls, thatis, every algorithmthatdistributesa
rumorin roundsneeds transmissions.

Theseresultswerepresentedt the Symposiumon Foundationsof ComputerSciencdKSSV00Q.
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2.5 Online Prediction with Partial Feedback(Chapter 7)

Bandwidthallocationin the Internetis managecy the TransportContmol Protocol (TCP). Whenhost
transmitsinformationto it is  who regulatesthe padet rate, calledallocatedbandwidth However

never learnsthe actualavailable bandwidthbut receives a feedbackfrom which  learnswhetherit
over- or underestimatethis value. Papadimitriou,KoutsoupiasandKarp [KKPSO0(Q investigateprotocols
optimizing the costneededo nd the optimal packet ratewhenthe available bandwidthis constant.We
extendthis approachand investigatethe dynamiccasewherein every round the available bandwidthis
choserby anadwersary

Thecost of allocating andavailablebandwidthis givenandre ects two major components:
opportunitycostsdueto sendingessthanthe availablebandwidthwhen , andre-transmissiordelay
and overheaddueto droppedpacletswhen . Thegoalof the hostA is to minimize the total cost
incurredover all periods.In [KKPS0(Q thefollowing costmodelsareintroduced:the gentlecostfunction

when and when ; andthethe severe costfunction
when and when . We modelthe feedbackby the threshold
feedbak function , if the allocatedbandwidthwas higherthanthe available bandwidth,i.e.
and elsavhere.

Giventhelossfunction andthe feedbackfunction in this modelit is impossibleto minimize the
absoluteloss. Thereforewe only competewith the bestconstantchoice of bandwidthallocation. We
generalizethis bandwidthallocation problemto an online-predictionproblem,by allowing ary discrete
feedbackandthelossfunction:

We investigatehe problemof predictinga sequenc&hentheinformationaboutthe previouselements
(feedback)is only partial and possiblydependenbn the predictedvalues. This settingcanbe seenasa
generalizatiorof the classicalmulti-armedbanditproblemandaccommodateasa specialcasea natural
bandwidthallocationproblem. Accordingto the approachadoptedby mary authorswe give up ary sta-
tistical assumptioron the sequence¢o be predicted We evaluatethe performancegainsthe bestconstant
predictor(regret),asit is commonin iteratedgameanalysis.

We describethe problemasa gamebetweera playerchoosinganaction  andanadwersarychoosing
theaction attime . Thereare possibleactionsavailableto the player, withoutlossof generalityfrom
theset ,and actionsintheset from whichtheadwersarycanpick from. At every
time stepthe playersuffersalossequalto .

The gameis playedin a sequencef trials . Theadwersaryhasfull informationabout
the history of the game whereaghe playeronly getsa feedbackaccordingto the function . Hence
the -matrices and , with and completelydescribeaninstanceof the
problem.At eachround thefollowing eventstake place.

1. Theadwersaryselectsaninteger

2. Without knowledgeof the adversarys choice,the playerchoosesnactionby picking and
suffersaloss

3. Theplayerobsenes

Notethatdueto theintroductionof the feedbackiunctionthis is a generalizatiorof the partialinfor-
mationgameof [ACBFS95].

Let be the total loss of player choosing . We
measurgheperformancef theplayerby theexpectedregret  , whichis thedifferencebetweerthetotal
lossof andthetotallossof thebestconstanthoice |, thatis

whereeach isafunctionof . In someworksthe correspondingnin-maxproblemis investi-
gated transformingthelossinto areward. Thetwo settingsareequialent,asit is easyto check.
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We presentanalgorithm which solvesthis online predictionproblemwith a sub-linear
expectedregret. More speci ¢, if thereexistsamatrix  suchthat for feedbackmatrix
andlossmatrix thenthe expectedregretE reedexps  Of algorithmFeedExp3after  stepsis
boundedyy

E FeedExp3

where isthenumberof roundsand thenumberof availablechoices.

We applythistheorento theoriginal bandwidthallocationproblemandshawv thattheexpectedegret
with respecto

— thesevere costfunctionis boundediy - - ;

— thegentlecostfunctionis boundecby - - ;

— theseverecostfunctionin the continuouscaseis boundedoy - T
— thegentlecostfunctionin the continuouscaseis boundedy - T

Thecontinuouscasere ects the casewherethealgorithmcanchooseany realnumberin theinterval
andit alsoappliesif thenumberof discretechoicesis largerthanthe numberof rounds.

We shaw thatfor ary discretdossfunction andfeedbackunction only oneof two situationscan
occur: Eitherthereis a predictionstrategy thatachievessmallregretasthe FeedExp3algorithm,or
thereis a sequencevhich cannotbe predictedby ary algorithmwithoutincurring a regretof

For this, we shav how to constructa sequencehat no algorithm can predictwithout incurring a
linearregretwith probabilityat least

A preliminaryversionof this chaptewaspresente@tthe 14th Conferencen ComputationalLearning
Theoryandthe5th EuropearConferencen ComputationalLearningTheory[PS01].

2.6 Bandwidth Allocation under Adversarial Timing (Chapter 8)

Congestiorcontrol algorithmslike, e.g., TCP have to meetthe demandf high utilization andfairness
simultaneously We study the trade-of of thesetwo objectivesin a plain model consistingof players,
sharedresourcesvith boundedbandwidthcapacitiesandrate updateevents,i.e., pointsof time at which
playerscanadjusttheir sharef occupiedbandwidth. The timesat which playerscanperformtheir rate
updateoperationds determinedby anadwersary As feedbackwe allow playersto receve the sizeof the
unusedandwidth.

We investigaten nite gameswhereplayerscanenterandleave atary time but focusour analysison
thoseperiodsin which the systemis closed,i.e., the setof playersthatperformupdateoperationss x ed.
Themajornovelty of our modelis the adversariatiming of therateupdateevents.

We start our investigationwith bandwidthallocationon a single bus. The adwersaryspeci es a
sequencef events , Wwhereeachevent is atuple with and
enter leave update. With eachplayer , We associata positive ratevariable whosevalue
is zeroif theplayeris inactive, thatis, theinitial valueof iszeroand is resetto zerowhenaer
theadwersarycalls leave . The adwersarycalls updateoperationsonly for the active player In
particular if the adwersarycalls update thenplayer canset to ary positive value. At ary
giventime, we de ne the shareof bandwidth thatplayer receivesby if
and otherwise.Thus,the shareof bandwidthof all playersis zerowhenthe systemis overloaded
(For analogousnodelsseee.g.,[KKPS0Q.)

A fairandef cient allocationprotocolaimsto settheratesin suchawaythatall playersin thesystem
getalmostthe sameshareof bandwidthandthe unusedbandwidthis assmallaspossible.

It turnsout thata very simple protocol,calledVirtual Player Protocol (VPP), sufces to achieve
fairness:Supposelayer performsanupdateoperation.Let denotethe
unusedbandwidthimmediatelybeforethe updateoperation.Thenplayer sets —
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For we show thatin a closedsystenperiod, wherethesame playersparticipate aftersome

phasesall allocatedbandwidtharealmostequal,i.e. — , while theresidual
bandwidthis at most (Actually we statea moregeneraltheorentor all ). Note
thata phases a setof contiguousoundswhereeachof the playersperformsat leastoneupdate
operation.

We generalizethe above adwersarialmodel to general networks. The network is modeledby a
(hyper)graph . Edgesrepresenbuses,routers,or other sharedresourcesof limited
bandwidth.The bandwidthcapacityof edge is denotedby . Eachplayercomeswith a setof
edgesconstitutinga simplepath (i.e., a pathin which every edgeappearsat mostonce). For player

, let denotethe player's path,andfor anedge let denotethe setof
thoseplayerswhosepathscontain .

As before,an adwersarydeterminesvhen playersenterand leave the systemand whenthey can
updatetheir rates. For the time being,we assumehat updateoperationsare performedatomically,
i.e.,anupdateoperatioris notperformedy theadwersaryuntil thepreviousonehasbhecomeeffective
on all edgesof the respectie path. We generalizethe VPP asfollows. Here,player sets

— where denotesa globalparameter
For every , thenetworkis in astateof -max-minfairnessif it isimpossibleto increaseherate
of ary playerby morethanafactorof without exceedingthe edgecapacitiesn or

decreasingherateof playerswhoserateis at most

The VPP corvergesagainst—-max-minfairnessjf for eachmemberof a same nite setof players
arbitraryoftenupdatesccur We call sucha phasea closedsystemperiod.

It is anopenquestiorhow fastthegeneraVPP corverges.Thereforewe presenediscretevariantof
thisprotocol,wherethecorvergencecanbe determinedlependingnthedilation  andtheconges-
tion . Thedilationis the maximumlengthof apath(of participatingplayers)andthe congestiors
themaximumnumberof pathscontainingthe sameedge.

We shaow thatfor every , thereis a discretevariantof the VPP thatapproaches -max-min
fair statein ary closedsystemphase This stateis reachedfter phases.

Furthermoreasalower boundwe prove for the single bus modelthatthereis no protocolachiesing
full utilization andfairnessin the limit, if anadwersarydetermineghe order of rate updateevents
andonecannotdistinguishbetweerslowv andstalledplayers.

2.7 TreeNetwork Designfor the Cost-Distance-Model(Chapter 9)

Given terminalpointsin the Euclideanspacewe investigatehe problemof constructinga network with
small costand shortdistances.This researchis motivatedby a numberof practicalproblemsarisingin
network designfor traf c in communicatiometworksaswell asrealtraf ¢ in streetor railway networks.
If oneminimizesonly thenetwork size,i.e. thesumof all edgelengths somedistancedbetweerterminals
mustbe considerablyncreasedOn the otherhandif we minimize the distancedetweenrall terminalswe
faceacompletenetwork with largecosts. Theseeffectsaredescribedy theweight cost-distancemeasure,
de ned by

WCD

where denotedhelengthof anedgeand thelengthof the shortespathfrom to in the
network
We investigatehefollowing problems:

WEIGHTED COST-DISTANCE NETWORK PROBLEM (CDN): Given a setof sites in Euclidean
spaceanda weighting , nd anetwork thatoptimizestheweighted
cost-distanc&V/CD
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WEIGHTED COST-DISTANCE TREE PROBLEM (CDT): Given and , hd atree
thatoptimizestheweightedcost-distanc&/CD

It turnsoutthatthe optimalsolutionof CDN cancontainSteinerpointsaswell ascycles.Furthermore,
thereareinstancesvherethe optimal solutioncontainscrossingsWe presenthefollowing results.

Foranodeset in  CDN canbeapproximatedby aconstanfactorwithin time , Where

In CDN canbeapproximatedn polynomialtime by a factorof

In  apolynomialtime algorithmapproximate<CDT by afactorof . Moreover, this tree
approximateshe optimalsolutionof CDN within the samefactor
Treescannotapproximateoptimal cost-distancanetworks betterthan . In particular for
every spanningrree  of the -grid, where if and areneighborechodesand
elsevhere,the weightedCost-Distancés atleast , while the optimal Cost-

Distancenetwork hascostandweighteddistance

A preliminaryversionof this chaptewaspresentedt the InternationalSymposiunon Algorithmsand
Computation(ISAAC'01) [SWO01].

2.8 Energy, Congestionand Dilation in Wir elessNetworks
(Chapter 10)

We investigatethe problemof pathselectionin radio networks for a givensetof sitesin two-dimensional
spaceWe considera set of radiostationsfeaturingbothtransmittersaandrecevers,calledsites
or nodesjn 2-dimensionaEuclidearnspacelLet denotethe geometriadiameterof
Eachnode canadjustits transmissiomadiusto some for sendinga pacletto aneighbor

in range . Then,the communicatiometwork hasthe edge , Where . Note
thatfor adjustingthe transmissiormpower nodesexchangingpacketsmustinteractduringthe transmission.
In our modelwe simplify this interactionby assumingthat the sendingand acknavledging part of this
interactionmay interferewith any othersuchbi-directionalconnectiorif the distances too small.

In particular this means:To acknavledgethis paclet the receving site adjustsits transmissiomadius
to the sameradius asthe sendingradius. The transmissiomeedsa unit time stepandthe areacovered
by sendingandacknavledginga paclet along is , Where
denotesa disk with center andradius . Of courseedgesonly interferewhenthe routing protocoltries
to senda paclet at the sametime andif contains or . We expandthe notion of interferenceso
edgesEdge interfereswith edge if or isinthearea , which de nesthe setof interfering
edgedy Int interfereswith

We contributeto modelingwirelesscommunicatiometworkswith thefollowing de nitions.

Note that sendinga paclet along is successfubnly if no edgefrom Int  sendsconcurrently
Theseinterference®f network  describethe directedinterferencegraph ¢ . Its nodeset
areall edgesof  andits edgesdescribeall interferencesi.e. Int iff Int
Theinterferencegyraphcanbeinterpretecasanadditionalconstrainfor routing. An edgeof theradio
network canonly beusedfor sendinga paclketin atime unit if all interferingedgesemainsilent.

The numberof this interferingedgeds given by the in-degreeof an edgein the interferencegraph
andis calledtheinterfer encenumber of acommunicatiorink. Themaximuminterferencenumber
of asite is themaximuminterferencenumberof all edgeswith receving site . Theinterference
numberof the network is the maximuminterferencenumberof all edges.

Now considera routing problem , Where pacletshave to be sentfrom to
. The problemariseshow to choosea path system in thegraphon . Thisis asetof paths  from
sourceto destinationfor the packets in thegraphon . Theunionof all edges  of this pathsystem
givesthelinks of communicatiometwork
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We denoteby thedilation thelengthof alongestpathin , alsoknown asthehop-distance.

We distinguishtwo enegy models. In the rst model,calledunit energy model, we assumehat
maintaininga communicationlink  is proportionalto , where  denotesits Euclidean
length. Thereforethe unit enegy U-Eneigy usedby radionetwork is givenby

U-Enegy

The o w energy modelre ects theenegy actuallyconsumedy transmittingall paclets.Here,the
power consumptiorof acommunicatiorink is weightedby theactualload onanedge :

F-Enegy

We shaw thatenepgy optimalpathselectiorfor radionetworkscanbe computedn polynomialtime.
Particularly, the minimal spanningree describesan optimal path systemfor the unit enegy anda
sub-graplof the GabrielGraphcontainsanoptimal pathsystemfor the o w enegy.

A mainresultof this chapteiis thata spanneigraphconstructiorasacommunicatiometwork allows
to approximatahe congestioroptimalcommunicatiometwork by afactorof (underthe

condition——— ).

Onemajorinsightis thefactthattrade-ofs areunavoidable:Minimizing onemeasuraés only possible
atthe costof enlaging anotherone. We shav trade-ofs lower-boundingcongestion delayanddelay
enepy.

Thereexistsanodeset  suchthatfor every pathsystem thefollowing trade-of betweendelay
andcongestion canbeobsened:

Thereexistsanodeset  with diameter suchthatfor everypathsystem thefollowing trade-ofs
betweerdelay andunitenegy U-Enegy (resp. o w enegy F-Enegy) occurs:

U-Enegy
F-Enegy

For congestiorand enepy the situationis evenworse. It is only possibleto nd areasonablep-
proximationfor either congestionor enegy minimization, while the other parameteis at leasta
polynomialfactorworsethanin the optimal network: Thereexistsanodeset with minimal con-
gestion , minimalunitenegy by U-Enegy , andminimal o w enegy by F-Enegy suchthatfor
ary pathsystem onthisnodeset it holds:

or U-Enegy U-Enegy
or F-Enegy F-Enegy

A preliminaryversionof this chaptethasbeenpublishedasatechnicalreportfMSVGO01].



Chapter 3

Notations

In this chapterwe introducesomebasicnotationsandmathematicatonceptaisedthroughouthis thesis.
This is notanintroduction,but a presentatiorof basicde nitions andfundamentatesultsrelevantto the
resultsanddiscussiorpresentedn the otherchapterf this thesis.

3.1 SetTheory

Theemptysetis denotechy . We denoteby thesetof integers,and .
For ary theset representshe set . denoteghe setof reals, is the setof all
positive numbersj.e. . . Fortwo realnumbers we denote

theintervalsby

Givensets in adomain
or denotegheunionof and
and denotegheintersectiorof and
and is calledthedifferenceof and |,
o is calledthe complemenbf
If ,then isasubsebf ,i.e.forall we have
By we denotethat is apropersubsebf | i.e. and

We denotethe power setof by

Twosets , aredisjointif , Where denotegheemptyset.

3.2 Combinatorics

We usethe naturallogarithm aslogarithmto the baseof . By
we denotethelogarithmto thebase?. means ; denoteghe -timesiterated
logarithm.
Thefactorialof iswrittenas . By de nition . Thebinomial  isde ned
for as

19
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For functions andaclassof functions of suchfunctionswe de ne:

Foraclass of functionswe denoteby , thatthereis afunction suchthat

Table3.1: The O-notations.

For every we have

We will usethefactthat andparticularlywe have for all

We will useStirling's formula:

— where
Asymptotics
To comparethe asymptoticbehavior of functionswe usetheso-called -notationsseetable3.1.
We denoteby pol the setof all polynomialfunctions,i.e. pol . Similarly, we denoteby
polylog .

3.3 Graph Theory

A graph consistsof a setof nodes(alsoknown asvertices) andanedgeset . Theorderof is

de ned asthenumberof nodes , while thesizeis givenby . We denotethenodesetof by ,

andanalogouslyheedgessetof by . We distinguishdirectedandundirectedyraphs.The edgeset
of a directedgraphsconsistsf pairs for vertices , . In undirectedgraphsthe edges
setconsistof subsetof  of cardinality2, i.e. . Thedggreeof anundirected
graphis the maximumnumberof edgesdncidentto anode.



3.4. PROBABILITY THEORY 21

A graph isasub-gaphofagraph if and . A path fromnode
tonode of adirectedgraphis asub-graplwith nodes suchthat
and in thecaseof anundirectedyraph.If then

theinducedsub-gaphof of isthesub-graptof with nodeset andmaximumnumberof edges.
A cycle is a pathwith at leastone edgeandthe startingand endingnode. A directedagyclic graph
(DAG) is adirectedgraph,whereno cycle canbefound.
A connectedomponenbf anundirectedyraphis asub-graph  wherefor allnodes in  thereis
apathfrom to . All graphscanbeseparateihto connectedomponentsf maximumsize. Thenumber
of thesesub-graphss calledthe numberof connectedcomponentsf anundirectedyraph.

3.4 Probability Theory

We denotethe probabilityof anevent by P andtheconditionprobability of aneventby

P
P R
P
Twoevents and areindependenif andonly if
P P

If thisis notthecasethen and arecorrelated and arecalled
negativelycorrelated if P P and
positivelycorrelated if P P

andtheexpectationof arandomvariable by

E P

Basicpropertief the expectationare

E E

E E E

If two randomvariables and areindependeni.e. for P P ,
thenE E E

The conditionalexpectationof arandomvariable  with respecto anevent is de ned by

E P

A fundamentapropertyof the conditionalexpectationis thatfor any randomvariables

E EE
Variance Theemvarianceof arandomvariable , denotedby , isde ned by
E
Thenumber is calledthe standad deviation of

Mark ov Inequality Let beanon-ngativerandomvariable.Thenfor ary ,

E
p
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Chebyshe Inequality Let beanarbitraryrandomvariable.Then,for every ,
P E o

Basicprobability distributions A randomvariable s uniformlydistributedovera nite set
if for all

P R
A randomvariable is abinomialdistribution if for a and we have
P
For its expectationandvariancewe have
E
A randomvariable is geometricallydistributedif thereis a parameter suchthat for all
P
Chernoff Bound If areindependenbinaryrandomvariablesthenit holdsfor all for
and E that
p .
andfor that
p .
Martingales A sequencef randomvariables is amartingaleif for all
E
Azuma Inequality Let beamartingalesatisfyingthe propertythat for all
. Thenfor ary ,
b -
and
b .

3.5 Geometry

We usein the -dimensionaEuclideanspace thestandarchorm

andthe absolutenorm(Hammingdistance)
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The -skeleton[KR85, Vel92 of a setof pointsis a graph,de ned to containexactly thoseedges(a,b)

suchthatno pointc formsanangle greaterthan (if ) or (if
). Equivalently; if , the -skeletoncanbede ned in termsof the unionU of two circles,each

having asachordandhaving diameter . Edge is includedin this graphexactly when
U containsno pointsotherthan and .

If , anedge is includedin the -skeletonexactly whenthe circle having ab asdiameter
containsno pointsotherthana andb. The 1-skeletonis alsoknown asthe Gabrielgraph[GS69.

Foranodeset in  andapath the stretch-actorof s for de ned
by , Where . Inagraph is calledtheminimum
pathif for given it minimizes . A graphhasa stretchfactor if for all nodes , thereisa

connectingpathwith stretchfactorof atmost . We call suchgraphs -spanners.

Theminimumspanningree(MST) of agivengraph isaspanninggraphof wherethecost,i.e. the
sumof all edgelengths,is minimized. Suchgraphscanbevery efciently constructedy the algorithms
of PrimandKruskal.

3.6 Computational Complexity

We follow the notationsof [Pap94 and[Rei9(] for a shortdescriptionof someimportantmodelsof com-
putationalcompleity.

3.6.1 Machine Models

We give aroughoverview over machinemodelsrelevantto this dissertation.In generalonedistinguishes
betweersequentialmachinemodelsandparallel machinemodels Themachinemodeldescribingmod-

erncomputingdevicesmostaccuratelyis therandomaccessnachine Wheneerwe describeanalgorithm

we measurdime andspacebehaior by this sequentiamachinemodel. Apart from this machinemodel

we will alsousethe (non-deterministic)luring machineto describean algorithm. We now give a short

overview of thesemodels.

The deterministic Turing machine(DTM)

This sequentiamachinemodelwasintroducedby Alan Turing for the investigationof the principle com-
patibility of problems. Every computingstepof the Turing machineinvolvesonly somesymbolsof an
alphabetwhich arepositionedon one or several constaninumberof tapes.A tapeis a non-endingstring
of a discretesymbol set, called alphabet. The Turing machinemay accesonly the symbolat a special
position,calledheadposition,andafterperforminga computationastepthe Turing machinemay moveiits
headonestepto theleft or theright.

Every stateof the DTM determineshe computation.The Turing machineis completelydescribedy

. TheDTM hasa nite numberof states . Specialstatesarethe startingstate and
the nal state . After changingthe symbolsat the headpositionsand moving the headsthe Turing
machinemay switch to a new state(dependingon the symbolsreadon the tapes). More formally, the
completebehaior of sucha -tapeTuring machinecanbe describedby a so-calledtransitionfunction
, where describeghesetof states, thealphabetand

themotiondirectionof the headon atape.Inputsaregivenonthe rst tape.At thebeginningall tapesare
empty i.e. they are lled with thesamesymbol.

The outputis written on the last tape. If the Turing machinecomputesonly a predicatewe call the
machineanacceptor

The non-deterministic Turing machine (NTM)

Here,wereplacehetransitionfunctionof aDTM with atransitionrelation
. For eachstate-symbotombination theremay be morethanoneappropriatenext step—omone
atall.



24 CHAPTER3. NOTATIONS

A non-deterministid@uring machineacceptaninputif thereexistsavalid sequencef transitionssuch
thatthe Turing machindransitsfrom theinputcon gurationto acceptingcon guration. Thisinterpretation
of theoutputbehaior of theNTM malkesit dif cult to predicttheoutputusingothermodels:In everyround
thenumberof possiblecon gurationsmay grow exponentially

The Random AccessMachine (RAM)

Thedatastructureof therandomaccessnaching RAM) is anarrayof registers eachcapableof containing
anarbitrarily largeinteger RAM instructionsresemblehe instructionsetof actualcomputersjncluding
directandindirectaddressingf the registers,addition,multiplication, andif-then-else.The programis a
sequencef elementarycommandsLoopscanbeimplementedisinggoto s. Recursive programsarenot
available,but canbeeasilyimplementedn machinemodelwithout ary additionaltime.

TheRAM givesa morerealisticmodelof acomputethaving randomacces$o memory However, if a
RAM computesa solutionin time usingthe contiguousmemorycells having maximalbit length ,
thena Turing canperformthe samecalculationin time andspace . Hence whenwe consider
polynomial complexity classedor which it doesnot matterwhetherthe underlyingsequentiamachine
modelis adeterministicTuring machineor a RAM.

Whenwe speakabouttherunningtime of algorithmswe referto therunningtime of animplementation
onaRAM, if notstatedotherwise.

The Parallel Random AccessMachine (PRAM)

In this thesiswe will alsopresentsomeef cient parallelalgorithms. The underlyingmachinemodelis a
parallel randomaccessnadine (PRAM). It consistf an(unboundedgeriesof parallelprocessorbased
on the RAM model. Every processocanuselocal aswell asglobal memory which both arerandomly
accessibleseriesof registers.Furthermoregachprocessohasaccesgo its index number All processors
usethe sameprogramandwork synchronoushafterbeingstartedat the sametime.

Of coursethe accesdo the global memorycanleadto con icts if morethanone processotries to
changeheentryof a globalregister Thereforethefollowing modelsareconsidered:

1. exclusiveread(ER): Only algorithmsarevalid whereprocessorslo not readsameglobalregisterin
thesameround.

2. concurentread(CR): Arbitrary mary processorsansimultaneouslyeada memorycell.

3. ownerwrite (OW): For eachmemorycell thereexists a dedicatecowner, who alonemay write into
this cell. Otherprocessorsreallowedto readthis cell.

4. exclusivewrite (EW): Only PRAM algorithmsarevalid wherewrite-memorycon icts donotappear

5. concurentwrite (CW): No restrictionsapplyfor thewrite-acces$o memory

The following modelsdescribethe con ict solution, if collisionsoccur i.e. two processorgry to
write to the samememorycell.

(a) common Only simultaneousvritesarevalid, if all con icting processorsry to write thesame
value.

(b) collision: If more thanone processomrites to a register, a specialcon ict symbolwill be
written.

(c) priority: Accordingto someranking,the processomwith the highestpriority writes its value
into theregister

Wheneer we referto PRAMSsin this thesiswe talk aboutthe CRCW-PRAM-modelwherewrite con-
icts aresolvedin thecommonmodel(5a).
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BooleanCir cuits

In computationatompleity Booleancircuits arealsoa methodof describingparallelalgorithms.Depth
andsizearethe mostofteninvestigatedcompleity measuresf Booleancircuits.Let  denotethe setof
Booleanfunctions .

A circuit is adirectedagyclic graph(DAG) wherethe sourcesconstitutethe inputs andthe
sinksrepresenthe outputs .

Circuitswill bede ned overthestandardasisof ANDQ ORandNOTgates ANDandORgatesarenodes
with anin-degree2 while the NOFgatehasin-degreel. The computationof an -ary Booleanfunction
follows straight-forward by applyingthe designatedunction of thenodeto theinput values.Theresultof
the outputof thecircuit oninput is called

BecauseBooleancircuits have a x ed input size,one considerdamiliesof Booleancircuits. Sucha
family of circuitsis called uniform, if a deterministicTuring machinecanoutputthe circuit for input
bits using only space (The outputtapecannotbe readandthusis not accountedor the space
compleity).

3.6.2 Complexity Classes

Traditionally, compleity classesarede ned for decisionproblemswhich solve predicateqe.g. givena
graphdoesthereexists a Hamiltoniancycle). Furthermorethesepredicatesare describedby the setof
inputsgivena positive output,wherethe inputsaregivenaswordsover analphabet . Thesednput sets
arecalledlanguages anda machinethatcandecidewhetheraword of suchalanguagés givenas
input, acceptshelanguageHowever, it justcomputeghebinaryoutputof apredicatede ned overstrings.

For afunction amachinedecidesa languagewith resource , if thereis a machineof that
machinemodelfor every input of length , at most of this resources used.We needthe following
basiccompleity classes:

The classof languagegpredicatesjhatcanbe decided

DTime : canbedecidedby adeterministicTuring machinen time
NTime : canbedecidedby anon-deterministiduringmachinen time
Space : canbedecidedby adeterministicTuring machinein time
. Thereexists a uniform circuit family suchthatfor all and :
res andthedepthof circuit  is boundedoy andthesizeof circuit  is
polynomial.
Importantcompleity classesderivated from this de nition are DTime POL and
NTime POL .
For anintuition  canbe seenasthe classof problemsef ciently solvableby a sequentiamachine,
while the class describeghe classof problemswhich canbe solved very ef ciently by
parallel computers. For this notethat any problemin can be solved by a CRCWPRAM in time

with a polynomialnumberof processors.

In the areaof computationatompleity very few problemsare known whereone canactually shav
thatit is computationallyinfeasibleto solve them. At leastit is possibleto shav for anumberof problems
thattheyare  -hard:If an -hardproblemcanbe solvedin polynomialtime onasequentiamachine
model(like DTM or RAM), then collapseso i.e. . This is one of the mostimportant
openguestionn computerscienceandmostof theresearchingommunitybelievesthatsucha collapses
notthecase.

The techniqueto shov suchrelative resultsrelies on polynomialtime reductionsandis excellently
presenteih [GJ79. A problem  (alsoknownaslanguagepredicateranbereducedo  in polynomial

time, denotedby pol , Iif thereisafunction computablén polynomialtime suchthatfor all inputs
: , in languagenotation; .
A problemis -hard,if everyproblemof canbereducedo thisproblem.An -hardproblem

is -complete,|if it isin . Therearenumerousnatural  -completeproblemsandif oneof these
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problemsis in , then , which is (if we recallthe differencebetweenthe underlyingmachine
models)absolutelycontra-intuitive.



Chapter 4

Broadcastingin Planar and
Decomposablésraphs

4.1 Intr oduction

Broadcastingn processonetworksmeanglisseminatinga singlepieceof information,whichis originally
known only to somenodes calledthe sources,to all membersf the network. Thisis donein asequence
of roundsby pairwisemessagexchangeover the communicatiorinesof the network. In oneroundeach
processocansenda messagéo at mostone of its neighbors.The goalis to inform everybodyusingas
few roundsaspossible.This numberis calledthe minimumbroadcastingime of the network. This short
descriptionconstituteghetelephonemodelfor broadcastingn undirectedgraphs.

Broadcastings a basictaskfor multiprocessosystemshat shouldbe supportecby the topology of
the network. This problemhasbeenstudiedextensiely, mostly in the caseof a single source— for an
overview see[HHL88, HKMP96]. In several papersthe broadcastapabilitiesof well known familiesof
graphslike hypercubescube-connectedycles,shufe exchangegraphsor de Bruijn graphshave been
investigatedandcomparedIn [MJ90] Hromkovic, Jeschke andMonien have studiedtherelationbetween
thebroadcastingime andthetime for solvingtherelatedgossipingoroblemfor specialfamiliesof graphs.

Ontheotherhand,onehastriedto nd optimaltopologiesfor networkswith a givennumberof nodes
suchthatthe broadcastindime is bestpossible. Here the worst caseover all nodesasthe single source
shouldbe minimized. The problemgetsmorecomplicatedvhenrestrictingto graphsof boundeddegree.
In [LP88] Liestmanand Petershave studiedseveral classef boundeddegreegraphsin this respectsee
also[BHLP92]. Balancedinarytreesalreadyachieve a broadcastingime of logarithmicorder, therefore
thequestionis the optimalconstanfactorin front of thelogarithm.

In this chaptemwe will investigatethe optimizationproblemfor arbitrarynetworks. Thatmeansgiven
a graphand a subsetof nodesas sourcesdetermineits speci ¢c broadcastime or more generalnd a
broadcasscheduleof minimal length. This problemin generalis -complete.We will show thatthis
propertyremainseven if one restrictsto planargraphsof boundeddegree or constantbroadcastime.
Furthermorethe problemcannotbe solved approximatelywith anarbitraryprecisionunless

On the otherhand,we will investigatefor which classesof graphsthis problemcanbe solved ef -
ciently. All thatseemgo be known is that broadcastinds easyfor treesasshowvn by Slater Cockayne,
andHedetniemin [SCH8J. Many combinatoriabptimizationproblemdor graphshave beenshovn to be
solvablein polynomialsequentiatime andevenin poly-logarithmicparalleltime for moregeneraklasses
of graphs: graphsof boundedtree-width (seefor examplethe paperby Arnborg, Lagegrenand Seese
[ALS91]) andgraphsof smallconnectvity ([Rei91d) —anoverview canbefoundin [Rei91h.

The broadcastingproblemseemso be moredif cult in this respectsinceit doesnot have the nite-
state-propertyr a boundednumberof equivalenceclasses.Thusthe methodsof [ALS91] and[Rei914
arenotdirectly applicable.Still, modifying the framework developedin [Rei914 we canshow thatbroad-
castingbecomesasyfor graphswith gooddecompositiorproperties For this purposewe have to extend
thenotionof graphdecompositiorio measuréts propertiesnoreexactly. A carefulinspectionof the pos-

27
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sibilities how informationcan o w within a componentindbetweendifferentcomponentsf a graphwill
be required. For theinternal o w componentghat are connectedoehae mostfavorably, but in general
connectvity cannotalways be achieved by a tree decompositiorinto small components.The algorithm
evenworks for a more generalversionof the broadcastingrroblem. Furthermorejt canbe parallelized
efciently toyield  -solutions.

As aconclusionwe cansaythatcombiningthesenew negative andpositive resultsthe parametershat
make broadcastinglif cult aredeterminedyjuite precisely Thecompleity of this problemjumpsfrom
to dependingontheinternalstructureof the networks.

4.2 De nitions and Previous Results

We statea formal de nition of the BROADCASTING DECISION PROBLEM [GJ79, whichis alsoknown as
Broadcastingn the TelephoneéModelandthe single-portinterconnectiorarchitectuie [Rav94].

De nition 1 Let be a (directed)graphwith a distinguishedsubsetof vertices , the
sources and bea deadline Thetaskis to decidewhetherthere existsa broadcastschedule that
is a sequencef subsetof edges

with the property , wheee for wede ne and
andrequire

Let usdistinguishbetweerthe MULTIPLE SOURCES BROADCASTING PROBLEM MB andthe restricted
versionwith only a singlesouice: the SINGLE SOURCE BROADCASTING PROBLEM SB.

Themeaningof thesets and isthefollowing: denoteshe setof nodesthathave receiredthe

broadcasinformationby round . For thisis justthe setof sourcesBy thedeadline theset
shouldincludeall nodesof thenetwork.  is thesetof edgeghatareusedto sendinformationin round ,
whereeachprocessor canuseat mostoneof its outgoingedges.

MB (denoted\D49in [GJ79) hasshovntobe  -complete.

Theorem1 [SCH8] MB for graphswith unboundediggreeis -completeevenif restrictedto a xed
deadline

Fora x eddeadlinghenumberof source®hviouslyhasto grow linearlyin thesizeof thewholegraph.
But eventhesinglesourceproblemis dif cult, in thiscasehedeadlinehasto grow atleastlogarithmically

Theorem2 [SCH8] SBfor graphswith unboundediggreeis -complete

The proofsof both resultswere publishedby Slater Cockayne andHedetniemi([SCH81]). For the
secondresult, their reductionof the 3-dimensionaimatchingproblemto SB requiresa deadlineof order
for thebroadcasproblem.Furthermorein thesamepaperit is shown:

Theorem3 [SCH8] SBcanbesolvedin lineartimefor trees.Thisalsoholdsfor theconstructiveversion
of this problem nding an optimalbroadcastscedule

Previous resultsconcerningthe approximationof the broadcastingproblemcanbe found in the next
chapter

4.3 NewResults

All theoremsabove canbeimprovedsigni cantly. For the lower boundsit sufces to considerundirected
graphstheupperboundsgivenbelow alsohold for the moregenerakaseof directedgraphs.
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4.3.1 Lower Bounds

Designingmorecomplicatedeductiondrom the 3-dimensionamatchingproblemandthe 3-SAT problem
we canshaw:

Theorem4 MB restrictedto planar graphswith degreeat most anda xed deadline  atleast is
-complete

After apreliminaryrepresentationf Theorem4 Middendorfwasableto improveit to degree3 anddeadline
2 [Mid93].

Thebroadcastingroblemwith a singlesourcedoesnot becomesubstantiallyeasierevenfor bounded
degreegraphswith alogarithmicdiameter

Theorem5 SBrestrictedto graphs with degreeat most is -completeevenif thedeadline
growsat mostlogarithmicallyin the sizeof thegraph.

Also planaritydoesnot make thingsmuchsimplerasthefollowing resultshaws.

Theorem6 SBrestrictedto planar graphs of dggree is -complete(in this casethe
deadlinegrowslike ).

4.3.2 Upper Bounds

Onthepositive side,we will extendtheclasse®f graphsfor whichthebroadcastingroblemcanbesolved
fast. For this purposedifferentwayson how a graphcanbe decomposethto smallercomponentsvill be
consideredby removing edgegedgeseparatorsdr by removing nodegnodeseparators)The concepof
graphdecompositiomasednthe -connectedomponentsf agraphis developedn [Hoh9( and[HR89]
andis stronglyrelatedto the notion of tree-widthintroducedby RobertsorandSeymour[RS83,RS86].

In [Hoh9( and[HR89] only nodeseparatorhiave beenconsidered.For the broadcastingrroblema
slightly differentnotionof graphdecompositiorseemdo bebettersuited.Furthermorethe wealer notion
of edgeseparationis of interestbecauseahe analysisin this caseis slightly lesscomplicatedandyields
betterbounds For ef ciency reasongnimportantpointis to getgoodboundson theroundnumberswhen
nodegmayreceiethebroadcasinformation. Thingsareeasyif all componentsf thegraphdecomposition
areconnectedywhichin generaktannotbe assumed.

Herewe restrictonly to decompositionshatgeneratea tree of componentslUsing morecomplicated
techniqueotherdecompositiomgraphscanalsobe handled.For the purposeof decomposing graph it
sufces to consideronly the caseof undirectedgraphs.Thus,if is directedin the following de nition
we simply meanthe correspondingindirectedgraph.

De nition 2 A graph is an edgedecompositiongraph of a graph if the
following conditionshold:
Thenodes of  represeninducedsubgaphs of sudithatthe arepairwise
disjointand

iff thereis an edge betweera nodeof ~ anda nodeof

is calledan edgedecompositiontreeof if isatree De ne thecut of anedge , thecut
ofanode ,andthecutof asthoseedgesof thatconnect and |, resp.connect to other
componentsr connectany pair of components:

cut for

cut cut and cut cut

Theborder of anode arethenodesof othercomponentshat haveconnectiongo

border cut



30 CHAPTER4. BROADCASTING IN PLANAR AND DECOMPOSABLEGRAPHS

AN N L S N N7 N

Figure4.1: A (2n,n,1)-edgelecompositiorof the -grid
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Figure4.2: A (4,2,2)-edgelecompositiorof acycle

A graph is —edgedecomposabléf there existsan edge decompositiorgraph
sud thatfor all

cut and
whee denoteghe numberof connecteccomponent®f . In this casecut will becalleda
—edgeseparator of

Notethatthedecompositioprocesgartitionsa graphinto differentcomponentsEachcomponent
itself maybeconnectear fall into severalconnecteadomponentskor example,a -gridis -
edgedecomposablinto a tree, seeFigure4.1. For a cycle of length the parameterare , see
Figure4.2. Taking the numberof connecteccomponentsvithin eachcomponeninto consideratiorwill
allow usto boundthe algorithmiceffort to solve the broadcastingrroblemin a nontrivial way.

Otherapproachesave beenproposedchow to decompose graphinto smallercomponentshasedon
the notionsof tree-width([RS83, [RS84), seefor example[ALS91],[BK91],[Lag9d. It is known that
graphswith smalltree-widthallow the ef cient solutionof otherwiseinfeasibleproblemdik e Hamiltonian
circuit or Independenset. For anoverview see[Bod93. However, it is anopenproblemwhetherthis is
alsothe casefor thebroadcastingproblem.

In the following we assumeéhatan edgedecompositiorof the network is givenandare not bothered
how to obtainsucha decomposition.
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Theorem7 For a graph of maximaldegree with a given —edge decompositioriree
MB canbesolvedin time

The algorithmwe have designedactuallyworks for a more generalversionof the broadcastingrob-
lem, in which the sourcesmay receve the broadcasinformationin differentroundsandeachnodeof the
network mayhave its individual deadline Let uscall this the geneil broadcastingproblemGB (A formal
de nition canbefoundon page43).

Thetime boundbecomegolynomialfor classef graphsthatcanbe decomposeéhto smallercom-
ponentausingnottoo large separators.

Corollary 1 Restrictedo graphs with

—edg decompositiotreesor

to graphswith boundeddeggreeand — —edg decompositionrees

MB (andevenGB) canbesolvedin polynomialtime

Sofar, we have only consideredhe decisionversionof MB, resp.the taskto determinethe minimal
lengthof a broadcasschedule.But applyingideassimilar to the onein [Rei914 onecanalsodesignan
algorithmfor constructingan optimalbroadcasscheduléy usingthe sametechniquessfor thedecision
problem.

Theorem8 Constructingan optimal broadcastschedulecan be donein the sametime boundsas stated
for thedecisionproblemin Theoem?7.

Using the machinerydevelopedin [Rei91d we canalsoderive a fastand processoef cient parallel
algorithm. Evenif the decompositiortreeis not nicely balancedusing pathcompressioriechniqueghe
problemcanbesolvedwith alogarithmicnumberof iterations(with respecto thenumberof components).
The basictaskonehasto solve is how a chainof two componentganbereplacedby a singlecomponent
thatexternally behaesidenticallywith respecto broadcasting.

Theorem9 For a graph of maximaldegree with a given —edge decompositiortree
MB canbe solvedon the PRAMmodelin parallel time

with a processoboundof

For nicely decomposablelasse®f graphstheseboundsputthe MB-probleminto

Corollary 2 Restrictedo graphs with
—edg decompositiotreesor
to graphswith boundeddeggreeand — —edge decompositionrees
MBisin

Furthermorewe considera decompositiorof graphswhich is more closelyrelatedto the notion of
tree-width.

De nition 3 Agraph is a nodedecompositiongraph of a graph if
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Figure4.3: A (8,8,3)-nodelecompositionreeof anexamplegraph

thenodes of representsubgaphs of sud that and

for each node holds: if then containsapath from to sudithat belonggto
everynode in

is called a node decompositiontreeof if is atree Figure 4.3 givesan exampleof a node
decompositiottree
Similarly to above, wede ne thecut of an edge ,ofanode ,andof ascut
, resp.

cut cut cut cut

Theborder ofanode arethenodesof othercomponents thatare connectedo cut

border cut
A graph is called —nodedecomposabldf there existsa nodedecompositiorgraph
sud thatfor all holds:
cut and
In this casecut isa —nodeseparator of
Theorem 10 Givena graph of maximaldegree with a —nodedecompositioriree

MB canbesolvedin time

Similarly, we getin the parallelcase:

Theorem11 For graphsof maximaldegree witha —nodedecompositiotireeMB hasa parallel
solutionof time compleity

andprocessorcompleity

As in the caseof edgeseparatoror nicely node-decomposabigaphswe get:
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Corollary 3 Restrictedo graphs with

_ —nodedecompositiotrees,or

with maximaldegree —— and —nodedecomposi-
tion trees,or

with constantdegreeand — —nodedecompositiotrees
MB canbesolvedin polynomialtime evenin

All theseboundsapplyto the Generabroadcastingroblem(GB) aswell asthe constructve variantto
determineabroadcastingchedule.

Theremainingpart of this chapteris organizedasfollows. In the next sectionthe -completeness
of multiple sourcebroadcastingn planar boundeddegreegraphsis proven(Theorend). Section4.5 de-
scribesasetof basicbuilding blocksthatareusedin thelowerboundproofsfor singlesourcebroadcasting.
In thefollowing two sectionsve give themainideasof thereductionghatyield Theorenb and6. Ef cient
algorithmsfor edge- resp.node-decomposabtgaphsaredescribedn thelasttwo sectionf this chapter

4.4 MB with Deadline4is +Complete

Let us rst obsere how a nondeterministicTuring machinecan solve the Multiple sourcebroadcasting
problem(MB).

Lemmal MB canbesolvedbya NTMin time

Proof: Foragraph with maximaldegree speci ed by adjaceng lists, a setof sources
anddeadline we cansolve MB by thefollowing nondeterminististratey:

Stepl: For eachnode chooseoneedge with the interpretationthat recevesthe
broadcastnformationfrom its neighbor ( meanghat doesnot receve the information
from somebodyelse).

Step2: Let bethesubgraplof consistingof theedgeshoserin stepl. Verify that hasnodirected
cycle. If thisconditionholds is aforestof rootedtreeswith edgegointingaway from their roots.

Step3: Solvethebroadcastingroblemfor thetreesconstructedn stepl. Analyzingthetime compleity
of the stratgyy in [SCH81] for broadcastingn treesonecanshov thata RAM cansolve this stepin
time . Hencea Turing machinecansolweit in time

The correctnes$ollows from the factthat eachbroadcastingchedulecanbe describecdby a directed
forest,in whichtheedgesarelabeledby theround,thebroadcasinformationis sentacrosghisedge.Stepl
guessesucha forestandstep3 checkswhetherit is possibleto inform this forestwithin the deadline

The  -hardnessfMB will beprovedby areductionof 3-DIMENSIONAL MATCHING (3DM [GJ79):

De nition 4 3DM Givenaset ,and , and aredisjointsetshavingthesamenumber
of elementsgdecidewhether containsa matding, i. €., a subset sud that andno
twoelement®f  agreein anycoordinate

Thegraph of aninstance with of the3DM problem
is de ned asfollows: Eachelemenbf thesets , and andeachtripleof isrepresentetly avertex.
Themembershipelationbetweersetelementsandtriplesde nestheedgedetweerthesevertices.

with
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Thereductionwill usearestrictedversionof the3DM problem whichis still -completgDF86]. Foran
instance of RESTRICTED PLANAR 3-DIMENSIONAL MATCHING thefollowing properties
arerequired:

is planar
For eachelement of thereareatmost3triplesin  containing (thus, is bounded
by where ).
Proof of Theorem4: Let beaninstanceof 3DM with andlet
bethe matchinggraph. The correspondindproadcastinggraph  is obtainedby replacingeachnode
of byachain , and of length 3 (seeFigure4.4). The othernodesandedgesremain
unchanged. is choserasthe setof sourcesandthedeadlinégs setto .
with
Thenodesets and  arede nedasfollows.
G VA, 1

|

Figure4.4: Thebroadcastingraphcorrespondingo aninstanceof the 3DM problem

Obsernethat hasdegree4 andis planarif  is planar
Lemma 2 hasa broadcastscheduleof length3iff  hasa matding.
Proof: Let beamatchingfor , and . Thenthefollowing stratgy informs all nodesof

within 3 rounds:

Round 1: The sourcesn sendthe informationto the nodesof which
representhetriplesof |, hence

Round 2: The sourcesnform the nodesin . The nodesof informedin round 1 inform the
nodesof ,thatmeans

Round 3: The nodesof sendtheinformationto the nodesin , thenodesin to the nodesof
, andthenodesn and tothenodesof , thatis
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Since  isamatchingfor , and ,thenodesn caninform all nodesin in round2, andall
nodesn in round3.

It is alsopossibleto inform the nodesin in round3, becausghey canbe matchedwith the
nodesn . This canbeseerasfollows: Eachnodeof is connectedo onenodeof
andonenodeof , whereasachnodeof andeachnodeof is connectedo at mosttwo nodesof

. Thuseachsubset of is connectedo a subsebf of atleastsize
Thereforethereexistsa matchingof with
For the otherdirection obsere that eachnode hasto inform in the rst or second

round. Thusit is only possibleto inform nodes  of by round1 or round2. These nodeshave

to sendtheinformationtothe nodesof and . Thustheneighborhoodf containsall nodesof
, and . Sincenodesin  have degree3, thetriplescorrespondingo  establisha matching
of

4.5 Modular Construction of Dif cult BroadcastNetworks

Forthesinglesourceproblemthereductiontoshov ~ —hardness muchmorecomplicated We will give
amodulardescriptionby rst constructinga seriesof somebasicgraphswith specialbroadcasproperties.

De nition 5 Letagraph anda broadcaststhedule for begiven.The r st
roundin which anode getstheinformationis calledits starting round . If sendgheinformation
to a neighborin round wecall activein thatround.Let bethe r stroundby which all neighbos
of areinformed.A node isbusyin ifitisactivein all rounds is busy if all
nodesare busy

Obsenre thateachbroadcasschedulecaneasilybe transformednto a busy broadcasscheduleof the
sameor smallerlength. Thereforewe will only considebusybroadcasschedulesn thefollowing.

The proof of Theorem6 is basedon anintricate constructionof a specialbroadcashetwork . This
sectionprecedesvith an analysisof somespecialsubgraphghat will be usedas basicbuilding blocks.
Eachsuchsubgraph hasa designatedetof inputandoutputports. Subgraphsvill be connectedver
theseportsonly. If outputportsof  areconnectedo input portsof anothersubgraph  we call a
successoof ,and apredecessaof

If the broadcastnformationis sentover sucha connectingedgewe say that the edgeis usedin the
correspondingound. Ohviously, eachedgedoesnot have to beusedmorethanonce.The nal network
will bebuilt in suchaway thatin anoptimalschedulgheinput andoutputedgesof asubgraph haveto
beusedat speci c times.

De nition 6 Let, for a givenscheduleof , theinputedges of a subgaph  beusedin
rounds . Thenthe vector is calledaninput time table of . Thesetof
all possibletime tablesis calledtheinput time sheet of . Analogously wede ne output time

tablesandoutput time sheets

The broadcasnhetwork we are going to constructhasthe propertythatin optimal scheduleall input
edgesof a subgraphave to be usedwithin atime interval of lengthat most2, thatmeansoptimal input
time tablesareratherrestricted.

De nition 7 Forasubgaph andaninputtimetable of let denote
the minimaltime that elapsedetweerthe roundthe broadcastnformationentess  (thatis the minimal
) andthe r stroundanoutputedgeof s used.

A lower boundfor thetime whenaninputedge of canbeusedis obtainedby addingup all delays
ontheshortespathfrom to asource.
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De nition 8 Let betheuniquesourceof thebroadcasinetwork , andlet path bethesetof all
pathsfrom tothesubgaph of . Thende ne

rm delay
path
crosses

If a nodeof a subgaph s informedin round we call dawvn therelative round this nodeis
informed.

Although edgeshetweensubgraphsreundirectedandthuscould be usedin eitherdirectionwe want
to ensurethatinformationentersa subgraptonly at its input ports. A ghost messagds a messagéehat
entersasubgraph throughoneof its outputports. To preventghostmessagethe following properties
arehelpful:

1. All successorsf asubgraph havethesamedawn.
2. All inputportsof  canbeusedin rounddawvn atthelatest.

3. Let the minimal numberof roundsthe information needsto reachan input port of  startingat
anotherinputportof  andusingonly edgesof  betheghosttime of . Theghosttime of all
subgraphsvill beatleast3.

Let uscall the mappingfrom theinputtime tablesof asubgraph to its outputtime tablesthe broadcast
relation of , ormoreformally:

De nition 9 For thesetof graphs describedbelowthe broadcastrelation

is givenby if thefollowing two conditionshold:
is aninputtimetablefor

ifthe inputedgesof areusedaccodingto thenthe outputedgesof canbeusedaccoding
to theoutputtimetable andall nodesof canbeinformedwithin thedeadline

iff it is not possibleto inform all nodesof  within thedeadline  usingthe
inputtimetable .

Obviously, describegheinformation o w propertiesof

45.1 BasicBroadcastNetworks

Now we will analyzethefunctionality of the broadcashetworksdescribedn Figure4.5,4.7,4.6and4.8.

The rst subgraph is called initializer (seeFigure 4.5). If we choosethe parameter
dawn with theinput node hasto sendthe informationto  in round
dawn . Otherwisethe lastnodesof the chaincannotreceve the informationwithin the dead-
line. Hence, and caninform their successorsisingthe edges and simultaneouslyin

relative round . Theinitializer transmitsthe informationsimultaneoushover all its  outputedges,.e.
rm delay dawn and

if dawvn

if dawvn

The following subgraphsmodel a binary coding system. The two possiblevaluescorrespondo a
receving the broadcasinformationat relative rounds |, resp. .
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Inity, +: l In Initn, t: l

|nit2’t

Figure4.5: Therecursve constructiorof theinitializer
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Figure4.6: Themax—graph , themin—graph andtheguess—graph

Theguess—graph (seeFigure4.6) with dawn and is usedto generate

thisencoding It holdsrm delay and
if
if

with dawn . Notethatafterinforming thebroadcasstrateyy hasto decidewhether sends
theinformationto  or  rst. Wewill interpretthis decisionassettinga Booleanvariable.

Thesubgraptduplicator (seeFigure4.7)with dawvn and will beusedto
duplicatethisbinaryencoding.Theinputedges and inform and inrounddawn . For

dawvn it holdsrm delay and

if
if

To combinetwo binary encodingsve usethe max—graph (see4.6) with dawn
and the min—graph . It is easyto seethatrm delay Cf we
get , andelse . The max—graphdoes
not simulatethe computationof the maximum of two input roundsprecisely If both input edgesare
usedlater than davn at leastone node doesnot recevve the information within the
deadline.Notethatwe have to guarante¢hat recevestheinformationbeforedavn . Sowe
getrm delay dawvn dawvn and

dawn if dawn
dawn if dawn

if dawvn
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Dup; : Iny l Sep :Inll llnz
a

b
bt
: : Outl (g
t-3 Ouy i ] i Out, t-3
Figure4.7: The subgraphsluplicator andseparator
Thesubgrapltseparator (seeFigure4.7) with dawn and realizesathreshold
function. It separatethe setof all inputconstellationsvhere  is usedatdavn into two groups:
dawn dawvn if dawvn
dawvn if dawvn
Figure4.8: The planarcrossinggraph
Furthermorethe crossinggraph with dawvn and realizesswitchingthe
locationof incominginformation. In particular if bothinputsareactivatedat davn the sameholdsfor the
outputs.If oneinputis late,i.e. informationarrivesat davn , only the oppositeoutputis late.
Obsenethatrm delay dawn dawvn and
if dawn or dawn
else,
where dawvn dawvn . An extendedcompleteanalysisof thesegraphsanda

descriptionof otherelementanpbroadcastingubnetvorksaregivenin [JRS94.
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Figure4.9: The constructiorof the planarduplicator

Using this crossing-graphwe cansubstitutethe duplicatorby a planar duplicator asshawn in Fig-
ure4.9.

4.5.2 An Exact Encoding for Planar Crossings

The crossinggraph doesnot simulatea crossingof two broadcassignalsexactly. If bothinput
edgesareusedlate, that meansat dawvn , thentherearesomenodes which cannot
receved the informationwithin the deadline.In the following we describehow to constructthe crossing
graph thatovercomeghis dif culty . Two techniquesreappliedfor this purpose.

1. Thebinaryencodingof inputroundsis maderedundanby usingpairsof inputs: davn and
dawvn . Suchapaircanbegeneratethy aguess-graph . We sayaschedulaisesan
inputedge of asubgraph intime (I) if recevestheinformationfrom inrounddawvn
If recevestheinformationfrom in rounddawn , theschedulauses late (L).

2. Thecrossingof two pairs will berealizedby thefollowing strateyy:
We rst corvertbothpairsinto anunarycoding

This canbe doneby using several planarduplicators,min—graphsand crossingsas shawvn in Fig-
ure4.10.In asecondstepwe decodehis unarynotationto thetwo binaryexchangedairsby using
duplicators crossingandmax—graphssshowvn in Figure4.11. Note thatthe unaryencodingcon-

tainsalwaysa permutationof . Hence,an arbitrary permutationof the positionsof this
unaryencodingcanbe realizedby usingcrossing—graphs . Thedawnsof subgraphsisedin
theconstructiorabove aresynchronizedy additionalchains.
The completecrossinggraph with dawn and canbe constructed
suchthatrm delay and
with and dawn
Combiningsomeduplicatorsand somecrossing-graphs it is possibleto constructa graphthat
duplicateghe pairs and asshawn in Figures4.12. We call sucha grapha multiplicator
where dawvn and denoteghe numberof outputpairs. This graphcanbe
constructeguchthatrm delay and
with and dawn . All thesegraphscaneasilybetransformednto bipartitegraphs

with the samefunctionality.
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Figure4.10: A schematiaview at a binary-unary-cowuerter

min{x', y}
—{ 24 —< 96 max Y
1 48]
min{x',y'} 36 max ﬁ>y'
{18 2 6 —<
([ 5p L0 ozl (M 451 [ 18]
Co 2 e HE {24 {12 ] 18 —<
min{x,y'}
X
L 6 s HH 6 241 6 - 12 max =
min{x,y}
tH—{ 18] max X
| a0 1|
N 1 30 g1 24
6 G
0 —=<nit
4.t

Figure4.11: A schematiaview at a unary-binary-cowuerter
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Figure4.12: Themultiplicator sub-graphsluplicatesnputs

4.6 Single Source Broadcastingis +Complete

The —hardnes®f the SB problemfor graphswith boundeddegreewill be provedby areductionof a
restrictedversionof 3DM problem,wherefor eachelement of thereareexactly threetriples
in  containing [Bun84. Themainideais similar to thereductionin the proof of Theorem.
Considerthetree in Figure4.5with its root astheonly sourceand outgoingedges , where
. It hasthefollowing properties:

With adelayof roundsthis treecanreacha statesuchthatin the next round
theinformationof the sourcecanbe propagatedimultaneouslyver all outgoingedges

If a broadcasschedulefor nishes by round thennoneof theseedgescan propagatehe
informationbeforeround

Connecteachleaf of thetreewith anodeof of thegraph de nedabove. Let and
connectheroot of with thesource . Thenthisnew graph hasabroadcasschedulef lengthat
most iff  containsamatching.Theresultinggraphhasdegree , butis notnecessarilyplanar
sinceedgesrom to may have to be crossedyy theedgedeaving . By additionaleffort
canbemodi ed to decreas¢henodedegreeto .

Obsene that a graph with a single sourcecannotbe informedwithin lessthen
rounds.Our constructioryieldsthatthe problemto nd aminimal broadcasscheduis -completefor
logarithmicdeadlines.

Proof of Theorem5: Let be aninstanceof 3DM with . Thecorrespondinggraph
with uniguesource consistof 4 levels(seeFigure4.13):

The rst level consistof thesource connectedvith therootof aninitializer thatduplicategshenumber
of sourcesThesecondevel consistof somesubgraphs simulatethenodesof and intheproof
of Theoremd. Thethird level consistof theedgesonnectingaleafof thesubgraph  with aninputnode
of thesubgraph andaninputnodeof  iff . This meanghattheleavesof the subgraphs

simulatethenodesof . Thefourth level consistsof somesubgraphs and  which simulatethe
nodesof and . Thedeadlines choseras . Obserethat hasmaximumdegree
3.

Lemma 3 Let represen@aninstance oftherestricted3DM-problem.
Then canbeinformedwithin  roundsiff  containsa matding.

Proof: Let and with .
Thenfor eachschedule for with deadline it holds: At mostoneleaf of each  recevesthe
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G:
INitm, 9+3logm
‘ Connecting Edges ‘
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Figure4.13: A broadcasgraphcorrespondingo aninstanceof the 3DM problem

informationin round andatleasttwo leavesin around or later. Sotheclaim follows similar
to theproof of Lemma2.
This provesTheoremnb.

4.7 SBof Planar Graphsis +Complete

To achieve planarityin the singlesourcecasewe constructa directreductionof 3SAT. The reductionwill

usethefollowing restrictedversionof the satis ability problem:Let  beaBooleanformulasuchthatfor

eachvariable thereareatmost5 clausesn thatcontaineither or — andeachclause

satis es . Thisrestrictedversionof 3SAT remains  —completdGJ79.

Proof of Theorem 6: We reducea given instance of the restrictedversion of 3SAT with clauses
andvariables to agraphconsistingof 5 levels(Figure4.14).

1. The rst level consistsof the source connectedvith the root of aninitializer with

2. Theleavesof the initializer are connectedwith theinputsof parallelguess—graphs with
. Let  bethesubgraphconsistingof the source theinitializer andthe guess—
graphs. Let be anarbitrary schedulefor achieving the deadlinesuchthat the outputedges

and of the guess—graph@-igure4.6) canbe usedwithout arti cial delay Thenoneof
theedges canbeusedin round andthe otheronein round . We
will denotethisbehaior by thetimetuples or relativeto thedawn of thesuccessorand

interpretthesepairsascodingsfor trueandfalsesettingof the correspondingariable.

3. Thethird level consistof parallelmultiplicators , which areusedto increasehe number
of binaryencodingshoserin level .

4. Onthis level we sendthesebinary encodinggo the subgraph®f the lastlevel which representhe
clauses . In this network we will usea specialcodinganddecodingnetwork to realizea
crossingof therelativetime tuples and . We call apair of codinganddecodingnetworks
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adoublecrossing. Thesecomponentsare combinedin anallocationnetwork depth and
size

5. Finally, we connecthe outputnodesof theallocationnetwork to the OR—graphs .

G: s

| ALLOCATION

Figure4.14: A planarbroadcastingraphcorrespondingo aninstanceof therestrictedversionof 3SAT

For theresultinggraph  with source thedeadlines setto dawvn ,i.e.

Lemma4 Let representaninstance oftherestrictedversionof 3SAI. Then canbe nished
within  roundsiff there is a satisfyingtruth assignmentor

Proof: Theclaimfollowsfrom thefactthata scheduleeanonly achiese thedeadlingff for eachsubgraph
thereexists at leastone input node thatis connectedo an inner node of and recevesthe
informationin round .
This completeghe proof of theorem6.

4.8 Efcient Algorithms for DecomposableGraphs

We startwith a generalizatiorof the broadcasproblem. So far, eachsourcenodehasgot the broadcast
informationin roundO. In themoregenerakcaseasource maygettheinformationin anarbitraryround
. Furthermorefor eachnode thereis anindividual deadline insteadof a globaldeadline
identicalfor all nodes.This generalizatiormaybe of lessinterestwith respecto practicalapplications.
Neverthelessit is necessaryn orderto apply anapproactbasedon graphdecompositionsasit hasbeen
for severalothergraphtheoreticadecisionandoptimizationproblems.

De nition 10 GENERAL BROADCAST PROBLEM [GB]:
Givena graph and two partial functions , decidewhetherthere existsa
broadcastscedule with

and
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sud that if is de ned.

The setof sources is givenby thedomainof = The GB—problemcanbe solved similarly to the

stratgly of Lemmal. Note thatthis problemis also —complete. If we restrictthe GB—problemto
graphs with maximaldegree thenumberof differentchoicesof stepl is boundedoy
where denoteghedegreeof in . Thusfor agraph the GB—problemcanbe solved
in time _ Let denotethesetof nodesof degreelin |, thenrestrictedto a
node we cansimplify stepl of the algorithmgivenin the proof of Lemmal asfollows: if isa
sourcewith we choosetheedge ,and else.Thus,thereareatmost

differentchoices.

Lemma5 Let denotethesetof nodesof of degreel. Thenthe GB—pioblemfor canbesolvedin
time

Thestratgly above canbeparallelizedn a simpleway.

Lemma 6 TheGB—poblemrestrictedto graphs with maximunmdegree canbesolvedby a
CRCW-PRAMwith O processosin timeO

Thesestratgyieswill be usedasbasicroutinesfor thecomponent®f agraph.
Proof of Theorem7: Let bea —edgedecompositiorireeof agraph
with Figure4.15shavs sucha component  which is connectedo threecompo-
nents , and .A componengeneratedhy mayfall into severalconnectedubgraphsvhichwe
will call subcomponents

Figure 4.15: A node of an Figure 4.16: A possibleinfor- Figure4.17: The minimum dead-
edge decompositiontree and its mation ow within a broadcast line of thegenerabroadcasprob-
neighbors schedule:from to othercom- lemfor thisgraphis usedto calcu-
ponentsin one or in both direc- late the minimum broadcastime
tions; some edgesmay not be for thegraphabove.
used.
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Let with be the setof subcomponentsf the component
andde ne cut asthe setof edgesf cut with oneendpointin . De ne

cut cut cut

cut cut cut

border cut and
To describea broadcastingchedule of , eachedge of s labeledby The
rst value denotegshe roundthis edgeis usedandthe second the direction ( or

). If this edgeis notusedwe set
If werestrict to cut we considerasthe rst round whenanodeof  getsthebroadcast

information. For eachedge with therelativeround
If the edge is not usedwe set Let be the rst roundan edgeof
cut is used.If noedgein cut is used . Similarly de ne
if elselet

Thefollowing two lemmatashaw thatwith the help of the conceptof relative rounds the numberof
possibleprotocolsof informationexchangebetweertwo componentganbe boundedyuite substantially
This propertywill bebasicfor thetime ef ciency of thealgorithm.

Lemma7? If isabusybroadcastsdiedulethenfor all cut holds:
thenumbes and are smallerthan cut
Proof: Let border cut be the extendedcomponeniof
Notethatthe numberof nodesof  is boundedy Hence the minimal broadcastingime of  is
trivially boundedoy
The claim follows from the factthat denoteghe delaybetweerthe rst nodeof
beinginformedandtheroundwhentheinformationis sentacross
For neighboringcomponents de ne arelative stateasatuple
cut

Figure4.16illustratesa complex information o w betweera componengandits neighbors.

Therelative surface is the setof all possiblerelative states  of busy broadcasschedulesA
state betweentwo neighbors and is avectorconsistingof a relative state  anda starting
round for all subcomponentsf  with cut . Let bethesetof all possiblestates

thatmayappeain busyschedulesA state  of acomponent is avectorconsistingof thestarting
round for all subcomponentsf  andtuples  for all neighboringcomponent®f  Asabove,
let bethesetof all possiblestates thatmayappeain busyschedules.

Lemma8 For acomponent with cut-size cut , Size and subcompo-
nentsthesizeof isboundedy

Proof: cut

Notethat

The following stratgy solvesthe minimum broadcastindime problemfor graphs with
agiven —edgedecompositioriree Let denotethe minimal schedule
lengthof the local broadcasproblemfor thegraph  andexternalinformationexchangeasspeci ed by
state ( if thereis no scheduldor state ). Obsene thatthis valueis independenof the structure

of outsideof
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Stepl: For eachcomponent andeachstate determine
For eachedge cut with and generatea new node andanew
edge , Where istheonly neighborof .Dene asthesetof thesenew nodes
and asthe setof new edges . We de ne alocal GB-problemwith respecto  and
asfollows:
if
if
For de ne and

Theconstructiorof  for theexamplegivenin Figure4.16is illustratedin Figure4.17.

Step2: Let denotethe neighborsof

Chooseanarbitrarycomponent anddeclare astherootof . Let bethefatherof in
accordingto the orientationwith respecto . Let  denotethesubgraphof  containing

andall its descendents=valuatethe function forall and startingwith the leaf

componentsf
Lemma9 Let denotethesonsof  andlet be a stateconnecting and . The
minimaldeadlinefor thegeneal broadcasiproblemfor  with respecto externalinformationexchange

canbecomputeds
with
cut
cut and

Proof: This propertycanbeshavn by inductionon the depthof the subgraphs

If isaleafof then thus The claim follows directly from
thede nition of

Let bethedepthof thesubgraphs Assumethatthe claim holdsfor eachsubtreeof depthless
than andeachstateof thesesubtreesin particularfor eachson of  andeachstate

Givenastate of  then denoteghe setof corre-
spondingstate Thus denoteghe minimal deadlineof ~ with respecto externalinfor-
mationexchange  and

theminimal deadlineof  with respecto externalinformationexchange

The claim of the lemmafollows sincewe minimize over all possiblestatesof ~ that may appearin
busyschedules.

Therefore, denoteghe minimal scheduldengthfor thegraph itself.

The correctnes®f step 1 follows directly from the de nition of a surfaceandthe de nition of the
generabroadcasproblem.The correctnessf step2 follows from Lemma9.

Accordingto Lemmab the computationof requiresat most O

steps.FromLemmas8 it followsthatstepl canbe executedn time
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The computationof is independenof the remainingstructureof . Note that given
cut S0 . Thusgiven all values and
, thecomputatiorof all canbeexecutedn time

Summingupoverall  givesthebound

This nishes the proof of Theorem7 and8.
By usingtreecontractiormethodgheevaluationof the -functioncanalsobedonein parallelrequir
ing only alogarithmicnumberof iterationswhichyields Theoren®. Thedetailsaredescribedn [Rei914.

4.9 Node Separation

Thesametechniquewith a slightly worsetime bounddueto alargernumberof statesalsoworksfor node
decompositionsf graphs.

Proof of Theorem 10: Let be a —nodedecompositiortree of the graph
with Figure4.18shavs acomponent  which is connectedo threeother
components and

G
1 shrinked G,

i

Figure 4.18: A node of an Figure 4.19: The extendedcom- Figure4.20: The minimum dead-

extendedG,

edge decompositiontree and its  ponentof line of thegenerabroadcasprob-
neighbors lem of this graphis usedto calcu-
late the minimum broadcastime
for thegraphabove.
Let with be the setof subcomponentsf the  andde ne
cut asthe setof nodesof cut
cut cut cut
cut cut cut
border cut
For a node let betheround getstheinformation,andfor anedge let the
roundwhen is used. To describea broadcastingcheduleof a graph , eachnode of is labeled
by avectorof rounds where denotethe edgeswhich are
incidentto and Notethatthevalues areboundedby will becalled
thestateof . Thesurface ofanode is thesetof all possiblestatesof thatmayappeain busy

broadcasschedulesNotethatfor a x ed is boundedoy
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For a node let where denoteghe rst rounda nodeof
recevestheinformation.

Lemma 10 For a busybroadcastschedule is boundedy

Proof: For acomponent with let border
cut be the extendedcomponenbf (seeFigure4.19). Note thatthe numberof nodes
of is boundedby Thusthe minimumbroadcastime of  is boundedby

Let and betwo nodesof asubcomponentf acomponenof . Thenthedifferencebetweerthe
roundswhenthetwo nodes and areinformedis at most

A state betweeriwoneighbors and isavectorof states onefor eachnodeof cut
The surface of acut is the setof all possiblestates  thatmay appeaiin busy broadcast
schedulesA state  of acomponent isavectorof states , onefor eachnodeof cut Thesurface

of acomponent s thesetof all possiblestates thatmayappeain busyschedules.

Lemma 11 For acomponent with cut-size cut , Size and subcompo-
nentsthesizeof isboundedy

Proof: De ne therelative state andtherelativesurface  asthe
setof all possiblerelative states thatmayappeain busybroadcasschedulesThenthestate™ between
two neighbors and isavector

cut

Thesurfac_e_ of cut is the setof all possiblestates™ thatmayappeaiin busybroadcasschedules.
Notethat and . Hence,

cut
The following stratgy solvesthe minimum broadcastindime problemfor graphs with
agiven —nodedecompositioriree Let denotethe minimal schedule
lengthof the local broadcasproblemfor thegraph  andexternalinformationexchangeasspeci ed by
state  ( if thereis no scheduldor state ). Againthis valueis independenbf the structureof
outsideof
Stepl: For eachcomponent andeachstate determine
Let cut cut betheshrunlencomponenbf
For eachedge with cut generatea new node anda new edge ,
suchthat is theonly neighborof . De ne asthesetof thesenew nodes  , and
thesetof new edges . We de ne alocal GB—problemwith respecto  and asfollows:
if
if
For de ne and .
Notethat . Theconstructiorof  isillustratedin Figure4.20.
Step2: Let denotethe neighborof

Chooseanarbitrarycomponent anddeclare astherootof . Let bethefatherof in
accordingto the orientationwith respecto . Let  denotethesubgraptof containing
andall its descendants=valuatethe function forall and startingwith the leaf

componentsf
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Lemmal2 Let denotethesonsof  andlet bea stateconnecting and . The
minimaldeadlinefor the geneill broadcasiproblemfor  with respecto externalinformationexchange
canbecomputeds
cut
with cut

Theproofis almostidenticalto the oneof Lemma.
As in the caseof edge-decomposition denoteghe minimal scheduldengthfor
thegraph itself.
Thecorrectnessf stepl follows directly from the de nition of a surfaceandthe correctnessf step2
from Lemmal2. Accordingto Lemmab5 the computatiorof requiresat mostO
steps.FromLemmallfollowsthatstepl canbeexecutedn time

Thecomputatiorof is independentf theremainingstructureof . Notethatfor x ed the
numberfor thatmayappeain abusybroadcasschedules boundedy . Thusgivenall values
and the computationof all canbe executedin time

Summingupoverall  givesthebound

All togetherwe getatotal time of

Again the evaluationof the -function canalso be donein parallel with a logarithmic numberof
iterations,which givesTheoreml1.

4.10 Conclusions

We have shavn thatthe singlesourcebroadcastingproblemremainshardfor planarnetworks of bounded
degreeif theinternalconnectwity is high, thatmeanghereis no edge-or node-decompositiowith compo-
nentsof smallsize. On the otherhand,evena muchmoregeneralersionwith mary sinksandindividual
deadlinesanbesolvedef ciently ongraphsthatcanbedecomposedicely.

Thusonecanconcludethat generatingoptimal broadcasscheduless a dif cult taskin general.The
intuition thatthis mustbedueto a complex structureof the network which givesalot of freedomdesigning
a scheduléhasbeenveri ed by arigorousproof. Most interestingly suchstructuresanalreadyoccurin
boundediegreeplanargraphs.
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Chapter 5

On the Inapproximability of
Broadcasting

5.1 Intr oduction

We have seenthat the exact solutionof the Broadcastingproblemis combinatoricallyinfeasible, if

. In this chapterwe discussthe computationatompleity of approximatingoroadcastingime. An
approximationalgorithmfor broadcastings an algorithmthat on input of agraph anda set
of sourcesoutputsa broadcastingschedule . For the performancequality we distinguishadditive and
multiplicative approximatiorschemes.

If anpolynomialtime algorithmapproximates problemby anadditive term , thenthe perfor
mance (broadcastingime ) of theoutputof aninstancex (agraph andasourceset ) of
size (thenumberof nodesn ) differsfrom theoptimalsolutionOpt atmostby ,i.e.

Opt . Theapproximatioralgorithmachiezesa multiplicati ve approximation by ,
if Opt forall andall instance®f size .

Thus,the  -hardnessesultsof Theorenb canbetranslatedo aninapproximabilityresult: Consider
the setof graphsresultingfrom the reductiondescribedn Theorem6. The broadcastingime of these
instancess either or . TheTheoremprovesthatit is -hardto distinguishbetweerthesetwo setsof
instances.Hence,if anpolynomialtime approximationalgorithmfor broadcastingvith multiple sources
exists with multiplicative approximationratio - for , thenit could make this distinctionand

would follow. This inapproximabilityfactorincreases¢o - whenwe apply the result of
[Mid93].

Sucha directtransferof lower boundsfrom decisionproblemsto inapproximabilityresultsis an un-
usualproof technique. Recall that this trick doesnot work with single sourcebroadcastingsincehere
broadcastingime increasedy the sizeof the graph. For a comparisorthe sametechniqueonly impliesa
trivial constantdditive inapproximabilityboundof for

In this chapterwe will concentraten additive andmultiplicative inapproximabilityboundsfor single
sourcebroadcastindSB) andadditive boundsfor multiple sourcebroadcastindMB). This chapteris or-
ganizedasfollows. In the next sectionwe will presentprevious work and statethe main resultsof this
chapter In section5.3we repeatsomenotationof thelastchapterandintroducethe sub-graphsisedin this
chapter In section5.4 we prove the multiplicative inapproximabilityof - for SB.Then,in section5.5
we presengtight lower additive approximatiorboundfor SB. We will shawv in section5.6 additive inap-
proximability boundsfor multiple andsingle sourcebroadcastingn ternarygraphs.In the lastsectionof
this chaptemwe will concludetheseresults.
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5.2 Previous Work

Broadcastings thetaskof disseminatindnformationfrom oneor mary sourcesto all membersf acom-
municationnetwork. We ervisagea staticnetwork whereit makessenseo computebroadcasstrategies
of ine. We alreadyintroducedthe telephoneamodelasoneof the simplesttiming modelsin De nition 1.

A straight-forvard generalizationthe postalmodel[BNGNS98 BNK94], modi es the edge delayof an
edgeandswitching time of a node. The edgedelaydelaysthe informationof a nodealongthis edge.The
switchingtime is thetime spana nodeneeddo startthe the next transmissiorio a neighbor Again nodes
canparticipatein only onecall at eachtime. In hetepgeneoumetworks every nodeandedgemay have

differenttiming behaior unlike in homaeneousmetworks wherethe ratio betweenthe network's edge
delayandswitchingtime describeghe latencyof the network. Choosinga lateng of 1 leadsbackto the
telephonemodel. An interestingspecialcaseis the open-pathmodelwherethe edgedelayis zeroandthe
switchingtimeis 1. Clearly, if broadcastingvith respecto oneof the simplestcommunicatioomodels the
telephonanodel,is infeasiblethenthe situationfor the heterogeneousiodelcannotbe better

5.2.1 Approximation algorithms

In [Rav94] it is shavn that broadcastime in the telephonemodel canbe approximatedwvithin a factor
of givena network of nodes. BarNoy etal. [BNGNS9§ improve thesetechniquesand
presenta polynomial-timeapproximationalgorithmfor the single sourcebroadcastingoroblemwith an
approximatiorfactorof for themoregeneralpostalmodel.

For graphswith boundedree-widthwith respecto the standardreedecompositiorthe broadcastime

canbe evenapproximatedvithin [MRS 98].

For broadcastime in the telephonemodelthereexists an additive ~ -approximationalgorithm
[KP95]. In particularthereis a polynomialtime boundedalgorithmthat for a graphwith  nodesand
broadcastime constructs broadcasscheduleof length N

5.2.2 Inapproximability results

In [BNGNS9§ heterogeneousetworksin the postalmodelwere considered For this timing modelit is
not possibleto approximatehe broadcastime within afactorof for ary unless . The
proofusesareductionfrom set-caver usingalateng varyingfrom to

Allowing multiple sourcexanreducethe broadcastime to a constant.Yet for deadline? the decision

problemis still -completeeven for planargraphsof smalldegree[Mid93]. As we alreadyhave dis-
cussedhis -completeneseesultfor broadcastingn thetelephonamodelimpliesaninapproximability
factorof -. Notethatthisdoesnotimply thatgraph=of higherbroadcastime cannotbedistinguished

from graphswith broadcastime - .

5.2.3 Newresults

In this paperwe investigateinapproximabilityboundsfor the broadcastime in the telephonemodelfor
undirecteccommunicatiometworks. Thelower boundsreferto thelengthof the optimalbroadcassched-
ule andnot necessarilyo its computation Clearly, computinggoodbroadcasscheduless atleastashard
asapproximatinghe optimallengthof valid broadcasschedules.

We solwve the openproblemrecentlyaddressedhy [BNGNS99 whetherthereis a polynomialtime
algorithm approximatingbroadcastindy an additive constant. We statean inapproximability factor of
- for ary usinga polynomialtime reductionfrom set-cwer.

Theorem 12 For every there existgraphswith  nodeswith broadcastimeat most sud thatit is
-hard to distinguishthosefrom graphswith broadcastimeof at least -

Then,we concentraten the lower additive approximabilitybound. We prove thatthe approximation
algorithmof Kortsartzet al. [KP95] is bestpossibleup to a constantfactorof the additive term. Unless
broadcastingannoteapproximatedby apolynomialtime boundedalgorithmwithin anadditive

termof ~ for someconstant . In particularwe prove:
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Figure5.1: Thechainandits symbol. Figure5.2: Thestarandabroadcasschedule.

Theorem 13 For every there existgraphs with  nodesand broadcastime at most
sud thatit is -hard to distinguishthosefrom graphswith broadcastimeatleast —

The proofsof thesetheoremausegraphswith large degree. In thelastchaptemwe have seenthatthere
aresituationswherelow degreesimpli es the compleity of broadcastingo someextent. We shav how
to transferthesetechniquego ternarygraphswhich areundirectedgraphswith a degreeof at mostthree.
For ternarygraphsandmultiple sourcesve prove anadditive lower boundof

Theorem14 Itis to distinguishternarygraphs with multiple souicesandbroad-

casttime fromthosewith broadcastime for anyconstant .

Theseindistinguishabléernarygraphshave a polynomialnumberof informationsourcesWe arealso
interestedn thecaseof aS|ngIelnformatlonsourcaandternarygraphs Modifying theproofof Theoreml 4
we canstatea lower additive inapproximabilityboundof

Theorem 15 It is -hard to distinguishternary graphs with singlesourcesand broadcast
time fromthosewith broadcasttime for someconstant .

5.3 Notationsand BasicTechniques

For a self-containedepresentationwithin this chapterwe repeatDe nition 1. Let be an
undirectedgraphwith asetof nodes , calledthesources Thetaskis to computethe broadcastime
, theminimumlength of abroadcastschedule . Thisis asequencef setsof directededges
. Theirnodesarein thesets , wherefor wede ne
. A broadcasschedule inducesa directedspanningforestwith the
sourcesasroots,anddirectededgesdescribingheinformation ow.  ful lls theproperties

1. and

2.

Wede ne thebroadcastimeofagraph withsources , to betheminimumtimerequired
to completebroadcastingrom nodes . Let beabroadcasscheduleor , Where
Thebroadcastimeof a node isde nedas

Furthermoreas we have alreadydiscussedn the last chapterwe canrestrictour considerationgo
busy broadcasschedulesHereevery processotriesto inform a neighborin every stepstartingfrom the
momentit is informed. Whenthis failsit stops.By thistime, all its neighborsareinformed. Furthermore,
every nodeis informed only once. Every broadcasschedulecan be transformednto a busy schedule
within polynomialtime without increasinghe broadcastime of ary node. For a detailedproof we refer
to [Sch00& From now on, every scheduleis consideredo be busy. In [BNGNS99 this argumentis
generalizedo the postalmodel(theauthorscall busy schedulesotlazy).
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Figure5.3: The ternarypyramid and a broadcast Figure5.4: A completebinarytreeandabroadcast
schedule. schedule.

5.3.1 Sub-Graphs

As abasictool we considera chain (in theprecedingchaptercalledtimer, seeFigure5.1)

startingat node andendingat with interior nodesthat are not incidentto ary other edgeof the
supergraph.A starconsistof acentralnode and raynodes (Figure5.2)

In Figure5.3 a pyramidis shaovn. A pyramid consistsof a hongs/combstructurewherethe top nodehas
equaldistanceo thebasenodes

The broadcastingpehavior of thesesub-graphss the following (For simplicity we assumethat the
sourcesnform nodesof the sub-graptat rst).

Lemma 13 Lettheends and ofachain beinformedintime and ,whee
. Then thetotal chainis informedin time .
Thecenterof star  canuse different busy broadcastschedulesto inform all ray nodes. Their
broadcastimescandescribeany permutationsf .
Therootof a completebinary treeof depth informs  leavesn time
For a pyramidwith basenodesthetop nodeinformsall but onebasenodesn time . Thelast
basenodeis informedin time

5.4 Inapproximability by a Factor of -

In this sectionwe shav thatthe lower multiplicative inapproximabilityboundof - . Theproofconsists
of areductionto the set-caver problem.

De nition 11 (Set-cover) Let beasetof elementsand a collectionof subsetof
. Set-cwer is the problemof selectingas few as possiblesubsetdfrom  sud that every pointin s
containedn at leastoneof the selectedsubsets.

Feige[Fei9g provedthefollowing hardnessesult.

Theorem 16 ([Fei9g) Unless , the set-caver problemcannotbe approxi-
matedby a factor which is betterthan

Here,we will only usea constantower multiplicative inapproximabilityboundfor set-cwer.

Theorem17 ([Hoc97]) Unless , the set-caver problemcannotbe approximatedoy any constant
factor.
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Figure5.5: Thereductiongraph

Proof of Theorem 12:
Givenaninstanceof set-caverwith and elementghereductionconstructagraph
( will bechosenrateron):

Thesinglesource is the centerof a starwith ray nodes

Forall thenode is therootof a binary balancedreewith leaves. Eachleaf is the starting
point of a chainof length which endsat a leaf of a binary balancedreewith arootnamed if
for

Thesenodes representhegroundset . Theirtreeshave leaves,
eachleafis connectedo only oneof theabose mentionecthains.

An exampleof this graphis shavn in Figure5.5. Note thatthe numberof nodesof this graphis bounded
by . Let bethe maximumdepthof the balancedinary sub-trees.

Lemma 14 Aset-coverfor of size implies

Proof: We presenta broadcasschedulefor . Thesource informsthe setnodes corre-
spondingto the minimum set-cover. Accordingto Lemmal3 all elementnodes areinformedin time

Now all nodeswill beinformedby nodes . They inform their treesin time  andall set
nodes in additionaltime . Thenall nodesareinformed.
Lemma 15 If anyset-cowerof hasatleastsize then

Proof: Wewill shav thatthereis anelemennode whichcannoteinformedintime . Fix abroadcast
schedule . In every stepthe sourcecanonly inform oneneighbor . Let bethose
neighboranformedin the rst  steps.Notethatevery pathdisjointfrom the sourcebetween and is
longerthan . Thereforenofurthersetnodecanbeinformedby thistime.

We pick anelement fromtheset whichis non-emptysincethereis no
set-caverof size . Thedistancdrom thecorrespondingiode toary nodein islargerthan , since
noneof theleavesof the 'streesis directly connectedo theleavesof 'stree.

If  wasinformedby anodein then . Ontheotherhand,if = wasinformedby a set
nodenotin , thenthis setnodewasinformedin time atthe earliest.This setnodehasdistanceof
atleast to , whichresultsin abroadcastime
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We continuethe proof of Theorem12. For ary it is possibleto describea set of set-cover
instancesitherhaving a set-caver of sizeatmost or having oneof atleastsize . Sincethis proofis
constructve, thedecisionof this propertyin is -hardevenwith theknowledgeof [Hoc97].

For our reductionwe wantto ensurethat . This propertycanbe easilyguaranteedConsider
thegroundset for and andfor let
iff . This paddingincreasesvery set-cover of size to , but doesnotincrease . Since

, we have then

We reducethls set toagraph by theconstructlorabo/eW|th thechoice —. Lemmal4implies
for aset-caverof atmost abroadcastime of at most -, while Lemmal5impliesfor a set-caver
instanceof atleast aminimumbroadcastime of

This completeghe proof. For —— we have constructedh setof graphsfor whichit is -hard
to distinguishwhetherthe broadcastime is smallerthan - orlargerthan -

5.5 A Tight Additi ve Bound

Now we presentheprooffor anlower additive boundthatmatchesheboundof apolynomialtime approx-
imationalgorithmpresentedn [KP95]. We usea polynomialtime reductionfrom E3-SAT which denotes
thesatis ability problemof BooleanCNF-formulaswith exactly threeliteralsin eachclause.

Theorem 18 [Has97 For any it is -hard to distinguishsatis able E3-SA formulasfrom E3-
SAT formulasfor which only a fraction of theclausescanbesatis ed, unless

Let bea3-CNFwith clauses andvariables . Let denotethe numberof
occurrence®f the positive literal  in . In the proof of Theorem18 Hastadusesa variantof E3-SAT
whereevery variable occursequally often as positive and negative clausein . Let , Where

with beingalargenumberto be choserlateron. Notethat -

Theformula isreducedo anundirectedyraph (seeFigure5.6) asfollows.

The source is the centerof astar  with rays , for , ,
,and

We call thenodes literal nodes They belongto disjointisomorphicsub-graphs

A sub-graph  containditeral nodes , representingheliteral  ( , ).

Betweertheliteral nodescorrespondingvith avariable in  weinsertchains

for all and
For every clause we insert clausenodes which we connectvia the
threechains for of length to their correspondinditeral nodes

. Thisway, every literal nodeis connectedo oneclausenode.

Theunderlyingideaof this constructioris thatthe assignmenof avariable  correspondso thetime
whenthe correspondinditeral nodeswill be informed. For the upperboundwe can usethe satisfying
assignmentf to constructafastbroadcasschedule.

Lemma 16 If issatis able then

Proof: Theschedule informsall literal nodesdirectlyby . Let bea satisfyingassignment
of . Theliteral nodes of graph  areinformedwithin the time period
Theliteral nodes areinformedwithin thetime period

Notethat is atrivial upperboundfor thedegreeata literal node.So,the chamsbetweertwo literal
nodescanbeinformedin time . A clausenodecanbeinformedin time by an
assignediteral nodeof the rst type,which alwaysexistssince satises . Notethatall literal
nodescorrespondingo the secondype areinformedwithin . Sothechainsbetweerthose

andtheclausenodeareinformedin time
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Figure5.6: Thereductiongraph

Lemmal7 Let beabusybroadcasischedulefor . Then,

1. everyliteral nodewill beinformeddirectlyfromthesource , and

2. for : -
Proof:

1. Everypathbetweentwo literal nodeshatavoids hasatleastlength . By Lemmal3eventhe

rst informedliteral nodehasno way to inform ary otherliteral nodebeforetime point , whichis
thelasttime aliteral nodeis goingto beinformedby

2. followshby 1.

If only oneclauseperBooleanformulais not satis ed, this lemmaimpliesthatif  is not satis able,
then . A betterboundcanbeachievedif theinapproximabilityresultof Theoreml8
is applied.A busyschedule for graph de nesanassignmentor . Then,we will cateyorizeevery
literal nodeashigh, low or neutral, describingwhetherits broadcastime correspondso the assignment
andwhetherit is delayed.Clausenodesareclassi ed eitherashigh or neutral. Every unsatis edclauseof
the E3-SAT-formula  will increasehe numberof high literals. Besidesthis, high andlow literal nodes
comein pairs,yet possiblyin differentsubgraphs and . Theoverall numberof the high nodeswill
belargerthanthoseof thelow nodes.

Proof of Theorem 13: Consideranunsatis ableE3-SAT-formula , theabovedescribedyraph anda
busybroadcasschedule onit. Theschedulale nesfor eachsubgraph anassignment

asfollows. Assignthevariable if the numberof delayediteral nodeswith
is smallerthanthosewith B . If bothnumbersareequal,w.l.o.g. let
1. A literal node is coheently assigned iff . We alsocall

coherentlyassignediteral nodesneutral.
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Figure5.7: The circle denoteliteral nodes. Literal nodesin a rectanglebelongto the samevariable. A
given broadcasscheduleinforms literal nodesearly or delayed. This timing de nes the assignmenbf
variablesandwhethemodesarelow, high or neutral

2. Aliteralnode is highif it is delayedandnotcoherenthassigned,e., and
3. A literal node is low if it is not delayedand not coherentlyassignedj.e., — and

4. A clausenode is high, if all of its threeconnectediteral nodesare neutraland delayed,i.e.,

5. All otherclausenodesareneutmal.

Every highliteral node with broadcastime for canbematchedo aneutraldelayed
literalnode = with broadcastime N for . Lemmal3 shavsthatthechain
betweerbothof themcanbeinformedin time —— attheearliest.

For a high clausenodewith literal nodes andbroadcastimes with

, Lemmal17 shaws that this high clausenode getsthe information not earlier than
. So,thechainto the mostdelayediteral nodewill beinformedat
attheearliest.

Lemma 18 Let bethenumberoflow literal nodes, thenumberof highliteral nodesand thenumber
of high clausenodes.Thenthefollowing holds:

1.

2.
3.
Proof:

1. Considerthe setof nodes , for and . For this setlet be
the numberof high nodes, the numberof low nodesand the numberof nodeswith time
greatethan . By thede nition of high andlow nodesthefollowing holdsfor all

Lemmal3 andLemmal?7 shav thathalf of the literal nodesareinformedwithin andtherest
lateron:
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It thenfollowsthat:

2. Note thatwe canmatcheachof the high (delayed)literal node to a neutraldelayediiteral
node = . Furthermorethesenodeshave to inform a chainof length . If the latestof the high
nodesandits partnerss informedat time , thenLemmal3 shaws thatthe chaincannotbe
informedearlierthan

The broadcastimesof all literal nodesare pairwisedistinct. Thereforeit holds , proving

3. Every high clausenodeis connectedo threeneutraldelayedliteral nodes. The taskto inform all
chaingto thethreeliteral nodeds doneattime attheearliestjf is thebroadcastime
of thelatestliteral node.For highclausenodesthereare  correspondingreutraldelayediteral
nodes.Furthermorethereare delayedhigh literal nodes(whosematchedpartnersmay intersect
with the neutralliteral nodes). Neverthelessthe latesthigh literal nodewith broadcastime

causes broadcastime on the chainto a neutraldelayediteral nodeof atleast

Frombothgroupsconsidethemostdelayediteral node . Sinceeveryliteral nodehasadifferent
broadcastime it holdsthat , andthus

Supposall clausesare satis able. ThenLemmal6 givesan upperboundfor the optimal broadcast
time of .

Letusassumehatatleast ofthe clausesareunsatis edfor everyassignmentConsideraclause
nodethatrepresentanunsatis edclausewith respecto theassignmenivhichis inducedby thebroadcast
schedule Thenatleastoneof thefollowing casesanbe obsened:

Theclausenodeis high,i.e., its threeliteral nodesarecoherentlyassigned.
Theclausenodeis neutralandoneof its threeliteral nodesis low.
Theclausenodeis neutralandoneof its threeliteral nodess high.

Sinceeachliteral nodeis chainedo oneclausenodeonly, thisimplies

Thecase implies - . Thenit holdsfor the broadcastime of ary busyschedule :
Otherwise|f , then- - and

Notethat . Combiningbothcasesit follows that

For ary this gives,choosing for sufcient large

Theoreml8states - for ary whichimpliesclaimedlower boundof — for ary

Notethatthe numberof nodesof isin and
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Figure5.8: Thereductiongraph

5.6 Lower Boundsfor Ternary Graphs

Thepreviousreductionusesgraphs with alargedegreeatthe sourcenode.To addresgernarygraphs
with multiple sourcesve modify this reductionasfollows.

Theproofusesareductionfrom the E3-SAT-6 problem:a CNF formulawith n variablesand
clausess given. Every clausecontainsexactly threeliteralsandevery variableappearshreetimespositive
andthreetimesnggative, but doesnot appearin a clausemorethanonce. The outputis the maximum
numberof clauseghatcanbesatis ed simultaneouslypy someassignmento thevariables.

Lemma 19 For some ,itis -hard to distinguishbetweensatis able 3CNF-6 formulas, and
3CNF-6formulasin which at mosta -fractionof theclausesanbesatis ed simultaneously

Proof: Similar asProposition2.1.2in [Fei9g. Here,every secondoccurrenceof a variableis replaced
with a freshvariablewhenreducingfrom E3-SAT. This way the numberof positve and negative literals
remainsequallyhigh.

How canthe starat the sourcebe replacedby a ternarysub-graptthat produceshigh differencese-
tweenthe broadcastimesof theliteral nodest turnsout thata goodway to generatesuchdifferencesn
avery symmetricsettingis a completebinarytree. Using treesinsteadof a starcomplicateghe situation.

A busybroadcasschedulenforms  leavesin time wherein the stargraphonly onewasinformed
in time . Thisis thereasorfor the decreasef theinapproximabilitybound.
The ternaryreductiongraph , given a 3CNF-6-formula anda number to be chosenlater,
consistf thefollowing sub-graphgseeFigure5.8).
1. Thesources arerootsof completebinary trees with depth and
leaves . Thenumber will bechosersuchthat is anevennumber
A constanfractionof theleavesof  aretheliteral nodes of asubgraph . Therestof them,

is connectedn pairsvia -chains.For anaccuratedescriptionwe introducethefunctions

and
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Figure5.9: A ring of nodesasreplacementf astarsub-graph.

Lemma 20 1. For

2. For —
Proof:  Note that Stirling's formula implies — and - ——. Sincethe series
decreasefor thisimpliestheclaim.

Every nodeof is labeledby a binary string given by the path from the root, i.e., for the root
label is theemptystring ; two successingiodes of anode arelabeledby label and
label . We call two leaves are oppositeif label  canbe derived from label by negating
every bit. For abinarystringlet bethedifferenceof occurrencesf 1 andOin .
Considemanindexing of theleavesof  suchthatfor all label

label ,and and have oppositdabelsfor all

2. For every binarytree  accordingto theseindicesthe literal nodesof arede ned by
and for ,and

3. Theotherleavesof  areconnectegairwiseby chainsof length suchthatoppositeleavesof a
treerepresenfreeliteralnodes and . Thesenodesarenot partof any sub-graph

4. Thesub-graphs for describedn the previoussectionhave adegree5 attheliteral
nodes.Thesenodesarereplacedwith ringsof size5 to achieve degree3 (seeFigure5.9).

Proof of Theorem 14: If s satis able,thenthereis a coherentlyassigningbroadcasschedulewith
An analogousbsenationto Lemmal? for a busybroadcasschedule for is thefollowing

1. Everyliteral nodewill beinformeddirectly from the sourceof its tree;

2. Forall andfor all it holds

3. For

Againliteral nodesarede nedto beeitherlow, high,or neutral.Clausenodesareeitherhigh or neutral.
Forthenumber of low literals, of highliterals,and thenumberof high clausest holds . There
are ,resp. nodesn differentchainsthatareinformedlaterthan . Thereforethereis atree
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thatinformsatleast , resp. delayednodes.Using it is possibleto describea lower boundof
thetime delaycausedy  asfollows:

Letusassumedhatatleast  clausesareunsatis edfor every assignmentThe constanfraction of
-leavesof trees canbeseerasanadditionalsetof unusediteral nodes.Now consideiaclausenodethat
representanunsatis edclausewith respecto theassignmentvhichis inducedby the broadcasschedule.
Thenthereis atleasta high clausenode,a neutralclausenodeconnectedo a low literal node,or aneutral

clausenodeconnectedo a high literal node.
Sinceeachliteral nodeis chainedio at mostoneclausenode thisimplies

Notethat . Theseobsenationcombindwith Lemma20 now imply

for some . Sincefor thesetof nodes of it holds it is sufcient to choose
asanonconstanpolynomialof

Proof of Theorem 15: We startto combinethe reductiongraphof the precedingheoremwith a ternary
pyramid (seeFig 5.3). The single source s the top of the pyramid. The basenodeshave been

previously the sources . Note that the additionalamountof broadcastime in a pyramid is
for nodesand for onenodefor arny busybroadcasscheduleThus,theformersources
areinformednearlyatthe sametime.
Forthechoice —— thenumberof nodesf thenew graphis boundedy . Thebroadcast
timeincrease$rom of to andtheindistinguishablalifferenceremains T

5.7 Conclusions

The compleity of broadcastime is a key for understandinghe obstaclego ef cient communicatiorin
networks. This article answerghe openquestionstatedrecentlyby [BNGNS9§, whethersingle source
broadcastingn the Telephonenodelcanbe approximatedvithin any constanfactor At themomentthe
bestupperboundapproximatiorratio for broadcastime is known [BNGNS99 andasalower
boundwe statea factorof - . For this problemof the multiplicative approximationis still wide open
andthereis a new unpublishedesultof ElkenandKortsartz[EK01] which improvesthis boundto
undertheassumption DTime .

Theoreml3closeghegapfor theadditiveapproximationIn [KP95] anadditive "~ -approximation
algorithmwas presentedor generalgraphswith  nodes. Here,we presenta lower additive bound of

It is possibleto transferthis resultto boundediegreegraphs But thereconstructiorof sub-graphsvith
large degreedecreasethelower bounddramatically Neverthelessfor ternarygraphswith a singlesource
this paperimprovestheinapproximabilitydifferencefrom [JRS9§ upto =~ . For theapproximation
factorof suchgraphdittle is known sofar. Theupperboundis a constanfactorandTheoreml5impliesa

lower boundof — . Somatchingupperandlower boundsremainunknown.

Froma practicalpoint of view, network structuresare often uncertainbecausef dynamicandunpre-
dictablechanges.And if the network is static, it is hardly ever possibleto determinethe ratio between
switchingtime on a single processoandthe delayon communicatiorinks. But evenif theseparameters
areknown asconstantdik e in telephonenodelof broadcastingtheseresultsshav thatdevelopinga good
broadcasstrateyy is a computationallyinfeasibletask.



Chapter 6

RandomizedRumor Spreading

6.1 Intr oduction

In this chapterwe investigatethe problemof broadcastingnformationin a processometwork from a
differentview. Unlike asin the precedingchaptersaninterconnectiometwork allows arbitrarypoint-to-
point communication.The messagédo be passedvill be calledrumorto emphasizehe speci cs of this
communicatiormodel.We investigatehe problemof spreadingumorsin a distributedernvironmentusing
randomizeccommunication.Suppose playersexchangeinformationin parallelcommunicatiorrounds
overaninde nite time. In eachround , theplayersareconnectedy acommunicatiorgraph  generated
by randomphonecalls asfollows: eachplayer selectsacommunicatiorpartner atrandomand calls

; two players and areconnectedy anedgein  if calls inround . Rumorscanbestartedn ary
roundby ary playerandcanbetransmittedn bothdirectionsalongthe edgesn thegraph  inround .
Thegoalis to spreadherumoramongall participatingplayersusinga smallnumberof roundsanda small
numberof transmissions.

Themotivationfor usingrandomizedommunicatioris thatit naturallyprovidesrobustnesssimplicity,
andscalability For example,considerthe following so-calledpushalgorithm Startingwith theroundin
which a rumor is generatedgachplayer that holds the rumor forwardsit to a communicationpartner
selectedndependenthyanduniformly at random. The distribution of the rumor is terminatedafter some
x ed numberof rounds. At this time all playersareinformedwith high probability The term
with high probability (w.h.p.) meanswith probabilityatleast for anarbitraryconstant

Clearly, one canalsoinform all playersin roundsusing a deterministicinterconnectiorof
constantdegree,e.g.,a shufe network (For an overview of deterministicinformationdisseminatiorwe
referto [HHL88] or [HKMP96]). Theadwantageof therandomizegushalgorithm,however, isitsinherent
robustnessgainsseveralkindsof failurescomparedo deterministischemeshateitherneedsubstantially
moretime [GP94 or cantolerateonly arelatively smallnumberof faults[LMS92]. For example,consider
nodefailuresin which aplayer(differentfrom the playerstartingtherumor)failsto communicater simply
crashesandforgetsits rumors. Obviously, whenusinga sparseleterministicnetwork, evena singlenode
failure canresultin a large fraction of playersnot receving the rumor. Whenusingthe randomizecpush
algorithm, however, the effectsof nodefailuresarevery limited. In fact, it is not dif cult to prove that

nodefailures(speci ed by an oblivious adwersary)resultin only uninformedplayerswith high
probability.

Unfortunately the pushalgorithmproducesa large communicatioroverhead.In fact, it needsto for-
wardeachindividual rumor timesbeforeall playersareinformed,in comparisorio adetermin-
istic schemewhich requiresonly transmissionslt seemghatthe large numberof transmissionss
the pricefor therobustnessThis givesriseto the questionwhetherthis additionalcommunicatioreffort is
aspecialpropertyof the above pushalgorithmor is inherentto rumor spreadingisingrandomphonecalls
in general.

63
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6.1.1 Background

The rumor spreadingmodel is originatedin the mathematicaimodelingto the spreadof an infectious
diseaseln 1926McKendrickdevelopedthe rst stochasti¢heoryin 1926.An overview over suchmodels
is presentedn [Bai75]. Standardmathematicamodelsof viral infection characterizendividuals by a
smallnumberof statesg.g. infected,uninfectedjmmune etc. The pushmodelconsiderauninfectedand
infectedindividuals. In the rst roundoneindividual is infected. Every infectedindividual contactsa
randompartnerof the whole group (possiblybeing alreadyinfected)and transmitsthe disease.In987
Pittel [Pit87] analyzedor this modelthatthe expectedhumberof rounds  toinfectall participantds
boundedy

with probability corvergingto .

Demersetal.[DGH 87] introducedheideaof usingso-callecepidemicalgorithmsfor thelazy update
of dataobjectsin adatabasereplicatedatmary sites,e.g.,yellow pagesnameseners,or senerdirectories.
In particular they proposehefollowing two concepts:

Anti-entiopy: Every site regularly choosesanothersite at randomandresolhesall differencesby
exchanginghe completedatabasecontents.

Rumormongering: Whenassiterecevesanew updatet becomes “hot rumor”. While a site holds
a“hot rumor”, it periodicallychoosesnothersite at randomandsendsherumorto the othersite.

It turnsoutthatanti-entroyy is extremelyreliablebut producesuchanenormousmouniof communication
thatit cannotbe usedtoo frequently The ideaof rumor mongeringis to exchangeonly recentupdates,
therebyreducingthe communicatioroverheadsigni cantly. In practiceone might usea combinationof
both conceptsthatis, usingrumor mongeringfrequentlyand anti-entropy very rarely in orderto ensure
thatall updatesarerecognizedy all sites.In this paperwe solelyinvestigatealgorithmsimplementinghe
rumor mongeringconcept.

The original ideafor rumor spreadingvasto sendrumorsonly from the caller to the called player
(pushtransmissiopn[DGH 87]. Severalterminationmechanismslecidingwhenarumorbecomescold”
sothatit transmissions stoppedwere investigated.All thesealgorithmssharethe samephenomenon:
thefraction of playersthatdo not know a particularrumor decreasesxponentiallywith the numberof
transmissions (i.e.,messagethatcontainthisrumor). So-calledneaneld equationgimplicitly assuming
that is sharplyconcentratedroundits meanvalueE ) leadto the conjecturethat for
all variantsof the pushalgorithm that have beeninvestigated. In otherwords, a pushalgorithm needs

transmissiongor sendingarumorto all players.

A furtherideaintroducedin [DGH 87] is to sendrumorsfrom the calledto the calling player (pull
transmission) It wasobsenedthatthe numberof uninformedplayersdecreasemuchfasterusinga pull
schemdnsteadof a pushscheme.This kind of transmissiommakessensdf updatesoccurfrequentlyso
that (almost)every player placesa randomcall in eachroundaryway. Mean eld equationdeadto the
conjecturehat for pull schemesClearly, this doubleexponentiabehaior impliesthatonly

transmissionareneededf the distribution of the rumor canbe stoppedat theright time.
Sucha terminationmechanismhowever, is not presentedInstead the authorspredictthat T
transmissionaresufcient for someotherspeci ¢ terminationmechanisms.

The work of Demerset al. initiated an enormousamountof experimentaland conceptualktudy of
epidemicalgorithms.For example,thereis a variety of researchssuedik e consisteng, correctnessjata
structuresandef ciency [AAS97, GL91, GPP93LLSG92 RGK96. Recentheoreticalvork concentrates
ontherobustnesagainsByzantinefailuresf]MMR99]. In this paperwe concentrat®nly ontheef ciency
of theserandomizedalgorithms.In particular we studytheir time andcommunicatiorcompleity usinga
simplemodelfor theunderlyingrandomizeccommunication.

6.1.2 The Random PhoneCall Model

Let denotethe setof players. The communicatiorgraph of round is
obtainedby a distributed, randomizedprocess.In eachround, eachplayer choosesa communication
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partner from atrandomand calls . Unlessotherwisestatedwe assumehatall playerschooseheir
communicatiorpartnerdndependentianduniformly at randomfrom

Eventhoughwe ervisageanapplication(suchasthelazy transmissiorof updatego distributedcopies
of a database)n which rumorsare constantlygeneratedy differentplayers,our analysisis concerned
with the distribution of a single rumor only. We focus on the lifetime of the rumor andthe numberof
transmissionsatherthanthe numberof connectionestablishedecauséhe latter costis amortizedover
all therumorsusingthatconnection.

Inround , therumorandotherinformationcanbe exchangedn bothdirectionsalongthe edgesof
Wheneer a connectionis establishedetweentwo players,eachoneof them (if holding the rumor) has
to decidewhetherto transmitthe rumorto the otherplayer, typically without knowing whetherthis player
hasrecevedtherumoralready Regardingthe o w of information,we distinguishbetweernpushandpull
transmissionsAssumeplayer callsplayer .

Therumoris pushedf tells therumor
Therumoris pulledif tells therumor.

We do not limit the sizeof the informationexchangedn ary way. Eachinformationexchangebetween
neighboringplayersin aroundis countedasa singletransmissior{We point out thatour algorithmsonly
addsmall countervaluesto rumors,whereasour lower boundshold evenfor algorithmsin which players
exchangetheir completehistory whenever the rumor is sentin eitherdirection). Communicatiorinside
eachround,however, is assumedo proceedn parallel,thatis, ary informationreceivedin aroundcannot
beforwardedto anothemplayerin the sameround.

Themajorissuethathasto be speci ed by arumorspreadinglgorithmis how playersdecidewhether
the rumor shall be forwardedto a communicatiorpartner An algorithmis called distributed if players
male thesedecisionsusing only local knowledge. In otherwords, the decisionwhethera player sends
a messagéo a communicatiorpartnerin round dependonly on the player's statein thatround. The
initial stateof aplayeris de ned by the player's addressthe numberof players andpossiblya randombit
string. The stateof a playerin round is afunctionof its initial state theaddressesf its neighbordn
the communicatiorgraphs , andtheinformationrecevedin rounds to . (For our lower
boundswe allow the stateto dependn additionon a globally known roundnumberandthe birth dateof
therumorconsidered.)

Finally, an algorithmis calledaddress-obliviousf a player's statein round doesnot dependon the
addressesf theneighborsn  but only onthenumberof neighbordn . (Thestatecanstill depencon
the addressesf neighborsin .) We point out thatall rumor spreadingalgorithmsproposed
by Demersetal. [ DGH 87] areaddress-obliious.

6.1.3 NewResults

We prove that the numberof transmissionganbe reducedsigni cantly whenthe rumor is sentin both

directions,thatis, when using pushand pull ratherthan only pushoperations. We introducea simple

push&pull algorithm spreadingthe rumor to all playersin roundsusing only

transmissiongn comparisoro asusedby the pushalgorithm. For this analysisit is necessary

to analyzethe performanceof the plain pushalgorithmand pull algorithmstepby step. It turnsout that

thesealgorithmsneed messagéo inform all playerswith high probability, i.e., with probability
for someconstant . Bothalgorithmsneedtime

Theorem 19 Thesimplepushk& pull-schemeanformsall playersin time using
messgeswith high probability.

The drawback of the simple push&pull-algorithmis that its successheaily relieson a very exact,
globalestimationof theright terminationtime. This mechanisnis very sensitve to ary kind of errorsthat
in uence theexpansionof the setof informedplayers.

ScottShenler proposed distributedterminationmechanisnusinga counterindicatingindirectly the
spreadof the rumor. We shaw thatthis min-counteralgorithm performsaswell asthe pushé&-pull algo-
rithm:
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Theorem20 Themin-counteralgorithminformsall playeisin time using
messgeswith high probability.

In orderto improve the robustnesswe devise a distributed terminationscheme called the median-
counteralgorithm, thatis provably robustagainstadwersarialnodefailuresaswell asstochastiénaccura-
ciesin establishingherandomconnections.

In particular we shav thattheef ciency of thealgorithmdoesnotrely on thefactthatplayerschoose
their communicationpartnersuniformly from the setof all players. We showv that the median-counter

algorithmtakes roundsandneedonly transmissionsegardles®f the probability
distribution usedfor establishinghe randomconnectiongslong asall playersactindependentlyandeach
playerusesthe samedistribution to selectits communicatiorpartner For example,this

allows samplingfrom an arbitrary addresgirectory (possiblywith redundantaddresseand somenon-
listedplayersasin atelephonebook). In otherwords,the algorithmcanbe executedevenwithout globall
knowledgeaboutthe setof players.

Theorem21 Assumingan arbitrary distribution andupto nodefailuresas describedabove the
median-counterlgorithmsinformsall but playersin roundsusing trans-
missionswith high probability.

In addition, we provide lower boundsassumingthat the communicationpartnersare selectedusing
the uniform probability distribution. Both the simple push&pullalgorithmaswell asthe median-counter
algorithm are address-obliious and useonly transmissions.We prove a corresponding
lower boundshaving thatary address-obliiousalgorithmneedgo perform transmissions
in orderto inform all players.We point out thatthis boundholdsindependentlyof the numberof rounds
executed.

Theorem 22 Anyaddress-obliviouslgorithmguaranteeinghatall but a fraction oftheplayeisreceive
therumor with constantprobability needso perform — transmissiong expectation.

Thesituationchangesubstantiallywhenconsideringgenerali.e., possiblynon-address-ohlious)al-
gorithms.Allowing roundsanalgorithmthatexploitstheaddressesf communicatiorpartners
canspreadherumorusingonly transmissionsHereis a simpleexample. The playerinitiating the
rumor simply waits until eachotherplayerappearsas communicatiorpartnerfor the rst time andthen
forwardsthe rumor to this player Clearly, this is not a practicalalgorithmasit takestoo mary rounds.
Neverthelessit illustratesthe additionalpossibilitieswhenthe addressesf communicatiorpartnerscan
be exploited.

The above exampleleadsto the questionof whethergeneralepidemicalgorithmscanspreada rumor
in a smallnumberof roundswhile usingonly a linear numberof transmissionsWe give a lower bound
answeringhis questiomegatively. In particulay we show thatarny randomizedumorspreadingalgorithm
runningfor roundsrequires transmissions.

Theorem 23 Any distributedrumor spreadingalgorithm guaranteeingthat all but a fraction of the
players receivethe rumor within roundswith constantprobability needsto perform trans-
missiondn expectation.

This lower boundholdsregardlessof the amountof information that can be attachedo the rumors.
For example,playersmight always exchangetheir completecommunicatiorhistory wheneer the rumor
is transmittedin eitherdirection. Thus,thereis a fundamentabap betweenrumor spreadingalgorithms
basedon randominterconnectionanddeterministicoroadcastingchemes.

Therestof this chapteiis organizedasfollows. We startin the next sectionwith an extensie analysis
of the push,pull, push&pull-algorithm.In section6.3 we presenthe min-counterandin section6.4 the
med-countealgorithms.Then,in section6.5we prove the lower boundfor the numberof transmissionn
thecaseof obliviouscommunicationln thelastsectionof this chaptemwe presenthegeneralower bound
for numberof transmission this communicatiormodel.
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Pushalgorithm for player andrumor
begin
for eachround do
if knows andage then
age age
call
Sendtherumorto (i.e., pushegherumor)
od
end.

Figure6.1: The pushalgorithm.

6.2 The Advantageof Push&Pull

First, let usexplain the differencesn the propagatiorof the rumorobtainedby pushtransmissionsn the
onehandandpull transmissionsn the otherhand.

6.2.1 The PushScheme

Considera pushschemein which every informedplayer, in every round,forwardsthe rumorto the player
it calls until all playersare informed. We identify the playersby the numbers . Let
call betheplayerthat callsin round . Wlog. player isinformedatthebeginning. We attached
to therumortheageof therumoranddenotethisbyage . Whentherumoremepesits ageis setto .
Figure6.1exempli es the pushalgorithmandFigure6.2 shavs how the pushschemespreads rumor.
Pittel [Pit87] provedthatfor with probability 1 all playerswill beinformed. We will shav
thata constanthoiceof sufces to ensurehigh probability, i.e., probability for someconstant

Let therandomvariable denotethe numberof informedplayersin round . Beforethe rst round

we have . Formally therandomvariables describea Markov processthereis a nite
setof states  andthetransitionprobability push is thesamefor eachround. push denoteghe
probabilitythat playersareinformedin the next roundunderthe assumption playersareinformedin
this round. We cancomputethis probability push usingthe equality
if
push else

Theterm denoteghe probabilitythat informedplayerhit uninformedplayerswith calls.
Thefollowing recursiorfor , and describeghisterm.

Giventhis Markov procesg$or eachgiven thespeedf corvergencecanbecomputedaccuratelysing
standardechniquessdescribedn [Sin92. But this approactdoesnot have anobviousgeneralizatiorior
all andin factwe useadifferentapproach.

It turnsoutthatthebehaior of canratheraccuratelydescribedf we divide theinformationspreading
processnto thefollowing phasegAn overview canbefoundin Figure6.3).

1. Startup:

We wantto estimatethe numberof roundsnecessaryo leave this phasewith high probability. We
will usethefollowing Lemma.
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Figure6.2: A 16 processonetwork spreadinga rumorusingthe pushscheme.



6.2. THEADVANTAGE OF PUSH&PULL 69

n : :
s
% #informed
NG} ./ players
® |
2 a0
I () |
4n e
2 |
I X I
o/
S | 3
g | | IS
n : 2
I I ©
| | 2
polylog n T ————————— e
Ologlogn) logn O(logn)  Time

Figure6.3: The growth of thenumberof informedplayersin the pushscheme.

Lemma 21l If all informedplayeisonly pushtheirinformationfor subsequernbunds,
thenthere areatleast new informedplayers after with probability , for _

Proof: Eachof the playerscalls addressesWe neglectthe information spreadingmpact of
newly informedplayersduringthese rounds.

For eachroundwe obsene oneof the following possibilitiesfor eachplayet

(a) He canaddres®neof the originally informedplayer This occurswith probability

(b) Hetriesto pushto thesameplayerasanothelinformedplayer The probability of this eventis
atmost

(c) Hehitsaplayerthatwasinformedin aprecedingound.Sincethe phaseendswith additional
informedplayers this probabilityis boundedoy  , too.

Thereforet holds,thatin everyrounda playersuccessfullynformsanew onewith probability of at
least . Theprobabilitythatatleast pushedail is thereforeat most

Hence the numberof informedplayersdoublesafterevery roundswith probability
Thereforeafter roundsthe phases passedvith probability
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2. Exponential growth: -

It turnsoutthatin every roundthe numberof informedplayersincreasesearlyby afactortwo with
high probability. In particularwe canprove thefollowing lemma.

Lemma?22 If players are informedin a roundof the push algorithm, then
for all thereareatleast newinformedplayersin the next roundwith probability
if , whee

(a) if wehave —_—

(b) andotherwisewehave — -

Proof: The probability thatoneof the playerswill pushto an uninformedplayerandno other
playerpushedo this playerin the sameroundis at least —. Hence the probability thata push
succeedsndependentlyfrom the behavior of all other playersis at leastthis probability —.
Hence we canusea binomialdistribution to estimateghe probabilitythatmorethan playersfail
to inform new players.Thereforeanupperboundof this probabilityis givenby thefollowing term.

(@) If ~let —— it holds

(b) For “let — — . Let ——. Now
obsenefor all —_—

Notethat andtherefore —_.
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Until —— playersareinformed,the basisof the exponentialgrowth is two. For this notethat
for N

Herethe rst inequality holdswith high probability, while the last inequality holds almostevery-
where,i.e., for all for some . Now obsene thatapplyingthis recursionfor rounds
yields:

Of coursethis numberof informedplayersis largerthanthe preconditionallows for the inequality
Howeverit is guaranteethatafter stepsatleast— playersareinformedwith high probabil-
ity.

In thefollowing roundswe canthe secondoundof Lemma22

andaftersome roundsatleast— playersareinformedwith high probability.

3. Saturation phase —

At aboutthis time the exponentialgrowth of the setof informedplayersstops.Let us considerthe
setof uninformedplayers . Oncea constanportionof the playersareinformed,this set
shrinksby a constanfactorin eachround. At the endof the rumor spreadingorocesshis factoris
about sincethefractionof playersthatdo notreceve acall in aroundis givenby -
andthusquickly corvergingto . Thus,theshrinkingof theuninformedplayerstakesat least
rounds.Pittel [Pit87] shavedthatthis boundcanbe achievedwith probability 1. But if we wantto

ensurea higherprobability of for some andconsiderthe casethatall but oneplayers
areinformed,thena straight-forvard calculationshovs that we needat least roundsfor this
simpletask.

For an upperbound, notethatif — playersare informed every uninformedplayeris informedin
a round with probability -. Hence,the probability of remaininguninformedafter rounds

is boundedby - . Clearly all playersaretheninformedwith probability
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Pull algorithm for player andrumor
begin
for eachround do
if knows andage then
age age
for all called do
Sendtherumorto (i.e., pullstherumor)
od
od
end.

Figure6.4: The pull algorithm.

6.2.2 The Pull Scheme

Now considera pull schemein which only calledplayerssendthe rumortowardsthe calling players.Let
called bethesetof playerthatcall in round . Againplayer isinformedatthebeginningand
we attachthe rumor's ageto the transmittedmessagestartingwith  whenthe rumoremepes. The pull
algorithmis shovnin Figure6.4 andin Figure6.5arumoris spreacby this algorithm.

Againwedenoteby thenumberof informedplayersin round . Againwe describeéhecorresponding
Markov processwith its transitionprobability  pu , i.e.,theprobabilitythatif playersareinformed
in round underthe condition wereinformedin round . We have

pull
else

We canderive thefollowing Lemmasdirectly from this equation.

Lemma23 If playesareinformedandall uninformedplayers only pull their informationin
around,thenfor all , there are at least— new informedplayers in the next round

with probability _

Proof: An uninformedplayercallsaninformedplayerwith probability . Thenumberof new informed
playerscanbe describedby a binomial distribution . Thereforethe probability that at most
playerswill beinformedis exactly

Let - — . Thenit holds
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Figure6.5: A 16 processonetwork spreadinga rumor usingthe pull scheme.
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Let — . Thenit follows
Therefore andwe get:
Lemma 24 For ,if all uninformedplayeis only pull their informationfor some rounds,

thenall playeis are informedwith probability

Proof: Theprobabilitythatanuninformedplayermakes continuouscallsto uninformedplayersis
Sotheoverall probabilitythatary playerremainsuninformedafter roundsis atmost
Againwe obsenethatthe rumorspreadingprocessanbe accuratelydescribedy threephases.

1. Startup:

Notethatthereis a constanfprobability of - - thata playerreceivesno call by another
playerin a round. Therefore,we needsome roundsto guaranteehat a secondplayer
recevestherumor. Furthernotethatthe standardleviationis atleast , t00. The Chebyshe

inequalityimpliesthatthe startupphasemustlastatleastsome rounds.

Now we provethat roundssufce to leave this phasewith high probability.

If playersareinformed,thenthe probabilitythatanuninformedplayercallsthis playeris
. This happensndependentlyrom the calling patternsof the otherinformedplayers.Therefore
the probability thatat most playersfail to call thisset of informedplayerswithin some

— roundsis givenby thefollowing term.

Thelastinequalityfollowssince — and

Thereasonwhy roundssufce to leave this phasds thefollowing. To inform two players
we need roundswith high probability. The next four playersareinformedwithin —— rounds,
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theneightplayerswithin —— rounds,andsoforth. Hencethe overall numberof roundsis
with probability

2. Exponential growth: -

Until some playersareinformedthe growth is exponentialto the basis2. Thenit slows
down a little bit. FromLemmaZ23 it follows thatin every roundadditional ——
playersareinformedwith probability = ——. Wechoose @ —— and yieldingthe
probability

With this probabilitythenumber  of informedplayersincreasesisfollows.

If —

Fromthe sameargumentasin the exponentialgrowth phaseof the pushalgorithmit follows
thatthis sub-phaséastsat most rounds.

If — -

Hence this sub-phaseequiresat most rounds.

3. Quaderatic shrinking: -

From this time on, the pull algorithmhasan advantageagainstthe pushalgorithmasthe fraction
of uninformedplayersroughly squaresfrom roundto round. This is becausén a round starting
with uninformedplayers,eachindividual player hasprobability to receve
therumor. Herethe probability of stayinguninformedis , resultingin an expectednumberof
uninformedplayersat the endof theround. Thus,we canexpectthatthe shrinkingphase
only takes roundssothatonly messagearesentduringthis phase.

We canprovethis estimationin two steps:

We applyLemma23andchoose — and - andgetwith probability

thefollowing inequality

Notethat—— — . Hence after roundsthe numberof uninformedplayersis
smallerthan
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Figure6.6: The growth of thenumberof informedplayersin the pull scheme

Push&Pull algorithm for player andrumor
begin
for eachround do
if knows andage then
age age
for all called call do
Sendtherumorto (i.e., pusheandpullstherumor)
od
od
end.

Figure6.7: The push&pullalgorithm.

Lemma24 shavsthatheresomeconstantoundssufce to inform all playerswith high proba-
bility.

Informing all playersdoesnot necessarilymeanthatthe pull algorithmstops. Recallthatbecausef
the uncertainstartupthe exponentialgrowth startswithin a time range . If we wantto ensure
thatall playersareinformedafterthethird phasewe have to leave with afourth phaseof length
wherepossiblyall playersareinformedandrumorsarestill beingtold.

6.2.3 Pushand Pull

In orderto combinethe predictabilityof the pushschemewith the quadratic-shrinkingpropertyof the pull
schemeywe simply sendthe rumorin bothdirectionswheneer possible.In detail, our pusk& pull scheme
worksasfollows. Thecreatorof therumorinitiatesatime-countewith representingheage of therumor.
Theageis incrementedn eachroundanddistributedwith therumor. In everyroundeveryinformedplayer
pushesandpullsunlessheageof therumoris higherthan . Figure6.7shavs
thealgorithm.

To prove Theoreml9 we needthe following Lemma.
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Lemma25 If informedplayels push and pull their informationin a round,thenfor all with
probability there are at most — new informedplayers who are informedvia push
andpull, if wasthenumberof uninformedplayers gettinginformationfroma pull.

Proof: The probabilitythataninformedplayerpushego oneof the playersis —. The probabilitythat
playersout of the playersgeta call from the informedplayersis smallerthanthe probability that
informedplayerscancall addressesf , sincesomecallscanproducethe sameaddressThe probability

thatmore ofthe playersgetapushis smallerthan

Let - - and — . Thenit holds

Therefore andthus

Now we prove Theoreml9 which states:

Theorem 19 Thesimplepust& pull-scheménformsall playersin time
using messagewith high probability.

Proof: We combinethe agumentsusedfor the push-algorithmandthe pull-algorithm. Let  be the
setof informedplayersand  the setof uninformedplayersat theendof round . De ne and
. We distinguishthefollowing phases.

1. The startup phasestartsin the roundin which the rumor is createdand endswith the rst round
after the executionof which thereare at least informed playersfor the rst time. At the
beginningof the rst roundonly oneplayerholdstherumor. Alone the push-communicatioansures
thatwe needat mostsome roundsto inform playerswith high probability. This
follows directly from the analysisof the startupphaseandthe exponentialgrowth phaseof the push
algorithm.

2. The exponential-gowth phaseendswhen at least —— playersare informed, using the effect of
pushingand pulling. From LemmaZ23 it follows thatin eachround additional —
playersareinformedwith probability

. So,thenumberof informedplayersby apull is atleast— —.
Let bethenumberof playersinformedby pulls. If thenthenumberof playershastripled
andthe performancef this phaseollows easily We will now assume

(a)
Lemma22 predictsthat the numberof playersinformedby pull-operationss at least
—— with sufciently high probability FromLemma25 it follows thatthe number of

from a pull only. We choose — and
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Figure6.8: The growth of the numberof informedplayersin the push&pullscheme

playersinformed by a pushand a pull-operationcan be boundedby is —
— —— — ——. Hencetheoverallnumberof informedplayersin the next round
canbeestimatedy

(b)
From Lemma23 it follows thatthe numberof playersinformedby pull-operationds at least
— with sufcient high probability FromLemma25thefollowing bound

holdsfor the numbernodesinformedby pushand pull: — — and
therefore

For terminationmechanisnbasedon the counterit is importantto ensurethatthis growth phaseis
not fasterthan . Clearly, in everyroundat most  additionalplayerscanbe
informedby push-communicationNow we estimatethe number  of playerscalling a playerin

. Theprobabilityis independentlhgivenby , describinga binomial distribution .
Thereforewe canusethe Chernof boundto estimatehefollowing probability for

p D -

Theupperboundof onthenumberof roundsfollowsimmediately

3. Betweenthe exponentialgrowth andthe quadraticshrinkagephasewe introducea shortintermedi-
ate phasewvhich endswhenatleast- areinformed.We consideronly thein uence of pulls. Since
the pull algorithmis still in its exponentialgrowth phasethis phasdastssome rounds
with high probability.
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4. The quadmtic-shrinkingphaseendswith the roundafter the executionof which thereareat least
N uninformedplayersfor thelasttime. Evenif we only take into accountpull transmissions
we obtain(by following the agumentsexplainingthe generapropertief pull algorithms)that

E — S

Now from the analysisof the quadratic-shrinkingphaseof the pull algorithmwe alreadyknow that
we need roundsuntil the numberof uninformedplayersdropsfrom - to
with high probability.

5. In the nal phasewe inform the few remaininguninformedplayers.Sincethe numberof informed
playersin this phasds guaranteedo be largerthan - , eachuninformedplayerhasat
leastprobability

to recevve a rumor dueto a pull transmissiorin eachround of this phase.Consequentlywe need
only aconstannumberof roundsuntil all playersareinformedwith high probability.

Foraround asimpleupperboundfor thenumberof messagesausedy push-communicatiois , while

a straight-forvardupperboundfor the numbercausedy pull-communicatioris . Notethatin phases
2 and3 the numberof informedplayers increasegxponentially boundingthe numberof messageby

. The quadraticshrinking phasestartsin round . In this phaseandin the nal
phasethe maximumnumberof messagesf perroundneedgo be sent. Becausave canaccurately
pin down the startingpoint of thesephasesve canensurewith high probabilitythatthesdasttwo phases
needat most roundsand therefore messages.This completesthe proof of
Theoreml9.

6.3 The Min-Counter Algorithm

The pushé&pullalgorithmreliesheavily on avery exactestimationof the expansionof the setof informed

players. The algorithm hasto be executedfor exactly rounds. For example,a
constanfractionof playersremainsuninformedif thealgorithmterminatesfter roundsand
thealgorithmuses transmissionsvhenterminatingafter rounds for any constant

. A robustalgorithmrequiresa more e xible, distributed terminationmechanisnthat recognizes
whenall playershave beeninformed.
Shenlerproposed distributedterminationmechanisnwhichis not basedn theageof therumor. Let
denotetherumorbeingconsideredEachplayerholdsacounterctr startingat if theplayerdoes
notknow therumorandwe have ctr if therumor emepesatplayer . In Figure6.9we shov
themin-counteralgorithm.
We will know prove

Theorem 20: The min-counteralgorithminforms all playersin time
using messagewith high probability.

Proof: Theinformationspreadingorocesss the sameasin the push&pullalgorithm,seeTable6.1. We
shaw thatthereis achoiceof suchthatno counterexceeds beforeall playersareinformedand
that after having informedall playersall counterswill be largerthan aftersome
rounds.

For this we prove that until at most —— playersare informed no playerhasa counterlarger than

with probability

Let denotethe numberof playerswho have acounterof atleast for roundsattheendof this

phaselt follows from the strict exponentialgrowth that
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Min-counter algorithm for player andrumor

begin
for eachround do
if knows andctr then
called call
for all do
Sendtherumorto (i.e., pusheandpullstherumor)
od
if learnstherumor then
ctr
if knows andctr then
if with ctr then
ctr
elseif with ctr ctr then
ctr ctr
od
end.
Figure6.9: Themin-counteralgorithm.
| Phase | Informedplayers | Time | Messages | Growth | Method |
Start-up push
Exponential — — — push&
Growth pull
Intermediate —_— - - — pull
Phase
Quadratic - - — pull
Shrinking
Final Phase - — pull

Table6.1: The phase®f the push&pullandmin-counteralgorithm.
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for somebasis ——. Further thefollowing the algumentsusedfor the analysisof the push&pull
algorithmholdsfor this recurreng with high probability.

A straight-forwardcalculationshovs that with high probability.
Theotherphase$astsome roundswhichwill bere ectedin theappropriatehoiceof in
themin-counterlgorithm.It remaingto show thatafterall playershave beeninformedall countersexceed
after some rounds. Considerthe time point at which all playersare informed.
Clearly, all countersareat leastl. Then,in every following roundeachcounteris incremented Clearly,
after roundsall countersexceed .
Note that this algorithm usesonly messagessinceit runsat mostsome
roundslongerthanthe push&pullalgorithm.

6.4 The Median-Counter Algorithm

In orderto improve therobustnessywe deviseadistributedterminationschemecalledthemedian-counter
algorithm, thatis provably robust againstadwersarialnodefailuresaswell as stochastidnaccuraciesn
establishinghe randomconnectionslin particular we show thatthe ef ciency of the algorithmdoesnot
rely onthefactthatplayerschooseheir communicatiorpartnersuniformly from the setof all players.

Let denotetherumorbeingconsidered During the courseof the algorithmeachplayer canbein
oneout of four statesA, B, C, or D (with respecto ). StateA meansthe playerhasnot yet receved
therumor. In all otherstatesthe playerknows therumor. Whena playeris in oneof the statesB or C it
pushesandpullstherumor alongevery establishedonnection.n stateD the playerdoesnot propagate
therumoranymore.Eachplayerin stateB holdsa counterctr . We sayaplayer isin stateB- if
ctr . Thesecountersareirrelevantin otherstates.The transitionsbetweerdifferentstatesare
de ned asfollows.

We rst give aninformal descriptionof the median-countealgorithmshawn in Figure6.10.

StateA: Theplayer doesnotknow . (Forthepurposeof analysiswe assumehatctr
in this state.)If aplayer in stateA receves only from playersin stateB thenit switchesto state
B-1. If aplayerin stateA receves from aplayerin stateC thenit switchesto stateC.

StateB-m: Theplayer knows andctr . (Theplayerinjectingtherumorstartsin state

B-1.)

Medianrule: If duringaroundaplayer in stateB- receves from moreplayersin stateB-

with thanfrom playersin stateA andB-  with thenit switchego stateB-
,i.e.,increaseds counter Thereis oneexceptionto thisrule. If ctr isincreasedo ctr

(wherectr is a suitableinteger) then switchesto stateC. Furthermorejf a

playerin stateB receizestherumorfrom a playerin stateC thenit switchesto stateC, too.

StateC: Every playerstaysin this phasefor at most rounds,andthenswitchesto state
, i.e. it terminategherumorspreading.

Roughlyspeakingthe countersin stateB are usedin orderto determinethe point in time whenthe
algorithmswitchesfrom the exponential-gravth phaseanto the quadratic-shrinkingghase A countervalue
of ctr indicateghat playersareinformedsothatit is sufcient to continuethepropaga-
tion for only rounds(whichis donein stateC). In orderto make surethatthe median-counter
algorithmterminatesevenin the very unlikely eventthatthe countermechanisnfails, we determinethat
every player stopspropagatingthe rumor after some x ed numberof rounds,regardlessof its
currentstate.

We investigatethe robustnesof the median-countealgorithmagainstdifferentsourcesof errorsand
inaccuracies.
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Median-counter algorithm for player andrumor

begin
for eachround do
if isin state then
called call
for all do
Sendtherumorto (i.e., pusheandpullstherumor)
od
if learnstherumorthen
state
ctr
if isin state then
if state then
ctr ctr
if ctr ctr then
state
elseif with state then
state
ctr
elseif ctr ctr ctr ctr
ctr ctr
if ctr ctr then
state
ctr
od
end.

then

Figure6.10: Themedian-countealgorithm.
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First, we assuméahe randomconnectionsn eachroundareestablishedisingan arbitrary (possibly
non-uniform)probability distribution

Secondwe assuméhatan obliviousadwersarycanspecifyupto  nodefailuresoccurringduring
theexecutionof thealgorithm. Theadwersaryspeci esaset  of players(not containingthe player
startingthe rumor) who fail to exchangeinformationin someof the rounds(as speci ed by the
adwersary).We assume and

Clearly, we cannothopeto inform all playerswhenallowing adwersarialnodefailures. Therefore we are
satis edif the algorithminformsall but players. (Alternatively, one may assumestochastiaather
thanadwersariaffailures,e.g.,eachrandomphonecall fails with probability . In this case stayingfor

roundsin stageC ensureghatall playersareinformedwithin
roundsusing transmissionsvith high probability:)

Theorem 21 Assumingan arbitrary distribution —andup to  nodefailuresas described
abave, the median-countealgorithmsinforms all but playersin roundsusing
transmissionsvith high probability.

Proof: We startwith investigatingheerrorlesscaselLet  betheprobabilitythata playercallsplayer ,
let and bede nedasaboreandlet betheweightof all informedplayers:
Considetthefollowing threephases.

1. Startup: We wantto ensurethatat least informedplayerswith weight — are
established.
A straightforvardanalysisshowvsthat roundsof pushcommunicatiorsufce to achieve
this with high probability. Then, roundsof pull-communicatiorestablishthe wanted

numberof informedplayerswith high probability.
2. Exponential growth: This phaseendswhentheweight is greateithan—.

In this phasethe weight  of the setof uninformedplayers  with larger weight than — is of
particularinterest:

Notethat andthatthe probabilityof amembef  beingcalledby aninformedplayerin
is largerthantheconstant . Therefore pushoperationsauseanincreaseof the weightof
informedplayersby theamountof for someconstant with high probability.

In the fraction of playerswhich getonly onecall in this roundis at least for an
arbitrarysmall constant with high probability. The probability thatoneof theseplayersgets
the rumor pushedfrom  is —. The expectednumberof informed playersin the next roundis

therefore
E _
If — for - thisimplies - andin theothercase - —
for somearbitrarysmall
Soaftersome roundswe have either —or ——. In the secondcaseevery

playerwith weightlargerthan is informedin the next roundwith high probability. Further
more,the expectedweightof all informedplayersis

E
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It turnsout thatthis sumis minimal for the uniform probability distribution. Hence E —.
Becausgheweightsareupperboundedve canapply Chernof boundsandget — —.

For the numberof messagesotethatin all but oneround ——. Therefore,the numberof
messages boundedby

Now we discusshow oftena counterof a playerwill beincreasedluringthis phase. We considera
player with weight whois informedduringthis phase.

(a) —
In eachroundat least uninformedplayerscall , while recevesa call only from at
most informedplayers( ——); 'spushcall canbe neglected. So, this playerwill
communicatavith moreuninformedthaninformedplayersin eachroundandthe medianrule
preventsanincrementof 'scounter

(b) —

We allow thatduringthetime interval for whichwe have ——
thecounterof isincreasedn everyround .

In everyround or (but possiblynot both) grow by a factor . Neverthelesghey
interactpairwise,sincethe expectednumberof uninformednodesinformedby a pull is

Thereforewe have for with high probability. On
theotherhand,every informednodepushesn every roundsuchthat with high

probability. So,thistime interval is boundedy

At ary time stepafter thenumberof uninformedplayerscalling is higherthanthenumber
of informedplayerscalling for thesamereasonssin 1.

In everyround before weconcentratenweights with . Theprobabilitythat
aplayerwith suchaweightis calledby aninformedplayeris smallerthan _
——. Let bethe numberof the playerswho increaseheir counterat least timesbefore

round andlet . In the worst caseall playersstayin this situationfor the whole
phase. Only  playerscan causean increasefor a counterlarger than . The probability
thatsucha playercallsanotheris . Thereforewe have E ——. It follows
— — if ; andif , then for someconstants
with high probability. This proves . So,thereareno playerswhosecounters
will beincreasednorethansome time duringthis phase.

3. Quadratic-shrinking: This phaseendswhenall playershave left statesA or B.

The probability for eachuninformedplayerto remainuninformedis at most , if we consider
only pull-communicationThereforewe have E , whichimplies

— with high probability

The expectedweightof the uninformedplayerof the next roundis E . Note
that ———. Therefore applyingChernof boundsit follows that

—_— with high probability

It is clearthat after some roundswe have ———. Then,someconstant
numberof roundsof pull will sufciently decreaséheprobabilityof anuninformedplayerremaining
in stateA.

Sincein every roundeachcountermay be incrementednly once,it sufces to choosectr
for someconstant independenof
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It remainsto shaw thataftersomeadditional roundsall countergreachctr . Con-
siderthe time point at which all playersare informed. Clearly, all countersareat least . Then,
in every step eachcounteris at least . Therefore,the distributional algorithm endsafter
rounds.
Sinceevery playerproducesonly onerandomcall in eachroundthe overall numberof messagem
this phasds boundedy
We now focuson the caseof - nodefailureswith weight . We assumehat if a node

failureoccurson ,that terminatesi.e., switchesto stateD withoutlearningthe rumor. The analysisof
the startupandexponentialphasesanbe easilyadaptedo this case sincethe growth of informednodes
proceedsmoreslowly but still exponentially We now investigatethe situationin the doubleexponential
shrinkagephase.

Let bethesetof nodeswhich maybedisconnecteih somerounds.Then and arede nedas
the setof informedanduninformednodes excludingthenodesin ; , ,and arede ned asbefore.
The probability thata noderemainsuninformedis at most perround. Thereforewe canconclude
thatwith high probability . Similarly to the errorfree casewe canconcludethat

— S with high probability.

This recursioncorvergesin roundsto — . Thisimpliesa maximumnumberof
uninformednodeswithin the next round.

The main problemfor the error caseis to verify thatthe numberof messagesdoesnot grow beyond

. We prove this by shaving thatatleast playershave reachedstateC or D, by
thetimethe rst errorfreeplayersreachstateD. Theremainingerrorfreeplayerscanonly cause
messagesachwhere faulty playersdo not addfurthermessagesWe startour analysisin the moment
whenonly nodeswith weight haveremaineduninformed.Letusassumehatall informed
playersarein thestateB-1.

Let bethesetand theweightof errorfreenodedn round with ctr . Theprobabil-
ity thatanodein isincreaseds atleast " . We wantto prove thatin thetriangularsection
where for someconstant , decreaseexponentiallyin . For theanalysiswe allow thatsome
of thecounteranaybedecreasedTheaim of thismodi cation is thatthe series is exponen-
tially increasingtheseries is exponentiallydecreasingandtheweight - con-
tainstherestof theweight. More formally, and
for some

By decreasingomeof the counterst canbe ensuredhatin thenext roundwe have

and —— . Thisfollowsby thefactthat - andby reducingthenumberof
playersincreasingheir counterto a fraction of - each.After someconstaninumberof rounds we have
. Then,weincrease andgetthe claimedtriangularsection.

Thereforeaftersome roundsonly afractionof playershasa smallercounter

than

6.5 Lower Bound for Address-Oblvious Algorithms

Our rst lowerboundshawvs thatthetwo presenteghush&pullalgorithmsachiese the bestpossibleresults
for the classof address-oblious algorithms. Clearly, ary algorithmrequires roundsin orderto
inform all players. In addition, we shav that ary address-obliious algorithm requires
transmissionstegardlessof the numberof rounds. We assumehe randomphonecall model using the
uniform distribution.

Theorem?22 Any address-obliiousalgorithmguaranteeinthatall but afraction of theplay-
ersrecevetherumorwith constanprobabilityneedso perform - transmissions
in expectation.
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Proof: Letus x anaddress-obliiousalgorithm . Dependingon the executionof , we will partition
the roundsinto contiguousphasessuchthat the numberof transmissiongluring the rst  phaseds at
least . (The actuallengthof the phaseglependgossiblyon the outcomeof random
experimentsin uencing the executionof . Thus, the length of the phaseanight give someevidence
aboutthe outcomeof somerandomexperiments. The following statementhowever, holds regardless
of this evidence.) Let  denotethe numberof uninformedplayersat the end of phase , andde ne
- . Wewill shav by inductionthat with high probability. Consequently
needs - phasesnd,hence, transmissiong orderto inform all but a fraction
of theplayers.Clearlythis yieldsthe Theorem.
Phasesrede ned asfollows. Phasel startswith theroundin which therumoris generatedIf phase
endsin round thenphase startsin round . Thus,it remainsto describewhena phaseends.
We distinguishsparseanddensephasesA sparsephasecontainsat most transmissionsThelength
of thesephaseds maximized,thatis, a sparsephaseendsin round if addinground to the phase
resultedin morethan transmissionsA densephaseconsistf only oneroundcontainingmorethan
transmissionsObsene thatthe numberof transmissionsluringthe phase® to is atleast
becauseary pair of consecutie phasesontainsatleast  transmission®y construction.
Now assumdoy inductionthatthe numberof uninformedplayersatthe beginningof phase is atleast
. We have to show thatthe numberof uninformedplayersattheendof phase is atleast with
high probability.
For ,let  denotea 0-1randomvariableindicatingwhetherthe th of thoseplayers
who areuninformedat the beginningof round recevesamessageontainingtherumorduringtheround.
We claim

Pr R
Theargumentdeadingto thisinequalityaredifferentfor sparseanddenserounds.

Suppos@hase issparseThen sendsnaximum-— messageduringthisphase Eachof thesemes-
sagess initiatedwithout knowing the receiver becauselecisionsareplacedin anaddress-obliious
fashion.As connectiongrechoseruniformly atrandom the probabilitythatany particularmessage
reacheplayer is —. ConsequentlyPr - — - sothatPr - —

Now supposehase is dense Thenthephaseconsistof only oneround. In this casetheprobability
thatplayer doesnot call aninformedplayeris at least . Furthermorethe probability
thatplayer is notcalledby ary otherplayeris atleast-. Asthesawo probabilitiesareindependent,

Pr -

Since , we obtain

In particulay - E . Obsenrethattherandomvariables areslightly dependensince

the randominterconnectionsisedfor transmissionsn phase form partial permutationson the caller

sites. This dependencdiowever, is negative so thatwe canapply a Chernof bound[DR98]. Assuming
, We obtain

Pr Pr - E
—E

for ary positive constant . This completeghe proof of Theoren22.
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6.6 Lower Bound for General Algorithms

The above lower boundfor address-oblious algorithmsdoesnot hold for thoserumor spreadingalgo-
rithms which canbasetheir decisionson the addressesf communicatiorpartners. In the introduction,

we give anexampleshaving how all playerscanbe informedusingonly transmissionsThis unre-
alistic algorithm, however, requires rounds. Now we investigatewhetherthereis an algorithm
thatis both time-optimal(i.e., usingonly rounds)and communication-optima{i.e., usingonly

transmissions)Thefollowing lower boundanswerghis questionnegatively. Again, we assumehe
randomphonecall modelusingthe uniform distribution.

Theorem 23 Any distributed rumor spreadingalgorithm guaranteeinghat all but a fraction
of theplayersreceve therumorwithin roundswith constanprobabilityneedso
perform transmissioné expectation.

Proof: Thedif culty in analyzingarbitrarydistributedrumorspreadingalgorithmsis thatthe distribution
of the rumor can be a highly dependenprocessalthoughthe underlyingrandomcalling mechanisms
generatedy independenexperimentsin eachround. For example,if player is the only playerwith
an odd addresssendingthe rumor to playerswith even addressesthenthe succesf the algorithmis
highly dependenbn the eventthat player1 receivesthe rumor. This small example(not eveninvolving
ary additionalcommunication)shaws that the analysisneedsmore than simply applying martingalesor
Chernof bounds.

Our basictrick in the following analysiss thatwe choosea randomsampleof the playerswho canbe
guaranteedo actindependently This independencejowever, canbe guaranteeanly for about -
rounds.Of course this numberof roundsis not enoughto inform all playersabouta rumorinitiated by a
singleplayer Therefore et usassumdor thetime beingthattherumorhasalreadybeenspreado atleast
half of the playersandwe considerthe next - rounds.

Consideran arbitraryrumor spreadingalgorithm . Let denotethe numberof initially
uninformedplayers.(In orderto be ableto extendour resultto morethan roundslater, we assumehat
the initially uninformedplayersare known by all playersin the system,e.g., assumehat
is the setof initially uninformedplayers.) Let denotea randomvariabledescribingthe numberof
messagesentduringthe rounds.Furthermorelet denotea randomvariabledescribingthe number
of uninformedplayersafterround (Theserandomnessf the variablerefersto the randomphonecalls
andary kind of otherrandomdecisionamadeby .)

Let denotea setof playerschoserrandomlyfrom . Theset will be our random
sample. Let denotethe randomvariabledescribingthe numberof initially uninformedplayersin
(with respectto the randomchoiceof ). Let denotea randomvariabledescribingthe numberof
messageseceved by the playersin , andlet denotethe randomvariabledescribingthe numberof
uninformedplayersin theset afterthelastround. (Theserandomvariablesarewith respecto random
decisionof andtherandomchoiceof .)

Recallthatthe communicatiorgraph  in round is obtainedby a distributedrandomprocessij.e.,
eachplayer choosesa player from atrandomand calls . This randomprocessgeneratesa
probabilitydistribution ontheset of possiblecommunicatiorgraphs.Repeatinghis randomprocess
for roundsextendsthe probability distribution to thesamplespace

In mary partsof the following analysiswe will assumaea slightly differentprobability distribution
on whichis easietto handlethan . Insteadof letting eachplayercall arandomotherplayer, we assume
thatthe connectionsreestablishedsfollows. In eachround ,

we chooseuniformly atrandoma collectionof  disjointsubsets ( ), eachcontaining
playersfrom (oncethesesetsarechosentheplayersin  canactfully independently);
eachplayer randomlychoosesan integer with Pr — (in the very
unlikely casethat , set );

eachplayer independenthanduniformly randomlychooses setof differentplayers

from
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We determineghatevery player callsplayer , andtheplayers call . Every
playerfor whom we have not yet speci ed whomto call simply choosesa communicatiorpartnerfrom

independentlanduniformly atrandom.Clearly, and aredifferentdistributions. Thefollowing
lemma,however, showvs thatthesedistributionsarecloselyrelated.

Lemma 26 Thetotal variation distancebetween and on is

Proof:

We shawv thatthetotal variationdistancebetween and on (thatis, for oneround)is
for eachround.Consequentlythetotal variationdistancebetween and on  (thatis, overall rounds)
is .

Fix around . We startour analysison thevariationdistancewith proving someusefulpropertiesabout
distribution . Let denotethe setof persondeingcalledby thepersonsn ,andlet  denotetheset
of persongallingtheperson . Eachof thefollowing propertiesholdswith probability

P1)

P2) ,
P3)

P4) ,

PropertyP1 follows becausehe personsbeing called by the personsn  are selectedindependently
uniformly at randomfrom  so that the probability that two personsfrom  call the samepersonis

. P2follows by applyingChernof bounds.In particular E S0
that

Pr Pr E —_—

P3followsfrom thefactthat and arerandomlyselectedsetsof sizeatmost sothatthe probability

for ajoint elements atmost . P4followsanalogouslyo P3replacing with and
assumingP2. All of thepropertiedogetherfor every , aresatis edwith probability

Let denotethe distribution obtainedby enforcingthe propertiesP1, P3,
and P4, i.e., restrictingthe statespace of to communicationgraphssatisfyingthesepropertiesand
rescalingall probabilities.Let denotethe probability for violating oneof theseproperties.
Thentherescalingactoris — . Consequentlthevariationdistancebetween and
is

The distribution can be generatedy the following process.W.l.o.g., assume .
For , let denotethe setof personsconnectedo in the consideredound, that s, if
denotegshe personcalledby , then . The propertiesP1, P3, and P4 state
thatthe sets aredisjoint from eachotheranddisjoint from . Therefore,we canselect
thesesetsasfollows. First, we selectat randomthe setof nodescalledby the persondn , thatis, we
choose from . Secondwe determinethe disjoint setsoneby one. This
we do by simulatingthe correspondingprobabilities. De ne to be arandomvariablecorresponding
to the numberof personscalling , i.e., . We choosethesevariablesusing the following
probabilities:

Pr

After setting , we chooseat randomthe set of size from . Finally, it
remainsonly to choosethe personsheingcalledby the personsn . For eachperson in
this setwe choose.u.r. apersonn from
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Comparing with , we obsene thatthesedistributionsdeviate only in the following two aspects.
The rst differences thatwe usedifferentprobabilitiesfor therandomvariables . Assuming
we canestimatehe differencen theseprobabilitiesby

Pr - —_—

and

Pr S -

Pr —

As a consequencegeplacingthe probabilitiesPr by Pr , for
yieldsavariationdistanceof .
The seconddifferencebetween and is thatwe mapall probabilitiesfor the events

to the event . This changen the distribution makesit possibleto chooserst the disjoint
setsatrandomandthento select atrandomfrom . Theremappingf the probabilitiesfor
, however, is coveredby a variationdistanceof in caseof bothdistributionsbecause
Pr —
and Pr applying property P2. (Obsene that we have statedthis
propertyoriginally for ~ butit holdsfor  with probability becausef our boundon the
variationdistancebetweerthesetwo distributions.)
Puttingit all togetherthevariationdistancebetween and is boundedabore by in each
roundand overall rounds.This completeghe proof of Lemma26.

Basedon this bound,we areableto give thefollowing lemmacomparinghebehaior of thecomplete
system with thatof the smallsystem
Lemma 27 For

a) E Pr —
b) Pr — ,and
c) Pr Pr —

Proof: Resulta)is seeneasilyasfollows. Theset is chosematrandom.As aconsequenced;

E , sothatE implieskE . Now we apply rst Lemma26 andthen
theMarkov inequalitywhichyields

Pr — Pr —
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Henceresulta) is shavn. Theresultsb) andc) follow from thefollowing lemma.

Lemma 28 Suppose contains uninformedpersons.Let denotearandomlychosen
subsebf size . Thenthe expectechumberof uninformedpersonsin  is
Furthermog, for any constant , the probability that  containslessthan or more than

uninformedpersonsis
This Lemmais a straightforvardconsequencef Chernof bounds Applying thelemmawith yields
Pr — , and
Pr Pr —

The rst of theseresultscorrespondslirectly to resultb), andthe secondesultcombinedwith Lemma26
yieldsc). This completeghe proof of Lemma27.

Informally, this lemmastatesthatit is sufcient to analyze in orderto estimate . In fact,
restrictingto the smallerandsimplersystem will enableusto dealwith thecomplex dependencieis
theoriginalsystem . Thefollowing lemmasummarizesur analysisfor

Lemma?29 Let denotea suitableconstant.Suppose and with and
Then

with probability , providedthat are nottoolarge sothat

CombiningLemma27 and 29, we obtain the following result for . Suppose and
E with and . Applying Lemma27 a) andb) yields

and —

with probabilityatleast - , for ary . Now applyingLemma29yields

with probability - . Finally, we canconcludefrom Lemma27 c) that
— (6.1)

with probability - . Assuming , this probabilityis lower-boundedoy -.

For the time being, let usassume and to be constants.Thenequation6.1 canbe interpretedas
follows. Startingwith uninformedplayers(possiblyknown by all players),performing
transmissionsn - roundsreduceghe numberof uninformedplayersonly by someconstant
factorwith probability at least —. Now let us considerthe executionof phasef lengthat most

- each,for any constant . Supposeve spendatmost  transmissionén eachof these
phases.Thenthe numberof uninformedplayersafterall phasess with probability —. Let
us set , for ary constant . Thenspending transmissionsn roundsleaves

uninformedplayerswith probability . (A rigorousanalysishasedon inequality6.1 shavs that
informingall butafraction of theplayerswith constanprobabilityrequiresE - ,where

denoteghe naturallogarithmiteratedfor times.)Hence, Theorem23is shavn.



Chapter 7

Online Prediction with Partial
Feedback

7.1 Intr oduction

Bandwidthallocationin thelnternetis managedby the TransportContmol Protocol(TCP). Accordingto this
protocolit is thetaskof thetraf ¢ inducingpartyto regulatethe transmissiomateof its paclkets. The only
informationavailableto this partyis the o w of acknavledgmentpaclets shaving whetherthe message
wascorrectlydelivered.If thetraf ¢ in thenetwork is largerthanthe capacitythentheseacknavledgments
will nolongerreturnto thesendenf themessagandthesendehasto cutbackonthetransmissiomate(if
hebehaesaccordingo TCPrequirements)Basedonthis simplemodelKarp etal. [KKPSO0Q investigate
protocolsoptimizing thetime neededo nd the optimaltransmissiomate. We follow their approactand
considerthefollowing simplegame.

Onthelink thereis the problemof the rate of unicast o w from hostA to hostB. The bandwidth
available uctuatesaccordingto varying requirementgor bandwidthsof othercompeting o ws. HostA
determinests pacletrate , alsocalledallocatedbandwidth for someunit time periodandrecevesonly
limited feedback.TCP usesonly the fact that somepaclet dropshave occurred. We assumeahat sucha
pacletdropindicateshatin aperiod theacquiredoacketrate istoohigh,i.e. . Furthermoreve
assumehatthis knowledgeis availablebeforechoosingthe pacletrate of thenext round. We model
this feedbaclkby , Where if and else(seeFigure7.1).

A costfunction is givenandre ects two major componentsopportunitycostsdueto sending
lessthan the available bandwidthwhen , andretransmissiordelay and overheaddue to dropped
pacletswhen . The goal of the hostA is to minimize the total costincurredover all periods. In
[KKPSO0(Q thefollowing costmodelsareconsidered:

1. Thegentlecostfunction when and when , see
Figure7.2.

This function modelsthe casewherethe protocoldoesnot needto wait for lost pacletsto time out
(e.g.,theso-calledfast-retransmitin TCP)so pacletsgetthroughto therecever, but still thereis
anoverheador detectingandretransmittingsomeextra pacletsthataredropped.

2. Thesevere costfunction when and when , seeFigure7.3.

This function modelsthe casewherethe protocolmustwait for the rst droppedpacletto time out
beforeresumingtransmission.If in a periodthe rst pacletis lost thenessentiallyno pacletsare
transmittedduringthatperiodandthelost bandwidthcanbe approximatedis .

In [KKPSO0Q the static casehasbeenconsideredvhen is constantin time. The authors
shav anupperboundof of thetotal lossfor the severecostfunctionandalower boundof

91
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. For the gentlecostfunctionthey shav analgorithmwith expectedcost —

andworstcasecost .

Furthermorehey investigatehedynamiccasewherethechangeof s restricted.There theabsolute
change , therelative change —— —— , or therangeof is bounded.For all
thesecasegherearealgorithmsboundingthe absolutecost. In all thesedynamicscenarioghe analysisis
competitive, i.e. the quality of analgorithmis comparedo the costof the bestoff-line stratey, while the
bandwidthmaybe choserby anadwersaryfollowing thegeneraframenork of [BEY98]. In [KKPSO0Q the
following resultsareshown:

If thenthereis analgorithmwith competitive ratio , while a lower boundof
canbeshawn;

if _ , thentherea variantof TCP with competitive ratio andthereexists
alowerboundof ;

if , thenthereis an optimal deterministicalgorithmwith competitive ratio andthe
optimalrandomizedtompetitive ratio againsianobliviousadwersaryis

In this chapterwe will discussthe generaldynamic casewith for a randomized
algorithmand no restrictionon the adwersary For the competitive ratio thereis no hopeto prove ary
reasonableesult: For thesecostfunctionsthe bestoff-line strateyy is to choose , causingtotal cost .
Now if theadwersarychooses and with equalprobability, thenthe expectedcostof any algorithmin
theseverecostmodelis atleast——, giving the competitivedifference(the competitveratiois notde ned
sincethe denominatois ).

Following anideaof Karpthatif theadwersarialchoiceis too goodto competewith, oneshouldatleast
try to competewith the bestconstanstratey. Theinterpretationis thatthe algorithmshalltry to perform
aswell asif the algorithmhadacquiredthe constantandwidth , which performsbestwith the
available bandwidth. Although the situationdoesnot seemmuch betterit is now possibleto shav that
in the long run the differencebetweenthe costof the algorithmandthe costof the bestconstantchoice,
calledrelativecostor regret, is substantiallysmallerthanthe | i.e. wewill shav thattheaverage regret
per round corvergesagainst . During the investigationof this problemit turnedout that our approach
generalizeso anarbitrarycostfunction andary function giving sufcient feedback.
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An algorithmchoosinghebandwidths frontingatrade-of similarto theonethatis themostdistinctive
trait of the multi-armedbanditproblem: on one hand, trying to matchthe maximumbandwidthat ary
time step;on the other, choosingthe bandwidthin orderto collect moreinformationaboutthe available
bandwidth.

Another, even simpler, instanceof this generalsettingarisesfrom a simple quality control problem
alsoknown asthe appletastingproblem. In a manufcturingoperation the itemsproducedcanbe either
working or defective. Unfortunately to assesshe quality of anitem it is necessaryo destry it. Both
delivering a defective item and destrging a working oneare undesirablevents. Supposehat customer
feedbackis unavailable, late or unreliable. The only informationavailable aboutthe sequencef items
producedso far is the onethe destructve testingprocedureprovides, but we wantto apply it aslittle as
possible Whenthe plantis working properly, defective itemsareextremelyraresothatlittle testingseems
optimal, but a failurewould be detectedvith a worrisomedelay

The goalwe setfor ourseheswasto make thesetwo examplestogethemwith the multi-armedbandit
problemandothers,t ageneralframevork thatencompassedifferentsequencgredictiongameswvhere
the predictionis basedonly on some“clues” aboutthe pastroundsof the gameandgoodpredictionsare
rewardedaccordingto someweighting scheme.We modelthe available feedbackon the sequenceasa
function of two arguments. Oneis the currentsequencezalueitself, asit is commonin systemtheory
andthe otheris the predictionitself. In systemtheory the classicproblemis that of obserability: Is
the feedbacksufcient to nd outtheinitial stateof the systemwhosetransitionfunctionis assumedo
be known? More closelyrelatedto our problemis that of learningfrom noisy obsenations,wherethe
sequencés obfuscatedy somenoiseprocessasopposedo a deterministiaransformation.The presence
of the secondargument,the prediction,makesour approachconsistenwith a large body of work in the
sequenceredictionliterature,wherethe feedbackis the reward. Decouplingthe feedbackand reward
functionsis the mostnotablefeatureof our approach.

Following arelatively recenttrendin sequenceredictionresearche.g. see[LW94, HKW95, Vov98,
Sch99 Sch01 CBFH 97, CBFHW94,HKW98, CBL99, FS99 ACBFS95 Vov99]) we make no assump-
tionswhatsoeer concerninghe sequenceo be predicted meaningthatwe do notrequire,for instancea
statisticalmodel of the sequenceFor lack of a model,we needto assumehat the sequences arbitrary
andthereforegeneratedby anall-powerful device or adwersarywhich, amongotherthings,is awareof the
stratgy a predictionalgorithmis using. It might seemthat competingwith sucha powerful opponenis
hopeless.This is why, insteadof the absoluteperformanceof a predictionalgorithm, it is customaryto
considertheregretw.r.t. the bestpredictorin someclass.In this paperwe make the choiceof comparing
our algorithmagainsthe bestconstanipredictor Evenif it seemsa very restrictive setting,let usremind
thereadetthatthe bestconstanpredictionis pickedafterthewholesequencés known, thatis with amuch
betterknowledgethanary predictionalgorithmhasavailableandevenmoresoin theincompletefeedback
setting. Moreover, a constanfpredictorcanoutputa mixed stratay, thatis, not a constanutcomebut a
constantistribution on all possibleoutcomes.Finally, constantpredictorsarethe focusof animportant
line of researclon iteratedgameqHan57, FS99 ACBFS95].

Ourresearchs closelyrelatedto the onepresentedn [FS99 wherethe subjectis, indeed the problem
of learninga repeatedyamefrom the point of view of one of the players—which can be thoughtof,
indeed asa predictor oncewe accepthatpredictioncanberewardedin generawaysandnotaccordingo
ametric. In thatwork the authorsdesignedhe Multiplicative Weightingalgorithmandprovedthatit has
regret ~ whencomparechgainstheoptimalconstanstratey. This algorithmis usedasasubroutine
of ours.In their settingthe predictorrecevesasinput notthe sequencat pastroundsbut therewardsevery
alternateprediction(not only the one made)would have received. Sincethis is all that mattersto their
algorithm,this settingis calledfull informationgamein [ACBFS93, evenif, accordingto our de nitions,
thesequencandnottherewardis the primaryinformation.In thelatterpaper a partial informationgame
correspondso the multi-armedbanditproblem,in which only the rewardrelative to the predictionmade
is known to the predictor Whatwould have happenedicking any of the otherchoicesremainstotally
unknown. Thebestboundon theregretfor this problemhasbeenrecentlyimprovedto [Aue0q.

The appletastingproblemasthe simplestspecialcaseof our predictionproblemandthe multi-armed
banditproblemhasbeernverywell investigatedy Helmbold,LittlestoneandLong [HLL92, HLLOQ]. They
analyzethe samepredictionstratgies and shav thatthereis a predictionalgorithmwithin an expected
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regretof atmost —— . Furthermorehey shav a matchingasymptotidower bound.

In this chapterwe extendthis resultto our more generalsetting,provided that the feedbackandloss
functionsjointly satisfya simplebut non-trivial condition. This caseincludesrelevantspecialcasessuch
asthebandwidthallocationandquality controlproblemsmentionedatthebeginningof the presensection,
aswell asthe classicmulti-armedbanditproblemandothers.In this caset is possibleto prove a boundof

ontheregret. The aforementioneaonditionis not speci ¢ to our algorithm: Indeedwe proved
that,whenit is notsatis ed, any algorithmincurredaregret , justasa predictionwith no feedbaclkat
all.

Also closelyrelatedis thework presentedh [WMO01] wherethe sameworstcaseapproacho sequence
predictionis assumedbut the sequencés availableto a predictionalgorithmonly throughnoisy obsena-
tions. Albeit very general their resultsmake someassumption®n the noiseprocesssuchas statistical
independencbetweerthe noisecomponentsaffecting obsenationsat differenttime steps.Our feedback
modelencompasseasothe situationof noisyobsenations but givesup ary statisticalassumptionsnthe
noiseprocesstoo, in analogywith the notionof “maliciouserrors”in thecontet of PAC learning[KL93].
Thatis we claim ourwork canbe seeralsoasaworstcaseapproactto the predictionof anoisysequences.

The chapteris structuredasfollows. In Section7.2 we formally describethe problem. In Section7.3
we describethe basicalgorithm and prove boundson its performance.In Section7.4 we review some
examplesand highlight someshortcomingsof the basicalgorithmand shov how to overcomethem. In
Section7.5we presenta generaklgorithmandprove thatthe algorithmis essentiallythe mostgeneral.In
Section7.6we discusour results.

7.2 The Model

We describehe problemasa gamebetweera playerchoosinganaction andanadwersarychoosingthe
action attime . Thereare possibleactionsavailableto theplayer, withoutlossof generalityfrom the
set ,and actionsintheset from whichtheadwersarycanpick from. At everytime
steptheplayersuffersalossequalto .

The gameis playedin a sequencef trials . Theadwersaryhasfull informationabout
the history of the game whereaghe playeronly getsa feedbackaccordingto the function . Hence
the -matrices and , with and completelydescribeaninstanceof the
problem.At eachround thefollowing eventstake place.

1. Theadwersaryselectsaninteger

2. Without knowledgeof the adwersarys choice the playerchoosesnactionby picking and
suffersaloss

3. Theplayerobsenes

Notethatdueto theintroductionof the feedbackiunctionthis is a generalizatiorof the partialinfor-
mationgameof [ACBFS95].

Let be the total loss of player choosing . We
measurgheperformancef theplayerby theexpectedregret  , whichis thedifferencebetweerthetotal
lossof andthetotallossof thebestconstanthoice |, thatis

whereeach isafunctionof . In someworksthe correspondingnin-maxproblemis investi-
gated transformingthelossinto areward. Thetwo settingsareequialent,asit is easyto check.
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Multiplicati ve Weighting Algorithm (MW)
input
constant
begin
Initialize — forall
for from to do
Choose accordingo probabilities
Receve thelossvector

for from to do

od
od
end

Figure7.4: The multiplicative weightingalgorithm.

7.3 The BasicAlgorithm

For the full informationcasethe following Multiplicative Weighting Algorithm (seeFigure 7.4) hasbeen
usedin differentsettingsand hasrecentlybeenanalyzedin [ACBFS9§. Figure 7.5 shows the Hedge
Algorithmwhich is their setting. Thefollowing Lemmashaws the equivalenceof bothalgorithms.

Lemma 30 Hedge andMW are equivalentalgorithms.

Proof: By induction,we prove thatin eachroundthe probability computecby MW is identicalto
theprobability of theHedgealgorithm.
Notethatfor all we have for the MW algorithm

We have for thehedgealgorithm

This Lemmaimplies , sinceMW de nes —— andhedgede nes

Theanalysisof [FS99 leadsto a tight resultfor thefull knowledgemodel. We will baseour analysis
on anadaptionof their maintheorem.Let usde ne

Lemma 31 For all

Proof: This Lemmafollows by applyingelementarymethodsof analysis. By consideringthe rst and

secondderivative it turns out that for the function for all we have
. Furthermorat is easyto seethatthereexistsaninterval suchthat andif
we obsene . It turnsoutthat since , which provestheright inequality
By asimilar consideratiorit turnsoutthatfor — thereexistsaninterval where
, for we have , andfor we have . We have

proving theleft inequality
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HedgeAlgorithm
input
constant
begin
—, forall
, for all

for from to do
Choose accordingo probabilities
Recevethelossvector
for from to do

od

for from to do

od
od
end

Figure7.5: Thehedgealgorithm.

Lemma 32 For all , andfor all

Proof: Theproofuses.emma31l for

Notethat . Then,we have

and

Thefollowing theoremestablishes.boundon the performancef MW thatholdsfor ary lossfunction .

Theorem 24 [FS99 For , for anylossmatrix with rowsand columnswith entriesin the
range andfor any sequence the sequencef producedby algorithm MW
satis es

Proof: Wewill provethat,for any choiceof where  representaprobabilitydistribution
over andwhere is the probability of action in step aswell asfor ary vector representin@
probabilitydistributionover |, we have:
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We usethe Kullbadk-Leibler divergence alsocalledrelativeentropy, which is de ned for probability
distributionsover by

RE —
Lemma 33 For anyiteration where MW is usedwith parameter andfor anyprobability vector
RE RE
Proof:
RE RE

Thelastlinesusethefactthat for ary andLemma32.

We sumover :

RE RE

Noting that , RE ,and RE for all givestheclaim.

Ouralgorithmreliesonthe existenceof a matrix satisfyingthefollowing equation:

For instancejf  is nonsingular this propertycanbeful lled by choosing . If sucha

doesnot exist the basicalgorithmfails, i.e. it cannotcomputea strateyy atall.
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FeedExp3
input
begin
Compute suchthat
Choose accordingto
Initialize with — forall
for from to do
Selectaction tobe with probability
Receve asfeedbackhenumber .
for from to do

od

for from to do

od
od
end

Figure7.6: Thefeedbackexponentialexplorationandexploitationalgorithm.

The algorithmcanbe describedasfollows. First, it estimateghe lossvectorusingthe matrix G and
the feedback.This estimateis fed into the MW algorithmwhich returnsa probability distribution on the
player's actions. MW tendsto choosean actionwith very low probability if the associatedossover the
pasthistory of the gameis high. This is not acceptablén the partial information case,becausections
areusefulalsofrom the point of view of the feedback.Therefore,andagainin analogywith [FS99, the
algorithmadjuststhe distribution , outputby the MW algorithm,to a new distribution suchthat

— for each . Wewill giveanappropriatechoiceof andotherparametersffectingthealgorithm

later on. Whatis new to this algorithmandwhat makesit muchmore general,is the way the quantities

areestimatedMorein detail,given and andassuminghereisa suchthat , our basic
algorithmworksasshown in Figure7.6.

Thefollowing lemmashaows that is anunbiasedestimatorof thelossvector

Lemma 34 For all wehave

E and E E
Proof: Notethat
E R
ThisimpliesE EE E
Let , for all , ,
, and
Lemma 35 For anysequence thesequence producedby FeedExp3Zatis esfor

all
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Proof: Considera gamewhere denoteshe probability distribution andthe estimatedoss is
therealloss. Then,the FeedExp3-algorithrabove reducedo a MW-algorithm,where is replacedby

. Notethattherangeof the estimationvectornow is . So,we normalizethelossby
de ning — to . Theorem24 now implies

Rescalindeadsto thisinequality:

In algorithmFeedExp3ve have de ned —. Hencewe canapply
So,achoice impliestheclaim.
Lemma 36 Let and . Thenwith probability at least , for everyaction , wehave
—_— (7.2)
— (7.2)
Proof: We useamartingaleargumentin closeanalogyto the proof of Lemma5.1in [ACBFS94.
(7.1): Letusde ne therandomvariable
where — and — arenormalizedreplacementsf
and . The main claim of the proof is thatE . Giventhis claim, we have by
Markov'sinequalitythat
which, by somealgebra,is equivalentto (7.1). We prove that E for by
inductionon usinga methodgivenby Neveu ([Nev75], LemmaVIl-2-9). For , . To
prove theinductive stepfor , we have
E E
Dueto normalizationwe have and . Therefore andit

follows by Lemma32

E
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Thesecondnequalityfollows from Lemma34 andthe following chainof inequalities:

E E

m

(7.2): We de ne therandomvariable

Againthemainclaim of theproofis thatE . We have by Markov'sinequalitywith
, which, by somealgebrajs equivalentto (7.2). Therestof this proofis analogougo
the rst part.

We singleout a specialcaseof Lemma36 for furtherreference.

Corollary 4 For andfor therandomvariable we havewith proba-
bility
Theorem 25 If there exists  sud that thenthe expectedregret E  reedexps of algorithm

FeedExp&fter stepdsboundedby

E FeedExp3

with a constantfactor linear in -.

Proof: We rst rewrite theexpectedossE of algorithmFeedExp3n adifferentway:
E E
EE
E
E (7.3)
We thenapply Lemma36(7.2)andchoose _, — and ——. Lemma31
statedor that — andLemma32 for

Thisimpliesfor
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- (7.4)
Choose . ThenLemma35implies,for all :
— (7.5)
Note thatfrom Lemma36(7.1)it follows for the rightmostadditionaltermwith probability
- (7.6)

At lastwe will useCorollary4. Then,we have with probability

For theexpectationwe adderrorterm for thecombinederrorprobabilities andcombine(7.3),(7.4),
(7.5),(7.6),and(7.7).

E E —

7.4 Applications, Limits, and Extensions

Wearenow equippedo shav how thebandwidthallocationproblemwhichinitially promptedhisresearch,
aswell asotherimportantexamplescanbesolvedusingthis algorithm,but we will alsoseethatonly some
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tweakingallowsto solve evenmorepredictionproblems We will seein the next sectionthatthese'tricks”
leadto a generalalgorithm,that, after somepreprocessingjsesthe basicalgorithmto achieve sub-linear
regretwheneverthisis feasible.

7.4.1 Bandwidth Allocation
In the bandwidthallocationproblemthe feedbaclkfunctionis de ned asfollows (thr esholdfeedback):

if
otherwise

Thefeedbackmatrix is thereforealower triangularmatrix with only 1's on thediagonalandbelow.

This matrix is invertible and thereforethe condition canbe satis ed by de ning
where

We now considerthe severe costfunction
if
otherwise

We rescalethe matrix to — suchthat andapply Theorem25. Thenthe
matrix is givenby

This givesfor the severecostfunction
and . Now Theorem25 impliesan expectedregretfor the costfunction
of . Rescalingo the severecostfunction leadsto thefollowing corollary:

Corollary 5 For thetresholdfeedbak functionandthesevere costfunctiontheFeedExpalgorithmsufers
theexpectedegret

E FeedExp3

with respecto the bestconstantchoiceof bandwidth.

In otherwordsthe FeedExp3algorithmboundsthe averageregretof ——— perround.
For the gentlecostfunction for de ned as
if
otherwise
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in its rescaledsetting — weget

Thisimplies and andthe following corollary:.

Corollary 6 For thethresholdfeedba& functionandthegentlecostfunction  theFeedExp3algorithm
sufersthe expectedegret

E FeedExp3
with respecto the bestconstantchoiceof bandwidth.

We now wantto investigatea continuoussetting: Insteadof discretechoices theallocated
bandwidthandavailablebandwidtharerealnumbersn therange . This modelsappliesif  is very
large, i.e. . Sincethe regret dependson the numberof constantexperts,i.e. possiblediscrete
choicesof , the boundon the regret of FeedExp3ecomedoo large. For a solutionwe considerthe

discretechoicesfor allocatingthe bandwidth - — . Of coursethe available
bandwidth is still continuousBecausef thediscretethresholdfeedbackpur algorithmunderestimates
if thenthealgorithminterpretes ashy —_—

Now notethattherealcostsandthecostsreferingto  differ nottoo muchfor the severecostfunction

Lemma 37 For the continuousserere costfunction with and - —
we have

Proof: follows straight-forvardfrom thede nition of
This Lemmahastwo implications.

1. If we considera gameusing —— insteadof in eachround,thenwe getadditionallossof
atmost— perround.

2. The bestconstantchoice  reduceghe total lossby at most — over all roundscomparedo the
choice——.

Theseconsiderationgmmediatelyimply thefollowing Theorem.

Theorem 26 In thecontinuouscaseof , for thebandwidthallocation problemwith threshold
feedbak andsevere costfunctionthere existsan algorithm  with expectedegret of at most

E

with respecto the bestconstantchoiceof bandwidth

Proof: UsetheFeedExpalgorithmin thediscretizedvorld - — where —
for . Theorem25 shows that in this discretizedworld this algorithm suffers an
expectedregretof

E FeedExp3
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Lemma37 shaws thatthe bestdiscreteconstanchoiceperformsoverall  roundsat most — worsethan
the optimal continuouschoice. Furthermorel.emma37 shows thata continuouschoiceof the available
bandwidthalsoincreaseshe costby atmost—.

Hence,the regret of the algorithm FeedExp3increasesn the continuoussettingby at most —
For the gentlecostfunction for in the continuoussettingthe sameobsenationsapply.

Lemma 38 For thecontinuousyentlecostfunction with and wehave

Proof: follows straight-forvardfrom thede nition of

Theorem 27 In thecontinuouscaseof , for the bandwidthallocation problemwith threshold
feedbak andgentlecostfunction  for there existsanalgorithm  with expectedegret of at most

E
with respecto the bestconstantchoiceof bandwidth

Proof: For the choice the proof is analogouso the proof of Theorem26 and
follows from Lemma38 andTheoren25.

7.4.2 LossFeedbackand Full Information

The multi-armedbanditproblemwith partialinformationof Freundetal. [ACBFS95]correspondso the
case . Underthis condition, is a suitablechoice. A somehev dual situationariseswhen

, thatis whenthe feedbackis a binary “hit or miss” information. Then is a suitablechoice
for .

A moretroublesomesituationis the full feedbackcase.Evenif in this casethe machinerypresented
in this paperis not necessarysincean expectedregret of canbe achiesed by the MW
algorithm[FS99, it is clearthata generalalgorithmfor this classof problemsmustbe ableto solwe this
specialcaseoo. A naturalchoicefor is , whichimplies . Unfortunately sucha matrix
hasrank1 andthereforethe condition canbesatis edonly whenL hasavery specialandrather
trivial, form. But morethanthe speci c valuesof theentriesof , whatde nes“full feedback’is thefact
thatnotwo entriesin everycolumnof havethesamevalue,thatis thereis abijectionbetweerthevalues
in andtherangeof . If satis esthis property it is possibleto compute from andhencewe
cansaywe arestill in thefull informationcase.Therefore we areinterestedn nding afull rank matrix
within the setof matricegustdescribedyhich all representhefull feedbackcase.

Onepossiblesolutionis to replaceevery diagonalentry with a numberlarge enoughto satisfyHada-
mardstheoremthatis:

implies that . But this solutionis speci ¢ to the full feedbackcase whereaghe problemof
singularor low rank  arisesn mary contexts.
For instance considerthe thresholdfeedbackand modify slightly the de nition to be , if

and otherwise.Then becomesingularbutit is enoughto reversethearbitraryrolesof 0 and1
to getanequialentproblem,wherethistime is invertible.



106 CHAPTERY. ONLINE PREDICTIONWITH PARTIAL FEEDBACK

7.4.3 Extensions

An acceptabld@ransformatiorof  canbe detailedasa setof functionsfor eachcolumnof , from the
rangeof the elementsof  into someotherrange. The goalis to obtaina new matrix , whereeach
columnis obtainedapplyingoneof the functionsto the elementsof a columnof |, for which thereis a
suchthat . Itisclearthat canhave morecolumnsthan , becauseeachcolumncanbe
transformedn differentways, but no fewer, sinceevery actionhasto be representedThis corresponds
to introducingnew actionsthat are essentiallyreplicas,but for eachof which the feedbackundegoesa
differenttransformation Fromthe point of view of theloss,theseadditionalactionsaretotally equivalent
andthereforewe needto extend into alargermatrix by duplicatingthe appropriatecolumns. What
we seekis agenerawayto expand soasto keepthe numberof columnsreasonablymallbut making
thelinearspanof  all-inclusive,thatis suchthatit cannotbe enlagedby addingmorecolumnsobtained
in afeasibleway. This canbeaccomplishedsfollows. For everycolumn  containing distinctvalues

(w.l.o.g. fromtheset )wedene columns , Where , asfollows:
, for , Where if istrueandO otherwise.Asto , we set

if andonly if . It is straightforvardto checkthatthematrix ~ obtainedhisway
hasthelargestpossibldinearspanamongall the onesthatcanbeobtainedrom  via thetransformations
detailedabove. Also, since is , Isatmost . Thesearemorecolumnsthanwe needand

would impactnegatively the boundson the regret: Thereforewe will pick the smallestsubsef columns
whichis still goodfor our purposesthatis, it satis esthefollowing conditions:

All thecolumnsof arerepresenteth  or, equivalently, all theactionsin the originalinstanceare
representedhatis for every thereis a suchthat ;

The nal feedbaclanddistancematricescanbeobtainedoby droppingall thecolumnsnotin - from  and
, andwe will continueto usethe samesymbolsfor the submatricesle ned thisway. In the next section

we will present greedyalgorithmwhich solvesthis problem.

Let us seehow this helpsin the full feedbackcase. Recallthat a naturalchoicefor s .
Thereforethecorresponding hasmaximumrank(somecolumnsof  forman identity matrix),

canbesolvedfor andthegeneraklgorithmcanbeappliedsuccessfully

A furthercomplicationarisesrom non-eploitableactions.Theseareactionswhichfor ary adwversarial
stratgy donotturnoutto beoptimal. The problemhereis thatthe condition mightbeimpossible
to besatis ed becaus®f somecolumnsrelatedto non-exploitableactions.Consideyfor instance,

Herecolumnl of isnotin thelinearspanof |, butit is easyto seethatactions2 and3 canbe always
preferredto the rst. Thereforejt mightseenreasonabléo simply dropthe rst columnasit is relatedto
a non-eploitableaction. It turnsout, thoughiit is justaction1 which providesthe necessaryeedbacko
estimateheloss.lt is clearthatsimply omitting non-eploitableactionsis not a goodstratey.

As with thefeedbackmatrix , thesolutionfor theseproblemss to transformthelossmatrix into a
newvw in awaythatdoesnotlowertheregret.

If weaddthesamevector toeverycolumnof ,wearenotchangingheprobleminstancean any sub-
stantialway, sincethe regret,our performancaneasureis invariantw.r.t. this transformation.Therefore,
we areinterestedn thosetransformationshathelpful lling the condition . Thistime, it makes
sensdo try to obtainamatrix  from of minimumrank. Rankminimizationis a dif cult problemin
generalput this specialcaseturnsout to berathertrivial.

Lemma 39 Giventhreematrices , and sud thatfor every and , we
havethat,for anyvector andindex |,

Proof: Since , thelemmafollows.
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Thereforechoosing equalto oneof thecolumnsof minimizesthelinearspanof . Inthefollowing
we will assume w.l.o.g.

As to non-exploitableactions,we rst needto formally de ne them. Let us de ne a partition® of the
setof mixedstratgies(for the adwersary)asfollows. Every elementof the partitionis centeredarounda
columnof  andis de nedas:

wheretheset denotesll possiblemixedstratgjiesof theadwersary
Thatis, anelemenbof this partitionis the setof mixedadwersarialstratgiessuchthata certainpredic-
tion is preferredto ary other If is empty then is anon-eploitableaction. Therationalebehind
thisde nition is thatno sensiblealgorithmwill evertry this actionfor exploitationpurposegthatis often),
sincethereareotheractionswhich beara smallerloss. Theinterior of is de ned asfollows:

The following lemmashaows that we canreplaceevery mixed adwersarialstratgyy on the surfaceof some
elementof the partitionby anotherstratgyy not onthe surface,with no penaltyin performance.

Lemma 40 For all mixedadvesarial strategies there existsa column  with sud that
Proof: We concentrat®n elementsn theset . Notethatwe have
Therefore, is a subsetof a unionof atmost  subspacesf dimension . Since isa
dimensionalpolytope,ary -ball centeredon a point containselementsnotin . Suchan
element is containedn aset  with . Sincethisis truefor ary ,then belongs
to the surfaceof too, thatis

Hence we canextendthede nition of non- e<pI0|tabIeact|onsto columnswith , sincetheir

choicegivesnoimprovementover actionswith

In orderto extendthe applicability of the basmalgonthm we setin  all the entriesin the columns
correspondindo non-exploitable actionsequalto the size of the maximumelementin its column. This
canonly increasdheregretw.r.t. thebestconstanstrateyy, becaus@oneof theactionsassociatedtb these
columnscanbepartof ary optimalstratgy. Furthermoreit is easyto checkthatthe columnsobtainedhis
way arein thelinearspanof  for every

7.5 The General Algorithm

In Figure7.7we shav how to implementthe constructiorof — and . Let denotethe
vectorobtainedreplacing,in the th columnof , everyentryequalto by andall othersby . The
algorithmconstructs and by appendingolumnsderivedfrom and to theirright sides.

Augmentedwith this kind of preprocessindor the lossandfeedbackmatrices,our algorithmcovers
all the exampleswe considered.A naturalquestionis thereforewhetherthe condition is not
only necessaryor our algorithmto apply, but in generafor ary usefulalgorithm. The answeiis positive,
meaningthatif the conditioncannotbeful lled, thenary algorithmwill undegoaloss

Theorem 28 For anypredictiongame we haveeitheroneof thefollowing situations:

TheGeneal Algorithmsolvest with an expectedegret of

E Geneal

Lstrictly speakingit is nota partition, but theideahelpstheintuition.
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The General Algorithm
input -matrices ,
begin

for from to do

for all values in do

if then
od
if then
od
b:=0
for from to do
if and then
od
for from to do
od
for from to do
if then
od
Perform andreplaceeachguess by
end

Figure7.7: The GeneralAlgorithm



7.6. CONCLUSIONAND OPENPROBLEMS 109

Theee is an advesarial strategy which causesany algorithm  to producea regret of with
probability

Proof: In the previous section,we have alreadyseenthat we can map a sequencef actionsfor the
predictiongame to theinstance in a way thatdoesnot essentiallyincreaseheregret. This
provesthe rst partof thetheoremWe canrephraseahe secondoartasfollows:

Givenaninstanceof thepredictiongame let and bethematricesobtainedhrough
thetransformationsletailedin the previoussection.If thereisno  suchthat ,then
ary predictionalgorithmwill undegoaloss
We associatea graph to the partition by de ning
and if andonly if or the sets and shareafacet,i.e. a
faceof dimension . Notethatfor all theset describes polytopeof dimension , orits
interior is empty
Let be the linear spanof the setof differencesetweernvectorsat the endpointsof eachedgein
. We have thefollowing
Lemma4l
Proof: Foreach , let , where

isapathconnecting to ,if suchapathexists.

We needonly to provethat is connectedGiventhetwo vertices and , we seeka pathjoining
them. Considerthe sggmentjoining a point in the interior of to onein the interior of
Sincethe setof mixed stratgiesis corvex, every pointin the sggmentis a mixed stratgy. Let uspick an
arbitraryorientationfor this sggmentandconsiderthe sequencef polytopesthatsharewith the sggment
someinterior point, andspeci cally two consecutie entriesin the sequence, and . If the
segmentgoesfrom the rst to the secondhrougha facet,thenthetwo correspondingerticesin thegraph
arejoined by anedge.If not, thatmeanshatthe two polytopesshareonly afaceof dimension or
lower, e.g.avertex or anedge.In thatcasewe needto pick adifferentpointin, say . Thisis always
possiblebecause hasdimension whereaghesetof pointscollinearwith thedesignategboint
in andary pointin ary faceof dimension or lower hasdimensionat most

Now, let us assumehatthereis no  suchthat . This impliesthatthereis  suchthat

Let us assume . By denition of , for some . This
implies, by de nition of , a contradiction. Therefore, and, by lemma41,
. Hence,for some , we have that . Sincethe range
of is the orthogonalcomplementto the null spaceof we have that, for somenon-zerovector
. Let bea pointin the interior of the facetsharedby and
. We have that and arebothmixedstratgjiesfor some . They areindistinguishable
from the point of view of ary algorithmbecause , but they correspond
to differentoptimalactions,andtheregretimplied by makingthewrongchoiceis

7.6 Conclusionand OpenProblems

We solvetheproblemof discretdossandfeedbaclonlinepredictiongamesn its generabketting presenting
an algorithmwhich, on average hassub-linearregret againstthe bestconstantchoice,whenever this is
achiezable.

In thefull knowledgecaseit is well known thatthe averageper stepregretis boundedby
In [ACBFS9) it is shown that, if the feedbackis identicalto the loss,thereis an algorithmthe average
regretof whichis boundedyy (omitting polylogarithmicterms) recentlyimprovedto
[Aue0qd. In this chapterwe shaw that, for every “reasonable’feedbackthe averageper stepregretis at
most . Otherwiseno algorithmcando betterthan

If the numberof rounds is unknown in advancethe generalalgorithmcanbe modi ed to work in
epochsatechniqueshavn in [ACBFS95. This modi cation doesnot changehe asymptoticaboundson
theregret.
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We appliedthe FeedExp3algorithmto bandwidthallocationproblemsandshaved a sub-linearregret
for the severeandthe gentlecostfunction underthresholdfeedback.We will discussin the next chapter
whetherthis resultscanbe actuallyappliedto the original setting.

While we provedthatno algorithmcanattainsub-linearegreton a larger classof problemsthanours
doesit is anopenproblemwhethersuchgenerapredictiongamesanbesolvedwith aboundontheregret
asgoodasthe oneobtainedfor the multi-armedbanditproblem,in the mostgenerakettingor undersome
additionalassumptions.

It is straightforvard to transferthe upperboundsshavn for the worst caseregret againstconstant
predictorsto the nite pool of generalpredictors(a.k.a.“expert”) model,in analogywith the argumentof
[ACBFS93, Section7. However, the lower boundis not readily applicableto this caseand, therefore,it
is anopenqguestiorwhetherour generahblgorithmachievessub-linearegretwheneerit is possiblen this
context.

Anotherinterestingquestioris whetherauniform algorithmexiststhatworksfor ary feedbaclandloss
functionandachievesthe bestknown performancdor eachfeedback.Note thatthe algorithmspresented
in thiswork, evenwhengivenasaninputafeedbackunctioncorrespondingo the“full knowledge”case,
guaranteesnly anaverageper stepregretof , Whereas is thebestboundknown.



Chapter 8

Bandwidth Allocation under
Adversarial Timing

8.1 Intr oduction

In this chapterwe investigatedistributedand cooperatie bandwidthallocationprotocols. A well-known
examplefor sucha protocolis the TransportControl Protocol(TCP) in the Internet. This protocolwas
modi ed whenthe Internetexperienceda severe servicedegradationor “Internet Meltdown” during the
early growth phaseof the mid 1980s[Nag84. The dynamicsof paclet forwardingwereunderestimated
which resultedin a “congestioncollapse”. The x for the Internetmeltdownn is the “back off” behaior
of TCP[Jac88. In simplied form, when TCP suffers a paclet loss, it decreasedts sendingrate (by
decreasingts window size by a factorof two), andwhena paclet is successfullydelivered,it increases
its sendingrate (by increasingits window size by one). This additivelyincreasingand multiplicatively
decreasing(AIMD) behaior implementssocialinteractionbetweenthe allocationpatternsof concurring
host-to-hostonnections.

Considettwo connections and sharingalink of capacity , seeFigure8.1. Supposehealgorithm
allocatingeachconnectiorbandwidthusesAIMD behaior likein TCP andassumehatif thesumof the
chosempacletrateof and islargerthan , thenpacletsaredropped.Let bethe rst established
connectionandaftersometime  will join in. We obsere thataslong is the only active processijts
bandwidthof  oscillates: increasests bandwidthuntil it is largerthan , thenpacletsaredropped
andthus decreaseits bandwidthby a constanfactor then 'sbandwidthincreasesndsoon. Now
joinsandsince doesnot usethe completebandwidth for mostof thetime, thereis somebandwidth
left for suchthat hasachanceo geta constanfractionof the bandwidth.Clearly, the processloes
not corvemge anddoesnot read full utilization, i.e. in an averageroundonly a constantfraction of the
availablebandwidthis used.

Packets dropped

AR
Q

Bandwidth

Time

Figure8.1: Allocation behavior of pure AIMD.
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Q starts and allocates
no bandwidth

Bandwidth

Time

Figure8.2: Unfair allocationbehavior of anonline predictionalgorithm.

Now let us replacethe AIMD behaior by an online predictionalgorithmintroducedin the previous
chapter(E.g. we useFeedExp3algorithmand neglectthe in uence of the uniformly distributedtesting
patternor we usethe Hedge/Multiplicatve Weightingalgorithm). Figure8.2 shavs thatwhen  startsit
quickly allocateshewholebandwidth if it minimizesthe gentleor the severecosts.Then startswith
minimal bandwidth . Now obsenethat doesnot suffer any lossin the gentleandseverecostmodel,
sincetheavailablebandwidthfor is . Theavailablebandwidthfor is , hencethecostfor is ,too.
Sinceboth allocationalgorithmssuffer no loss, the allocatedbandwidthsof both algorithmswill not be
changedanymore.We noticethatthe systemcorvergesandreachedull utilization. However, the situation
is undesirablesinceit is unfair.

But alsofor TCP fairnessis not guaranteedsinceits behaior dependseaily onthe speedat which
individual playersincreaseheir rate. It is known that TCP is inherentlyunfair to connectionswith long-
roundtrip times[FJ9] andthe unfairnesscan sometimede as bad asthe inversesquareof round-trip
times[LM97].

In this chapterwe concentrateon fairnessand full bandwidthutilization. For this, we consideran
asynchronouslistributednetwork in avery simpli ed setting.In contrasto TCP andthefeedbackmodel
in the precedingchapter(but alongsomeconcurrentoncepts)we allow the protocolsto seethe residual
bandwidthwhile otherinformationlik e the allocatedbandwidthgor eventhe number)of competingpro-
tocolsis notused.Following the ideasof [BEY98, KKPS0(Q we challengeour protocolsby anadwersary
to ensurerobustnessandreliability. In [KKPS0( this is modeledin form of the choiceof the bandwidth
by anadwersarialstratey. In ournew approachhelink bandwidthis x edand uctuationsin theavailable
bandwidthfor individual playersare modeledusingan adwersarywho determinesvhenplayerenterand
leave the systemand,in particular controlsthetiming of rateupdateoperationsf individual players.Let
usdescribethisin moredetail.

Considera setof playerswho sharea singlebus of bandwidth . Eachparticipatingplayer holds
aratevariable describinghow muchbandwidththe playercurrentlyoccupies.Fromtime to time new
playersarrive and claim a fair shareof bandwidthwhile otherplayersleave the systemandreleaseallo-
catedbandwidth. Clearly, sucha dynamicervironmentrequiresa resourcemanagementhat adaptsthe
bandwidthallocationcontinuouslyto the varying circumstancesFor example,if several playerssharea
singlebusanda new playerarrivesthenthe establisheglayershave to releasepartsof their bandwidthso
thatthe newly arrived playercanreceve a fair amountof bandwidth.Similarly, if someplayersleave the
systemthentheremainingplayerscandivide up thereleasedandwidth.

Let ustransferTCP into this model: A playerincreasests rateby oneunit whenhe obsenesthatits
currentratevaluecanactuallyberealizedsince . Eventually therateswill beincreasedy such
anamountthatthe sumof theindividual ratesexceedghe available bandwidthandthe systemcollapses.
This collapseis obsered by the individual playersand asa responsell playershalve their rate values.
Thenplayerscontinuewith thelinearincreaseandsoon.

Recently someTCP implementationsvhich usemore aggressie congestiorstratgyies andincrease
their ratesat higherspeechave beensuggestedin fact, alreadytodaythe speedat which playersincrease
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their ratesdependson mary differentaspectsespeciallyon the so-calledround-triptimes, which again
dependon the bandwidthutilization and,hencepntherateschoserby the players.

In orderto studythein uence of differentspeedsn ourtoy model,considettwo players and who
interactonabus. Supposelayer increasesis bandwidth timesasfastasplayer . Then,onthelong
run,theaveragerateof player will be timeshigherthantheaveragerateof player . (Thisis because
theratio betweenthe sumof rateincrementsandthe sumof rate decrementgorvergesagainstonewith
time sothattheaveragdossof player in caseof acollapsemustbe timeshigherthanthe oneof player

, whichin turnimpliesthatalsotheaveragerateof = mustbe timestheaveragerateof .)

We summarizethat different speeddor updatingthe bandwidthscan resultin an unfair bandwidth
allocationin practiceasin our toy model (seealso[CJ89 MSM97]). In the following, we will have a
closerlook atthis kind of problemsin anadwersariaimodelof time. We startwith upperandlower bounds
for avery simplemodelin which playersinteracton a singlebus. Afterwardswe generalizeour modelto
generahetworks.

8.1.1 Model 1: Fair bandwidth allocation on a singlebus

Considerasinglebusof bandwidth . We assume&nopensystenin which playerscanenterandleave the
bus continuously Let  denotethe possiblyin nite setof players. Whenplayersfrom  enterthe bus
they requesta shareof its bandwidth,andwhenthey leavethe busthey releasethe allocatedbandwidth.
Activeplayers (i.e., playerswho enteredout did notleave the bus) needto agreeon the shareof bandwidth
they receve. Thisis doneby so-called‘rate updateoperations'thatactive playerscanperformin orderto
adjusttheir individual shareof bandwidth.We formalizethis asfollows.

We modelthe opensystemby anadwersarythatspeci esa sequencef events , Where
eachevent s atuple with and enter leave update. With eachplayer , we
associate positive ratevariable the valueof which is zeroif the playeris inactive, thatis, the initial
valueof iszeroand isresettozerowhen&ertheadwersarycalls leave . Theadwersarycallsupdate
operationsonly for active player In particular if theadwersarycalls update thenplayer canset to
ary positive value.In otherwords,theadwersarydetermineshiow oftenandwhenplayerscanrede netheir
rate.At ary giventime, we de ne the shareof bandwidth player recevesby

if ,

otherwise.
Thus,the shareof bandwidthof all playersis zerowhenthe systemis overloaded(For analogousnodels
see,e.g.,[KKPS0(Q.) A fair andefcient allocationprotocolaimsto setthe ratesin sucha way thatall
playersin the systemget almostthe sameshareof bandwidthand the unusedbandwidthis as small as
possible.

Clearly, whenthe adwersaryfrequentlychangeghe setof active playersor doesnot allow to perform
areasonableumberof updateoperationdor all active players thenit is impossibleto achieve a fair and
efcient allocationof bandwidthsamongthe active players. Therefore,we focuson periodsof timesin
whichthe systemis closed.A closedsystenperiod is de ned by a possiblyin nite interval of time

anda nite setof players . During thereareno playersenteringandleaving the systemand
the adwersaryonly allows the playersin  to performupdateoperations.Our goalis to rapidly approach
afair andef cient allocationof bandwidthin closedsystemperiods.For this purposewe investigatethe
following simpleprotocolwhich is alsoknown asthe PhantomProtocol[AMOOQ]. Let denotea
globalparameterFigure8.3shavs the allocationof threeplayersusingthis protocol.

The Virtual Player Protocol (VPP)
Supposeplayer performsan updateoperation.Let denotethe
unusedbandwidthimmediatelybeforethe updateoperation.Thenplayer sets

In orderto describethe behaior of thevirtual playerprotocol(VPP)in a closedsystemperiod ,
letuspartition into contiguougphasesn suchawaythateachphasecontainsatleastoneupdateoperation
for eachplayer
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Figure8.3: Allocation behavior of the Virtual PlayerProtocol.

Theorem?29 Let denotea suitableabsoluteconstant.Consideranyclosedsystenperiod .Dene
andlet ——. Within the r st phaseof theinterval theVPPreduces

theunusedbandwidthto at most andyields

for all all , regardlessof theinitial rates.

In otherwords,the VPP utilizes the availablebandwidthalmostcompletelyanddistributesit in a fair
way amongtheplayersin . In fact,onecaninterprettheunusecandwidth (whichistheonly feedback
usedby the VPP)asthe rateof anadditionalvirtual player Suppose . Thenanupdateoperationof
player simplybrings into line with . Thisway, the bandwidthwill nally bedividedupin afair way
amongall playersin  andthevirtual playet By increasing , the shareof thevirtual playercanbemade
arbitrarily small. A formal proof of thetheoremis givenin Section8.2.

Let us measurethe length of closedsystemperiodsin the numberof phaseghey de ne. Thenthe
theoremimplies thatthe VPP corvergesagainsta completelyfair bandwidthallocationin closedsystem
periodsof in nite length.In otherwords,

for all players from . Obsenre, however, thatthe VPP doesnot utilize thefull bandwidth.In fact,the
wastedbandwidthis —— inthelimit. Thisgivesriseto thequestiorwhetherit is possibleto obtain
fairnessandfull utilization simultaneously The following theoremanswershis questionnegatively and,
hence givesa strongmotivationfor leaving a smallfractionof the bandwidthunused.

Theorem 30 For anybandwidthallocationprotocol corvemingagainstfull utilizationin closedsystem

periodsof in nite length,there is anadvesarial sequence thatde nesa closedsystenperiod of
in nite lengthwith that enfolcesa bandwidthassignmenbf at most ) for oneof the
playersin

This surprisingimpossibility resultfollows from a simple,elegantlower boundargument. The corre-
spondingproofis givenin Section8.3.

Notethattheincompatibility of fairnessandfull utilization alsoholdsif all playersknow the complete
currentstatuse.g.for explicit ratebasedalgorithmslike in [CRL96, Rob94.
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8.1.2 Model 2: Bandwidth allocation in generalnetworks.

We generalizéheabove adwersariaimodelto generahetworks. Thenetwork is modeledby a (hyper)graph
. Edgesrepresenbuses routers,or othersharedresource®f limited bandwidth. The band-

width capacityof edge is denotedby . Eachplayercomeswith a setof edgesconstitutinga simple
path (i.e., a pathin which every edgeappearsat mostonce). For player , let denotethe
player's path,andfor anedge let denotethe setof thoseplayerswhosepathscontain .

As before anadwersarydeterminesvhenplayersenterandleave the systemandwhenthey canupdate
their rates.For thetime being,we assumehatupdateoperationsareperformedatomically, i.e.,anupdate
operationis not performedby the adwersaryuntil the previousonehasbecomeeffective on all edgesf the
respectre path.We generalizeéhe VPP asfollows. Let denotea globalparameter

The Virtual Player Protocolfor General Networks
Supposeplayer performsan updateoperation. For every edge , let
denotethefree bandwidthon edge . Thenplayer sets

where denotesa globalparameter

The mostwidely acceptedcriterion for a fair and ef cient bandwidthallocationin networks is the
conceptof “max-min fairness”[Jaf81, KRT99]. The network is consideredo bein a stateof max-min
fairnessif it is impossibleto in nitesimally increasethe rate of any playerwithout exceedingthe edge
capacitiesor decreasinghe rate of playerswhoserateis equalor smaller Our impossibility resultfor a
singleedgeimpliesthatonecannotconvergeagainsimax-minfairnessn closedsystenperiods.Therefore,
we relaxthe concepiof max-minfairnessasfollows.

For every , the network is in a stateof -max-minfairnessif it is impossibleto increasethe
rate of any playerby morethana factorof without exceedingthe edgecapacitiesn or
decreasingherateof playerswhoserateis at most . We de ne thata protocolcorvergesagainst

-max-minfairnessif, givenary closedsystemperiod of in nite length,theratescorvergeagainst
astatein whichtheabove criterionis ful lled amongthe playersin

Theorem31 TheVPP corvemgesagainst—-max-minfairness.

The proof of thetheoremcanbefoundin Section8.4. If thenwe candescribethe stateagainst
whichtheprotocolcorvergesasfollows. For every edge , we de ne avirtual playerwhosepathcontains
only theedge . Therateof this playeris de ned to bethe unusecbandwidthon edge . Thenthesystem
convergesagainsia stateof max-minfairnessamongall participatingplayersincludingthevirtual players.
Increasing simply decreasethe shareof thevirtual playerand,hencethewastedbandwidth.

Unfortunately the analysisshowving the corvergencedoesnot alsoprove a fastcorvergence.For this
purpose we investigatea discrete variant of the VPP adoptingsomeideasof [AS98h, thatis, the rate
valuesof active playersare of the form , for xed and . Fix ary closedsystem
period . Let the congestion denotethe maximumnumberof paths(of participating
players)which containthe sameedge,andlet the dilation denotethe maximumlength of
a path. Furthermore]et denotethe ratio betweenthe bandwidththat is availablefor the
participatingplayerson thewidestandthe narravestedge.

Theorem32 For every , there is a discrete variant of the VPP that approachesa -max-minfair
statein anyclosedsystenphase Thisstateis reacthedafter phases.

Theproofof thistheoremis givenin Section8.5. Obsenethattheperformancef theprotocoldepends
only onlocal parametersuchasthe congestioror the dilation but not on global parameteréik e the total
numberof playersor the sizeof the network. Furthermorethe protocoldoesnot needto be parametrized
with any other parametetthan , andthe only feedbacka player needsin orderto performan update
operations the unusedbandwidthon the narrovestedgeoniits path.
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8.2 The Virtual Player Protocol

We will now provethatthe Virtual PlayerProtocol(VPP)corvergesagainstfairness.
Proof of Theorem29: W.l.o.g.,assume . We adda virtual playerO whoserateis de ned
by . Thisway, thesetof all participatingplayersis . Furthermorewe assume
thattheclosedsystenperiodstartswith . We wantto show thatthemaximumdistancebetweerary pair
of rates(includingtherateof thevirtual player)is atmost after phases,
whichimpliesthetheorem.

For every and , let denotetherateof player afterstep andlet denotethe
initial rate.For , let

denotethe maximumdistanceafter . We de ne thefollowing potentialfunction

Obsene that , for every . Hence,we only have to shov thatthe valueof the
potentialfunctiondropsbelon after phases.

For , de ne , i.e., the distancebetweenthe virtual playerandthe actvated
player . Weobsenre because

and,for every ,

Thus,therateof thevirtual playerchangedy —  duringstep . In otherwords,the potentialdecreases
by thedistancethatthevirtual playermovestimes —.

Now, for , let and denotethe potentialandthe maximumdistanceresp. attheendof
phase , andlet and denotethe correspondingnitial values.Obsene thatthe distancetraveled
by thevirtual playerin phase is atleast becauséts rateis averagedwith the smallestandthe
largestratein every phase As a consequence,

Applying and gives
Finally, we obsene that
for . Thiscompleteghe proof of Theorem29.

Technicalremarks. Onthe rst view it might seemthatthe speedof corvergenceshouldbe polyloga-
rithmic ratherthanpolynomialin . In fact,underarandomizedequencef activationsof playerstherates
would corvergewithin phasesA simplecountergample however, shavsthattheadwersarycan
force the procesdo take a linear numberof phaseauntil all playerscomeclose. This countergampleis
givenin Section8.6.

The systemof ratescanalsobe interpretedasa simple physicalsystemin which we aregiven
perfectlyisolatedroomsthatinitially have differenttemperaturesTherooms to have adoorleadingto
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roomO. If suchadooris openedhenthetemperatures bothroomsareaveragedClearly; if all doorsare
usedfrequentlythenthetemperatures all roomswill comecloserandcloser In otherwords,theentrogy
of the physicalsystemdecreases.

This metaphoisuggest$o considerthe entropy asa potentialfunction, e.g.,in form of the sumof the
square®f theratesor in form of therelative entropy (KullbackLeibler divergence).In fact,both of these
potentialfunctionscanalso be usedin orderto shov the convergence. However, thesefunctionsdo not
decreasasfastasthepotentialfunction (e.g.ontheinitial instance®f thecounterexamplegivenin the
Section8.6) and,hence)eadto slightly wealer upperboundson the performance.

8.3 FairnessversusFull Utilization

We will now shav thatunderadwersarialtiming fairnessandfull utilization cannotbe bothsatis ed.
Proof of Theorem 30:

Assumethatsucha protocol exists. We startwith two playersTom andTina. At the beginning Tom
allocatesall the bandwidthand Tinanoneatall. TheadwersaryactivatesTinaonly if thefree bandwidthis
smallerthan , Wwhere denotegshenumberof Tinasactive rounds.ParticularlythisimpliesthatTina
is activatedagainif sheallocatesmorethanthe free bandwidth(systemoverload). Sincethe protocolhas
to resohe this blockade we consideronly thelastallocationof Tinain this sequence.

If the protocolcorvergesto full utilization, Tinais activatedin nitely often. If not, Tomwould remain
alonein a closedsystemperiod wherethe wastedbandwidthnever falls belonv a constantvalue which
contradictsourassumption.

So, Tina canallocateadditionalbandwidthof at most — in her -th active round. Hence heroverall

bandwidthis boundedy - —.

8.4 VPP Convergesagainst—-max-min Fairness

Proof of Theorem31:

Fix aclosedsystemphase . W.l.o.g.,weassume andall otherplayershave rate
zero. We show thatthe VPP corvergesagainsta particularstate  which we describein the following
paragraph.

For every edge , we de ne anadditional,virtual playerwhosepathcontainsonly edge . Therateof
this playeris de ned by the unusedbandwidthof edge times . Thesetof virtual playersis called
Now let usimaginefor amomenthatvirtual playershave arateindependenfrom theunusedandwidthof
therespectie edge thatis we wantto treatvirtual playerslik e original players exceptthatthe bandwidth
usedby avirtual playeris only — timesits rate. Supposeve incrementall ratesincluding the ratesof the
virtual playersin round-robinfashionwith in nitesimal incrementsstartingwith all ratesbeingzero,until
thebandwidthcapacitief the narrovestedgesarereachedAt this point, we stopto increaseaheratesfor
all pathsusingoneof theseedgesandcontinuewith theremainingpathsin the samefashionuntil all rates
aresettled.Let usdenotethe nal stateof this procesdy

We obsenre that  utilizes the bandwidthof all edgesif we take into accountalso the bandwidth
occupiedoy thevirtual players.Fromnow on, we considerthe bandwidthsoccupiedby thevirtual players
againasunusedandwidth. For player , let denoteoneof its bottlene& edgg, i.e., an edgebecause
of whichit stoppedncreasinghe bandwidth.By ourincrementatonstructiontherateof player in state

is equalto the nal rateof thevirtual playerof . In otherwords,therateof every player in is
timesthe unusedbandwidthonits bottleneckedge . Furthermorethe valuesof the unusedandwidth
on all otheredgeson arenot smallerthanthis value. Thisimpliesthat is a xed point, i.e., the
VPP doesnotdivergefrom state onceit reacheghis state.Furthermorewe canobsernethat satis es
—-max-minfairnesssinceincreasingherateof aplayerby morethan ~ — would exceedthe capacityon
its bottleneckedge.(In fact, yields min-maxfairnessf we take into consideratioralsotheratesof the
virtual players.)Thereforejt remainsonly to show thatthe VPP corvergesagainsthe x edpoint

For anedge , let denotethe valueof the rateof the virtual playeron in the steadystate

. De ne . De ne . (Obsenethatpossibly .) Let
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denotetheelementdrom  in increasingorder, andde ne for .
Furthermorejet denotethoseplayerswhosebottleneckedgeis in , i.e., the setof players
whosesteadystaterateis equalto . We will shav by inductionon thattheratesof the playersin

will corvergeagainst

Claim 1 Let denoteany positivereal number For every , there exists sut
that, after phase , theratesof all playersin arein theinterval

In therestof the remaininganalysiswe will show this claim usinginduction. Let denotethe
unusedbandwidthon edge if we assumehat the players have bandwidthsas
describedby andall otherplayershave ratezero.In fact,we canassumdy inductionthattheratesof all
playersin deviateat mostby fromtheirvaluesin  for ary . Underthis
assumptionthe bandwidthavailablefor the playersin onedge uctuatesonly
within theinterval . Obsenre thatwe canchoose arbitrarysmall. Nevertheless,

we needto take into accounthese uctuations explicitly because@hasesanhave arbitrarily lengthsothat
asmallchangen thebandwidthatary giventime potentiallyhasvastconsequenceasn the systemof rates
in latertime stepshatmightbeevenin the samephase.
In the following, we consideronly the playersin  , thatis, we ignorethe playersfrom
but we take into accounthesmall uctuationsthey causeasfollows. We de ne thatthemaximal

availablebandwidthon edge is but, in eachstep , playersmay obsenre a slightly
disturbedbandwidth . By our constructionhoneof the playersin uses
an edgefrom . Therefore,we canrestrictour attentionto the setof edges
.Let  denotethesetof virtual playersof edgesn
Now x anedge . Let denotehenumberf playersonthisedge.Let denotehemaximal

bandwidthof thisedge,and the numberof playerswhosepathscontain . If anexternalobseneronly
seeghebehaior of therateson edge withoutknowing ary detailsabouttherestof the network thenhe
canobsene abehaior whichis coveredby the following protocol.

Adversarial VPP

Supposeplayer performsupdateoperation . Let . Then
player sets
where is selectedby anadwersary

The adwersarialsequence modelsthe disturbingin uence dueto otheredgesandbandwidth uc-

tuationssimultaneously Let denotethe bandwidthof the virtual player, also called playerO.
Furthermorelet denotethe x point of the protocolundertheassumptiorthat , for all , thatis,
Obsenre that at leastone player satis es at ary giventime. De ne

, i.e.,thesmallesinitial rate.

Lemma 42 Assume , for any . Thenin everytime stepafter performingonephase

Proof: Thelemmafollows becausef the following monotonicitypropertyof the VPP on singleedges:
Givenanadwersarialsequence , increasing , for ary , increases anddoesnotincrease ,
for every , . (This propertycanbe shavn easilyby induction. Obsene thatmonotonicity
againstadwersarialbandwidth uctuations holdsonly for single edges. In networks with several edges,
reducingthe bandwidthof a singleedgecandecreas@andincreaseateson otheredges.In fact,a small
localchangan bandwidthcanhave strongin uence ontheratesof remoteedgesFor anexampleshowving
exponentialeffectsin a similar context seefAMO96]. Herewe cover thesevastinter-dependencieamong
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differentedgesby worst-caseassumption®asedon the adwersarialsequence .) Becausef this mono-
tonicity property we canassumen thefollowing that , for all , withoutincreasingherateof the
virtual playet

Next we obsere thateithertheinitial valueof is atleast orthereis anothemlayerwith atleast
rate thatperformsanupdateduringthe rst executedpohase.Consequentlythereis astep in the rst
phaseyielding

Oncemore,we apply monotonicityandassumeyw.l.o.g., thatall updates ( ) moving the virtual
playerupwardareskipped,.e., all updatesith . Underthisassumptioneachplayer
is calledatmostonceafter because in all time stepsafterits rst update Now astraightforward

inductionshaws that

afterthe th of atmost updatesClearly this provesthelemma.
Now let us take into accountall edgesagain. We considerdouble phasesi.e., pairs of contiguous

phasesLet denotethe minimal rateover all playersin atthe beginningof a doublephase.
Suppose . ThenLemma42 givesa lower boundon theratesof thevirtual playersafterthe
rst phasepamely , for every , where denoteghe maximumnumberof
playersonthesameedge.Thus,in thesecondohasegachplayeris averagedwith avirtual playerof value
atleast sothat,aftertheexecutionof onedoublephasethe minimumrateoverall players
increaseso
provided . Consequentlyall rateswill have valueat least aftera nite numberof
phases.

Finally, we obsene thatthis lower boundon the minimal ratesalsoupperboundshe maximalratefor
edgesrom . For the maximalrateis as  denotegshe averagerateover all
players.For general asmall calculationshavs the maximalrateis with . This

provesClaim 1 and,hence completeshe proof of Theorem31.

8.5 The DiscreteVirtual Player Protocol

Proof of Theorem 32: We now introducea discreteversionof the VPP that guaranteeso reacha fair
andefcient allocationwithin asmallnumberof stagesHere"“discrete” meanghatratesof active players
areof theform , forintegral andpositive,real . We use  to indicateupward roundingw.r.t.
this representationLet , , and denoteglobal parametersvhoseactualvalueswill be
determinedduringtheanalysis.

DiscreteVirtual Player Protocol
Supposeplayer performsupdateoperation . Foreveryedge , let

denotethefree bandwidthon edge . Set
If then

For analyzingthediscreteVPR we useasimilar approactasfor thefractionalVPP. We de ne avirtual
playerfor eachedge . Therateof this playeris denotecby = andwe de ne . Letus
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ignorethe roundingfor a moment. Thenwe cansummarizethe above protocolasfollows. An updateof

player bringstherate in line with theminimumvirtual rate overall , unless is only
slightly largerthan , thatis, unless . In thefollowing, the minimal bandwidthover all
playersincludingvirtual playersis denotecby , for
Observation 1 Thesequencefrates is non-deceasing
Let us partition time into supefphases.Eachof thesesupefrphasesonsistsof phasesor
doublephasesWe will usethediscreteratesin orderto shav that increasedy afactorof in
eachsuperphaseuntil the systemof ratesrunsinto a bottleneck More formally, for let denote
thevalueof attheendof supefrphase . Wewill shawv by inductionthat , Where
denoteghe rst superphasen which at leastoneedge“settlesdown”. In supefphase , anedgeis
calledsettledif theratesof all playerson the edgearewithin theintenal andthe

rateof thevirtual playeris exactly

Observation 2 Oncean edge settlesduring any superphase the ratesof the players crossingthis edge
are xed forever

Now letus x anarbitrarysuperphase We assumehatthereis no settlededgeat the beginningof the
superphase W.l.0.g.,thesupefrphasestartswith update andthe smallestinitial ratein the supefphase

is . We needthe following threelemmasin orderto shov at the end of the
superphase.
Lemma 43 For everynon-virtual player , if then , for every

Proof: As all playersincluding the virtual playershave at leastrate one,we canconcludethat

—, for every . Thus, implies

sothat is roundedup to

Lemma 44 For everynon-virtualplayer , if is calledin step with andall virtual player
onits pathshaveat leastrate then , for

Proof: As all virtual playerson 's pathhave atleastrate , the unusedbandwidthon eachof these
edgess atleast—, for some . Consequently

Lemma 45 For every non-settlededge , in every phasethere is at leastoneupdate  after or befoe
which thevirtual playerof hasatleastrate

Proof: Eitherthevirtual playerhasrate alreadyat the beginning of the phaseor atleastoneof the
playersmusthave ratelargerthan , otherwisethe edgewould be settled. Let us assumedhatthe
virtual playerhasrateone. Thentheunusedandwidthis atmost—. Let denoteaplayerwith atleastrate

. Duringthephase, updatests rateatleastonce.Let denotethecorrespondingime step.Then
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We set . (If weassume  —, then .) Thisis the minimal assignment
yielding . Thisway, therateof player is decreasetdy morethan , whichin turn
impliesthatthe unusedbandwidthincrease®y morethan , sothattherateof thevirtual playeris atleast

Lemma43 implies that we only needto show that eachplayerwith rate oneat the beginning of the
superphasseis lifted up (i.e., its rateis setto ) onceduringthe supefphasen orderto shav thatall
playershave atleastrate . Now considera doublephase.Lemma45 shows thatevery virtual player
getsloaded(i.e., thevirtual rateis setto minimum ) atleastonceduringthe rst phaseof thedouble
phase.Furthermorel.emma44 shawvs thata playerwith rate oneis lifted up if all virtual playerson its
pathsareloaded.We concludethatevery playerwith initial rateoneis lifted upathis rst updateduringthe
secondbhaseof the doublephaseunlessthereis onevirtual playeron his paththatit notloadedanymore,
which meanghatthis virtual playerhaslifted up anothemlayerbefore.

Let uscall playerssharingan edgeneighbos. We concludethat, for every doublephase andevery
player with initial rate one, eitherplayer or atleastoneof his neighborsis lifted up during . This
impliesthatall playersarelifted up during a supefrphaseconsistingof doublephasesseachplayer
hasat most neighbors.

We summarizethe minimumrate increasedy afactorof in every superphaseuntil atleast
oneedgesettlesdown. Now let usset - and —.

Lemma 46 Thesetof settlededgesand players satisfy -max-minfairness.

Proof: By de nition, the playerson settlededgeshave aratein andthe unusedbandwidth
isatmost . Hence,onecannotincreaseherate of oneof the playersby afactorof -
without exceedingthe unusedbandwidthor decreasinghe bandwidthof a playerwith rate

, which correspond$o thede nition of -max-minfairness.

Now supposeone or more of the edgessettledown. Thenwe canexcludetheseedgesandthe rates
of thoseplayersusingone of themfrom our considerationgsthe correspondingatesare x ed forever.
Hence,we cantreatthe systemof remainingedgesandplayersanalogousiyto the original system. This
way, we continuefollowing the allocationprocessuntil we nd thatthe ratesof all playersare x edin a

-max-minfair state.

It remaingo analyzehow mary supefrphased takesuntil all playersaresettled.W.l.0.g.,letusassume
thatthe capacitieof theedgesarefrom theinterval . Thenonecanshaow thatthe minimumrateafter
the executionof only onedoublephaseis . (This follows analogouslyto the lower boundon
the increaseof ratesper doublephasethat we have donefor the fractional VPR) Furthermore after the
last superphasethe minimum rateamongthe playershaving survived until the endof our constructions

. As theminimumrateamongthe surviing playersincrease®y afactorof persupefphase,
we concludethat the processsettlesdown after supefrphaseswhich correspondso
phasesThus,Theorem32is shavn.

8.6 A Lower Bound for VPP

The players startwith bandwidths with nowastedbandwidthj.e.
and . Inround we activateplayer andupdatehis bandwidthby
- . Thisimplementshe Virtual PlayerProtocolfor -. So,player isthe rst to begin

in aphasewhich consistof rounds.Notethatfor a closedsystemperiodthe VPP protocolis equivalent
to abalancingcircuit. Sucha circuit canbe describedy a directedagyclic graphswith  sourcesand
sinkswhereevery nodehasin- andout-degree2. At theinputs aregiven. Every node
balanceghe valueson theinputs  to the outgoingvalues- , - . The behaior of such
a circuit canbe describedasthe product of the matricesdenotingthe balancingof the inputs. If we
iteratively apply this circuit it correspondso repeatthe activation strateyy. Now we canapply standard
theoryof Markov chainsandit follows thatthe rate of cornvergencedepend®nthe eigervaluesof |, see
[AHS94, Mih89, Fil91]. UsingsuchMarkov chainmethodst is possibleto analyzethis examplefor x ed
. However, it is not clearhow theseresultscanbe generalizedThereforewe follow a differentapproach.
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Notethatin [RSW98]it is shavn thatthe corvergencebehaior of balancingecircuitsalsoholdsif applied
to a discretedomain. Therefore this resulttransferso the VPP in closedsystemperiodswith periodical
adwersariabehavior.

Lemma47 Attheendof phase wehavefor thebandwidths of players

Proof: We prove this claim by induction. For the rst roundobsene that for

For the inductive stepwe know that (From now on we useintenal
arithmeticand ascorvenientnotationfor ). We claimthatfor

Thisfollows by

This Lemmaimplies that VPP cannotreducethe maximumbandwidthdifferenceby a factorof two
within —— phasesand—— rounds.

A similar but morelengthyproofimprovesthis boundto phasesThen,wereplacetheactiva-
tion scheduléy double-phasesf sequences for the samestartcon guration.




Chapter 9

TreeNetwork Designfor the
Cost-Distance-Model

9.1 Intr oduction

Given terminalpointsin the Euclideanspacewe investigatehe problemof constructinga network with

small costand shortdistances.This researchis motivatedby a numberof practicalproblemsarisingin

network designfor traf ¢ in communicatiometworks aswell asrealtraf c in streetor railway networks.
If oneminimizesonly thenetwork size,i.e. thesumof all edgelengths somedistancedbetweerterminals
hadto beconsiderablyncreasedOntheotherhandif we minimizethedistancebetweerall terminalswe
facea completenetwork with large costs.

We wantto investigatea measureonsideringhe staticnetwork sizeanda moredynamiccomponent
thatconsiderghe point-to-pointdistancesaswell asthe numberof messageséhiclesusingthisroute. In
the caseof a streetnetwork the staticcostsaccountfor constructionrandmaintenanceywhile the dynamic
costsdescribedy the sumof the mileageof all carsaccountfor the fuel costof all cars. In the caseof a
communicatiometwork we obsene thatthereis a x ed costfor the physicalnetwork, while highly used
connectionseedadditionalhardware,suchasmore parallelwires or additionalhardware,describingthis
dynamiccomponent.

In practicenetwork designersnodelthe demandn a network by a so-calledorigin-destinationmatrix

. For sites it describegshetrafc startingat with destination . We modelthe costof the
network for eachedgeby a linear function for , Where
denoteghe Euclideanlengthof the edgeand is the setof all pairs suchthatthe shortest
pathbetween and contains . By summingoverall edgesve de ne theWeightedCost-DistancéWCD)
of anetwork andaweighting

WCD (9.2

Thus,forapair  with largeweight (frequenttraf ¢) adetourbetween and implieshigher
coststhanbetweerpairswith smallerweight.

Thereis atrade-of betweencostandweighteddistance.lf we choose we facetheintensiely

studiedminimumnetworkproblem If we choose , the optimal solutionis a completenetwork for

sitesin generalpositionand positive weights. As we scalethe parameter from to , weseea

gradualtransformatiorfrom the Steinertreeto the completenetwork. We areinterestedn the structureof
theintermediatestates.

For simplicity we replacetheabove de nition by thefollowing. Sincewe only consider ,wecan
set if we simultaneouslynodify theweightingby — . Thisresultsin the

123
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following equivalentversionof the WeightedCost-Distance:

WCD (9.2)

where denoteghe costof an edgeand the lengthof the shortestpathfrom to in the
network . We usethis notationthroughoutthis chapter The correspondingptimizationproblemis
de ned asfollows.

De nition 12 Let denotethe minimumlengthof a pathof node to in graph

WeightedCost-DistanceNetwork problem(CDN): Givena setof sites in Euclideanspaceand
a weighting , hd a network that optimizesthe Cost-Distance
WCD (accodingto equation(9.2)).

WeightedCost-Distancdreeproblem(CDT): Given and , hd atree
that optimizeghe Cost-DistancéNVCD

In additionto the siteswe allow theuseof a non-terminahodeset,if notexplicitly statedotherwise.

9.1.1 PreviousWork

If theweightsaresetto zero,andnorestrictiongor thenon-terminalaregiventhe WeightedCost-Distance
problemreducedo theEuclideanSteinerTreeproblem It wasshavn to beNP-hardby Garey, Grahamand
Johnsor{GGJ74. However, in his groundbreakingpaperArora [Aro98] shaovedthatthis problemadmits
a polynomialtime approximatiorscheme.

In [KRY95] theBalancedSpanninglreeproblemwasintroduced.Here,thetaskis to nd atreewhich
optimizestheterm

for agivenroot underametric (notnecessarilfEuclidean).Non-terminalsitesarenot available.

The authorsprove the existenceof treeswherethe dilation of all nodes'distancedrom the root is
boundedby ary andthetreescostis atmost timesthe costof the minimumspanningree,where

——. Thisleadsto a constanpolynomialtime boundedapproximatioralgorithm.

The BalancedSpanningTreeproblemis a variantof the WeightedCost-DistancéNetwork problem,if

we allow generalmetricsand exclude non-terminalnodes. The weightingis limited to and
for . For this problemin [KRY95] it is shavn thata treeis always part of

the optimal solutionand approximatingnetworks canbe prunedto trees. Hence,herethe Cost-Distance
Network problemreducego the Cost-Distancdreeproblem.

Meyersonet al. [MMPOO] generalizethis problemby introducinga positive nodeweighting,and by
allowing two differentmetricsfor costanddistance:the lengthmetric andthe costmetric . The Cost-
Distancemeasures givenby

for aroot . They presenta polynomialtime boundedrandomizedalgorithmapproximatingthe problem
within a factorof . Furthermorethey show thatthe optimalsolutionis alwaysatree.

A -spanneiis a connectedartial graphof a givengraph suchthatfor all nodes the
correspondinghortestpathin the -spanneiis at most timeslongerthanin . Thereexist -spanners
in Euclideanspace the sizesof which are boundedinearly by the size of the minimum spanningtree
[ADM 95]. It turnsoutthatthesespanningnetworksalreadyallow usto stateconstanfactorapproxima-
tion algorithmsfor the WeightedCost-DistancéNetwork problem.

Theorem33([ADM 95]) In -dimensionaEuclideanspacefor any there existsa -spannemwith
size MST which canbecomputedn time
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Thisimmediatelyimpliesthat -spannersllow constanfactorapproximatiorfor the CDN-problem.

Corollary 7 For Euclideanspacethe WeightedCost-DistanceNetworkproblemcan be approximatedby
a constantactor within time .

For the two-dimensionaEuclideanspacewe canpin down the constantvery accuratelyby usingthe
resultof [LL89].

Lemma 48 [LL89] For , there existsa - -spannerof the completegraph, the sizeof
which is at most timesthe costsof the minimalspanningtree

Optimizingthe choiceof leadsto thefollowing result:

Theorem 34 For the two-dimensionaEuclideanspacethere exists a polynomialtime approximationof
theWeightedCost-DistancéNetworkproblemwith non-terminainodesby a factor of =

For thecompleteproofwe referto [Web01.

Usingtheresultsin [Bar98 and[CCG 98] onecantransferthe -spanneresultof [ADM 95] to arbi-
trary metrics.Howeverthe costis increasedy a logarithmicterm. Such -spannergive anapproximatve
solutionfor CDN:

Corollary 8 For metric costsanddistanceghe WeightedCost-DistancéNetworkproblemcanbe approx-
imatedin polynomialtimewithin a factor of

9.1.2 The Optimal Network isnota Tree

For the minimum network problemit is known that introducingnon-terminalnodeshelpsto reducethe
network costs(i.e. size)by a constanfactor Theoptimalchoiceof suchnodesareSteinerpoints.

Many propertiesareknown for theseSteinemetworks. First of all minimum networks aretrees.Fur-
ther, in the planeSteinerpointshave degreethreeandthe angleof neighborededgess . Thenumber
of thesenon-terminalpointsis boundedoy

A completeanalysisof evensmallgraphsshows thatnon-terminakitesalsoallow animprovementof
a constantfactorfor the CDN-problem. Neverthelessthe anglesbetweenthe adjacentedgesmay differ
from

In contrasto the Cost-Distancé&roblemsnvestigatedofar, it turnsoutthattheoptimalsolutionis not
atree. We will provein section9.3thata treecandiffer by at leasta factorof from the optimal
network. Evenmoresurprisingly non-terminalquasi-Steinepoints)may beinvolvedin cyclesandthere
may be cyclesconnectingonly quasi-Steinepoints.

Another interestingobsenation is that the optimal network may include crossingedgeswherethe
placemenbf a quasi-Steinepoint ontothe crossingpoint doesnot improve the solution. This remindsof
theopenproblem[Epp0(J whetheroptimaldilation treescontaincrossings.

Examplesfor crossingsand quasi-Steinepointscanbe seenin Figures9.1,9.2and9.3. A detailed
discussiorof theseexamplescan be found in [Web01. In the following sectionwe will prove thatthe
optimal Cost-Distancenetwork canbe approximatedy a treewithin a factorof . Furthermore,
thereis a polynomialtime boundedalgorithmcomputingsucha tree,giventhe weightingandthe sitesin
Euclidean -dimensionakpace.In section9.3 we prove the optimality of this approximatiorfactor We

nally concludetheseresultsandpresensomeopenproblemsfor furtherresearch.

9.2 A Tree-Approximation by a Factor

Note thatfor -dimensionaEuclideanspacethe quality of the minimum networks differs from the min-
imum spanningtree only by a constantfactor For the Cost-Distanceproblemthe situationis similar.
Thereforewe will notuseary non-terminalsn thefollowing construction.
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Figure 9.1: The optimal Figure9.2: The optimal WCD- Figure9.3: An instancewhere
WCD-network  contains a network containsacycle. acrossings partof the optimal
guasi-Steinepoint. solution.

We usethe notion of a split tree [ADM 95]. A split treeis a tree stemmingfrom a hierarchical
decompositiorof apointsetinto -dimensionatectangle®f boundedaspectatio, sayin therange -

We startwith the smallestpossiblerectangle, , includingthepointset . Let betherootof
thesplittree. Thisrectangle is splitinto two smallerrectangles and . Let bethe subsebf
nodesin rectangle . Thesplit treeof is the split treefor the nodes , andsimilarly for  and

. Thesesub-treesreconnectedo theroot |, seeFigure9.4.
We will constructa fair split tree (FST) where eachsub-treewith nodeset  hasa diameterof
, Where . Let be the length of the longestedgeof a rect-
angle . We will usethe following recursve constructiongiven a rectangle , aroot anda
weighting suchthatfor some

1. If ——, thenwe chooseanarbitrarynode andconnectll nodes to .

2. Otherwise we partitiontherectangle by ahyperplaneorthogonalto anedge with length
Thedistancebetweenthe hyperplaneandthe endsof thelongestedgeis at least- . Theexact
positiondepend®nthe weightingandwill be describedn the proof of Theoren35.

Theresultingtwo axis-parallebdjacentectanglegpartitioning arecalled and

(@ If isin let andtake anarbitrarynode andvice versaif
Inserttheedge

(b) Recursiely, proceedwith and

Notethat andobsenethatafter roundsthelengthof thelongestedgeis reducedoy at
mostafactorof -. Sothereareonly roundsuntil thesizeof therectangless boundecoy ——.

Figure9.4: A split treeresultingform a hierarchicarectangledecomposition.
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The lengthof every pathin the resultingtreeis boundedby : startingfrom the nodeof the path

closesto theroot, following the pathdownwardsin bothdirections thelengthsof theedges and
areupperboundedoy -

Lemma 49 Fair split treeshavediameter andweight MST

Proof: We applythe Lemmaof [Epp0Q DHN93] usingtheisolationproperty If we addnon-intersecting
cylindersto all edgeswith radius ~ anddistance  totheendpoints,thenthecostof thecorresponding
network is linearly boundedby the costof the MST. (Theisolationpropertyalsoholdsif the cylinder is
replacedby othergeometricobjects).Note thatfor the edgesof eachrecursionstep,we canattachsucha
cylinder to anedgesuchthatthe cylinderis completelyin the correspondingectangle.Sincethereareat
most recursionstepsthisimpliestheclaim.

We have not presentedvherewe placethe split. The following Lemmahelpsus to make a good
selection.

Lemma50 Givenrectangle and a weighting . Thee exists partition of  into
rectangles and withnodesets , sudthat
whele
Proof: De ne —— adjacentparallel rectangles  of thickness —, where
. Theserectangledave distanceof atleast to theleft andright endof thelongest
edgeof . Wewill partitionbetweerapair and
Next considera pair of nodes  with and . Then,we have

Measure whichis theweightof all connectiongrossingheright borderbetween and

Let denotetheindex of therectangle  with . Notethat

Hence for atleastoneof therectangles we have — —

Of coursethis split canbefoundin polynomialtimeif the numberof partitionsis nottoo high. If we
use rectanglesthenarandompartitionful lls this propertywith probabilityof atleast-. However, the
numberof sites is a lower boundof the numberof differentvalues . Usingthis obsenationonecan
nd analgorithmthatalwaysdeterminesuchasplitin polynomialtime,evenif s arbitrarily small.

Theorem 35 Givena setof sites in -dimensionalEuclideanspaceand a non-n@ative weighting

sud that the sumof all weightsis polynomialin ; there existsa treewith a weighteddistance
which differs fromthe optimal WeightedCost-Distancéoy at mosta factor of . Suh atreehas
size andcanbecomputedn polynomialtime

Proof: We constructa fair split treeusingthe partition introducedin Lemma50. We considerthe node
pair sets , ,and
It holds:
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where is alower boundfor the weighteddistanceof the optimal network. For
thedisjointpairsets and we applythistechniquerecursvely for atmost rounds.As we
have alreadyobsened,thelengthof thelongestedgeof the sub-rectangles at most ——. Thenwe
facepartitions with partialweightsums ( ). Thesum
of all weights is boundedoy a polynomial . Therefore, .

Thecorrespondingormalizedveighteddistances
is thelengthof thelongestedgeof the partition 'srectangle Notethat

areboundedy ,which

MST

for asuitableconstant . Thisandtherecurreny over roundsimply

MST

WCD

for asuitableconstant and  andeverynetwork

9.3 A Lower Bound for Tree-Approximations

Treescannotapproximatethe optimal WeightedCost-Distanceyraphbetterthan statedin Theorem9.2.
To shaw this, we constructa counterexamplewherethe sitesare uniformly distributedandthe weighting
supportonly neighboredites.

In particular we consideran unitsquareggrid  andthefollowing weightingfunction:

Clearly, theweightedCost-Distancef thegrid consistingof all positive weightededgeds andsince
theminimumspanningreehasatleastcost , thisnetwork is optimalup to a constanfactor We will
shaw thatevery spanningree hasweighteddistance evenif weallow tousenon-terminal
nodes.

Let bethesetof nodeswith distance to the corvex hull of thegrid,i.e. s thecorvex hull
and is thecorvex hull of

Lemma51 For every spanningtree  of the grid and for all there exist two grid neighbos
sudh thatthe connectingoathin  hasat leastlength—.

Proof: Assumethe contraryandconsidertheupperrow of . Notethatneighborechodes(in the grid)
areconnectedy a pathwhich is too shortto reachthe otherhalf of the grid. Therefore,n the upperrow
the leftmostandthe rightmostnodemustbe connectedy a path,which lies completelyin the upperhalf
of therectangle.

For symmetryreasonsheanalogoupropertyis truefor thetheleft column,thelower row, andtheright
column.Thereforethereexistsa cycle enclosingthe centerof thegrid, contradictinghetreeproperty

De nition 13 (spanningcut) A spanningcutsplitsatree by a straightline into trees
and . Thesesub-teesare entirely in theleft or right half-spacede ned
by . All nodesn (resp. ) areorthogonallyprojectedonto andwill beusedasnon-terminals in
(resp. in ). Alledgesintrees and arecopiedfromtheoriginal tree

So,we copy every treeinto both half spaceswithout increasingany edgelength,for an examplesee
Figure9.5.
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Figure9.5: A spanningcutandtheresultingsub-treen thelower half-space

Figure9.6: Thewhite marked p-shapedreainducedong pathsfor a numberof neighboredpairs. For the
lower boundthe grid is tiled into 16 sub-grids

Lemma52 For aspanningcutof into  and  wehavefor all and

and
Theorem 36 For everyspanningtree of the -grid, where if and areneighboed
nodesand elsavher, the weightedCost-Distancas at least , While the optimal

Cost-Distancanetworkhascostandweighteddistance

Proof: We will split this grid into 16 sub-gridsof size — - by 15 spanningcuts (Figure 9.6). By
Lemmab2 the sumof the weighteddistance®f the sub-gridsis a lower boundfor the over-all grid (We
alsosplit theweightinginto 16 local weightingfunctions).

Lemmabl impliesthatin every subset thereare paths betweenneighboringnodes
with lengthof atleast . Furthermorewe canchoosehesepathssuchthatthe spanningcut reduceshe
lengthsof all of themby atleast—, sincethey reachthe othersideof thegrid.

This way, we can accountthe length — of these— pathsfor this recursionlevel. This leadsto the
following recurreng for theweighteddistance of spanningreesof an -grid:

W — W

Resolvingthis recurreng provestheclaim.
Applying thealgorithmof Section9.2to thisinstanceproducedreesstructuredsimilar to the U-Layout
shawvn in Figure 9.7. Suchtreesoptimize the weightedCost-Distanceof an grid by a factor of
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Figure9.7: The U-Layoutapproximateshe Cost-Distancef this instanceby afactorof

9.4 Conclusionsand Future Reseach
As animmediateimplicationof Theorem35 we canstatethefollowing approximatiorresult:

Corollary 9 For polynomialweightsthe WeightedCost-Distance-fiee problemcan be polynomiallyap-
proximatedwithin a factor of

Thereis somehopethat the approximationtechniquesntroducedby Arora [Aro98] may leadto a
polynomialtime approximatiorscheme Anotherfollow-upresultmaybetheextensionto generametrics.
We conjectureghattheresultsof [Bar9g leadto an approximation.

An interestingopenquestionis: If , the sumof all weights,is supefpolynomial, doesthe upper
boundof Section35 also apply? Or canthe lower boundfactor be increasedor suchweights? This
mirrorsthe casein the original setting(Equation(9.1)) thatthe x ed costsare sub-polynomiaktompared
to thelinearcosts.

Anotherextensionof theseresultsmay be to considerdifferentmetricsfor costand distanceasin-
troducedn [MMPOQ]. They proveda -approximatiorfor the two-metricsCost-Distanc@roblem
with weightsonly ontheroot-nodepairs. We have shavn thatfor pairwiseweighttreesdo notapproximate
betterthan , While for node-rootweightsMeyersonet al. [MMP0O] shavedthata treeis always
part of the optimal solution. It is an interestingopenquestionwhethertreesapproximatethis Weighted
Cost-Distancegroblemwith differentmetricswithin afactorof



Chapter 10

Energy, Congestionand Dilation in
Wir elessNetworks

10.1 Intr oduction

In this chaptemwe contribute to modelingwirelesscommunicatiometworks, to modelingcongestionen-
ergy consumptioranddelayfor routingin suchnetworks, andto designingrouting pathsin orderto min-
imize thesecostmeasuresOnemajorinsightis the factthattrade-ofs are unavoidable: Minimizing one
measuraés only possibleatthe costof enlaging anotherone.

Wirelessad hocnetworks consistof nodesthatcancommunicatevia short-rangevirelessconnections.
Eachnodecanbe a source,a destinationand a routerfor datapaclets,thusno explicit infrastructureis
requiredto setup and maintainan ad hoc radio network. The areaof applicationfor radio networks is
broad,especiallyin nichessuchassearchandrescuemissionsor ervironmentalmonitoring. But ad hoc
networks canalso be usedasa last-miletechnologyto provide accesgo the Internetin high-populated
ervironments.

In wirelessadhocnetworks,enegy-intensvelong-rangeconnectionshouldbe avoided,andthe over-
all distancebetweentwo communicatingnodesrespectrely hop countshouldbe minimizedto achieve
low latencies.To usetheavailablenetwork capacityef ciently andto achieve high bandwidthscongested
connectionshouldalsobe avoidedby balancingthetraf c overall reasonableonnections.

Theserequirementganbe expressedisingthreemeasurablguantities: congestiongnegy andhop
count. Traditional routing protocolssuchas AODV, DSDV and DSR [Per0] usually choosethe path
with the lowesthop count. Therealsoexist power-aware routing protocolsusingdifferentmetrics(e.g.,
enegy consumeder packet, variancein nodepower level) to choosethe bestroutein orderto extend
thelifetime of individual nodesor the whole network [SR98,SW98,CT0(. The congestiorof arouteis
usuallynot regardeddirectly, but somerouting protocolschooserouteswith the shortestroute discovery,
assuminghatthe routewith the quickestresponsés lesscongestede.g.,SSA[DRWT97]). However, to
our knowledge,no practicalwork or theoreticalstudiesexist that considerthe interdependencidsetween
thesethreequantities.

In radio networks it is not clearhow to choosenodesas communicationpartnersbecausdinks can
interferewith eachother Our maingoalin this chapteiis to determinethe optimal choiceof this network
givena setof nodes (Randomchoicesof nodesetshave beeninvestigatedn [AS98a GKO(Q]).
Hence we disrggardthemobileanddynamiccomponent®f adhoc-networkinganddetermingheoptimal
staticwirelessnetwork. We presentigeneramodelfor congestionenegy anddilationfor agivensolution
of the routing problemof the radio networks. (cf paclet radio network modelor morerealisticwireless
network models for instanceasin [AS983 UY98, GK0O, ABBS01,KKKP00, CNP01). Besidegheload
the congestioralsomeasuresheinterferencedetweeredges.

In Section10.2 we startour considerationsvith the pathsof all paclets solving a routing problem
in a radio network. The union of all thesepaths,called path system,gives a naturalde nition of the
communicatiometwork. Thesepathsinducea loadin the communicatiorinks which caninterferewith

131
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eachother Combiningthe load andthe interferencesve achieve an intuitive modelfor the congestion
of an edgeof the communicatiometwork. Our de nition is very similar to thosein [AS984, although
they useaslightly differentapproachLikewisein [AS984 we relatethe congestiorandthe dilation, also
known ashop-distanceto the routingtime of the routing problem. Then,we de ne measure$or enegy
consumptionyhichis importantfor autonomousodesthathaveto "carry theirenegy”.

The main contributionsconcernpath selectionin wirelessnetworks: Given a setof routing requests,
nd routingpathsothatthe congestiondelay and/orenegy consumptioris minimized.We introducethe
notionof diversityto describdocationsof nodesetswherehigh interferencegareunasoidable.lt turnsout
thatif thediversityis small,i.e., all pointto point distancediffer only by a polynomialfactor thenthe
interferencesf communicatiometworkscanbekeptsmall. Thisis key factorfor thecongestioravoidance
analysisn this chapter

In section10.3we presenstratgiesfor this pathselectionwhich provably optimizeenegy consump-
tion andgive a -factorapproximationof congestion.In section10.4 asa maininsight, we can
concludethatnotany two of thesemeasuresanbe minimizedsimultaneouslybut thattrade-ofs between
measureareuna/oidable.Finally, section10.5concludeghis chapter

10.2 Modeling WirelessNetworks

We considera set of radio stations,featuringboth transmitterand recevers, called sitesor
nodesjn 2-dimensionaEuclidearnspace Let denotethegeometricdiameterof

As in the modelof [MBmHO01] eachnode canadjustits transmissiorradiusto some
for sendinga pacletto a neighbor in range . Then,the communicatiometwork has
the edge , Where . Note that for adjustingthe transmissiorpower nodesexchanging
pacletsmustinteractduring the transmissionJustimaginethatoneof the nodesis moving andtherefore
the distancebetweenthesenodescontinuouslychanges. In our model we simplify this interactionby
assuminghat the sendingand acknavledging part of this interactionmay interferewith ary othersuch
bi-directionalconnectionf thedistancds too small.

In particular this means:To acknavledgethis paclet the receving site adjustsits transmissiorradius
to the sameradius asthe sendingradius. The transmissiomeedsa unit time stepandthe areacovered

by sendingandacknavledginga paclet along is , Where
denotesadiskwith center andradius . Of courseedgenly interferewhentheroutingprotocoltriesto
senda pacletat the sametime andif contains or (cp.Figure10.1.We keepthetiming aspecbf
interferencesn mind andexpandthe notion of interferenceso edges:Edge interfereswith edge
if or isinthearea

We de ne the setof interfering edgesby Int interfereswith . Note that
sendinga pacletalong is successfubnly if noedgefromInt  sendsconcurrently Theseinterferences
of network  describethe directedinterferencegraph . Its nodesetareall edgesof  andits
edgesdescribeall interferencesi.e., Int iff Int . Theinterferencegraphcanbe

interpretedas an additional constraintfor routing. An edgeof the radio network canonly be usedfor
sendinga pacletin atime unit if all interferingedgesemainsilent. The numberof this interferingedges
is given by the in-degreeof an edgein the interferencegraphandis calledthe interfeencenumberof a
communicatiorink. The maximuminterferencenumberof a site is the maximuminterferencenumber
of all edgeswith receving site . The interferencenumberof the network is the maximuminterference
numberof all edges.

Now considerarouting problem , Where pacletshaveto besentfrom to .
We subdiide thedesignof aroutingstratgy for  into thefollowing steps:

Path selection Selecta system of paths  from sourceto destinationfor the paclets in the
graphon . Theunionof alledges of thepathsystemgivesthelinks of communicatiometwork

Collision avoidance As notedabove sendinga paclket alongedge is only successfulf no
Int  sendsatthesametime.
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Thereforethefollowing holds: Considerany routingstrateyy thatroutes in stepsusingthepathsystem
. Let denotethetime stepsn which  sendssuccessfullyThenclearly

Int

As is just theload of , i.e.,thenumberof packetswhosepathgoesthrough , the above
guantityis nt . We denotethis quantity (which is uniquelyde ned by the pathsystem
) ascongestiorof theedge . Thecongestionof the path system is de ned by

Wewill denoteby thedilation thelengthof alongestpathin , alsoknown asthehop-distance.
By de nition the optimalroutingtime  using ful lls , but alsocongestiorgivesa lower
boundonthetime

Theorem 37 Considera radio network  with path system , maximuminterferencenumber , anda
routing problem  with dilation  andcongestion . Let beits optimal routing time whenthe path
system is used.Thefollowing holds.

1.

2. It existsan of ine routing protocolwith routingtime , with high probability.

3. Theris anonlinerouting protocolthat needsoutingtime , w.h.p.
Proof: 1. Let be anedgewith maximumcongestion . We partitionthe planeinto 6 regions

with centerat by six half-linesstartingat wherethe anglebetweemeighborechalf-lines

is . Similary we considerthe analogougartitioning with asthe startingpoint of the 6
half-lines.

De ne

Int
Notethatby a straight-forvard geometricargumentfor two edge it holdseither Int
or Int . Therefore,all transmission®ver edgesin have to be donesequentially Let
. Then, . Hence,

Theupperboundsof 2. and3. canbeprovedusingthe sameargumentsasshovn in Theorem2.12and
Theorem2.130f [AS984. Notethatin [AS984 the notiondilation differsfrom our approach.

The variablechoiceof the transmitterpower allows to reducethe enegy consumptionsaving on the
tight resource®f batteriesn portableradio stationsandreducinginterferencesTheoreticallythe enegy
neededo sendoveradistanceof is givenby . It turnsoutthatin practiceonecanmodeltheenegy
by oreven . Throughouthis chaptemve modelenepgy costsby . However, mostresults
in this chaptercanbe easilytransferredor higherexponents.

We distinguishtwo enegy models. In the rst model, called unit energy model, we assumehat
maintaininga communicationlink  is proportionalto , Where denotesits Euclidean
length. Thereforethe unit enegy U-Eneigy usedby radionetwork  is givenby

U-Enegy
The o w energy modelre ects the enegy actuallyconsumedy transmittingall paclets.Here,the power
consumptiorof acommunicatiorink is weightedby theactualload onanedge :

F-Enegy
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Q radio station
— edge
—r interference

Figure10.1: Radiostationsedgesandinducedinterferences

Figure10.2: For anedge of aGabriel-grapmonodemaybein insideits disk

In this chapterwe focuson the question: Given somesites,which path selectionis bestpossibleto
obtain small congestionJow enegy consumptiorand small dilation? Clearly, the optimal network for
hop-distancés thecompletegraph.Hence we investigateonly enegy andcongestion.

10.3 Minimizing Energy and Congestion
10.3.1 Energy

The unit enepgy of a pathsystemfor a radio network is de ned asthe enegy consumptiomecessaryo
deliver onepaclet on eachcommunicatiodink. It turnsoutthatthe minimal spanningreeoptimizesunit
enegy. Notethatthe hardnessesultsshavn in [KKKP0O, CPS0(Q do notapply becausén our modelthe
transmissiomadii areadjustedor eachpaclet.

Theorem 38 Theminimalspanningreeis an optimal pathsystenfor a radio networkwith respecto the
unit enegy.

Proof: Considerthe graphde ned by all edges with edgeweight . Theminimum
enegy network canbe constructedisingPrim's or Kruskal's algorithmfor minimumspanningree. Note
that the decisionsin this algorithm are basedon comparisorof the lengthof someedges and , i.e.,
. Thus,the minimal network for enegy is alsothe minimum spanningtreefor Euclidean
distances.
For the o w enegy model,the minimal network is not necessarilya tree. However, onecancompute
theminimal o w enegy network in polynomialtime.

Theorem 39 For a givennodeset a sub-giaph of the Gabriel Graph[GS69 JT97 is an optimal path
systenfor a radio networkwith respecto the ow enegy.

Proof: If in theinterior of thecircle de ned by the diameter thereexistsanode , thentheedges
needlessenepgy thanthe original edge. This follows by the Theoremof Thales(otherwise
enegy is not optimal because . Therefore,onecanaddanedge

into the communicatiometwork iff thereareno sitesin the interior of this circle, seeFigure 10.2. This
matcheghede nition of a Gabrielgraphof

Fortwo nodes and thesub-graphproviding the lowestenegy for routinginformationfrom to
is givenby theshortespathin the Gabrielgraphif thelengthof anedgeis rede nedby .Theow
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S

Figure10.3: Thehighdiversityof thenodesetincreasesheinterferencenumberresultingin high conges-
tion

enegy of theoptimalnetwork consistof alinearcombinatiorof thesdowest-enegy-pathsbetweerpairs.
Usinganall-pair-shortest-patlalgorithmgivesthe optimal network.

Note, that there are situationswhere edgesof the Gabriel-graphcan be replacedby less enegy-
consumingpaths,evenif no site lies insidethe disk describedy the edge. Then,the edgeof the Gabriel
graphis not partof ary enegy optimalroute.

10.3.2 Diversity of a Node Set

Sometimeghe locationof theradio stationsdoesnot allow small congestedoutesfor the radio networks

atall. Considera nodeset onaline, with distances . Theedge

interfereswith all edges for , seeFigure 10.3. Therefore the interferencenumberof the
network is . Supposenly and wantto communicatethenthebettersolutionfor congestions
to disconnectll interior pointsandto realizeonly theedge . Of coursethisis notanoptionwhen

interior nodesneedto communicate.

It turnsout that a determiningparameteffor the realizationof optimal communicatiometworks for
radionetworks,is thenumberof magnitude®f distancesDistanceshave differentmagnitudef they differ
morethanafactorof 2.

De nition 14 Thediversity of apointset in Euclideanspaceis de ned by

Notethatin theabove scenariove obsene the maximumdiversityof  (anda high interferencenumber).
For pointsets ontheline with smalldiversitytheinterferencenumberis small,too. It is easyto seethat
theinterferencenumberfor anodeset ontheline is atmost

Lemma 53 Thediversityof pointsin s atleast andat most . For apointsetrandomly
distributedin a squae of  thediversity is with high probability (i.e., for any xed
constant ). Furthermoe,

Proof:

For apointset .
We considerthe following sequentiaprocessstartingwith . We

startwith anon-marlednodeset andwe sequentiallyisit everynon-marlednode
. Now we markeverynode  with and .

After having visited all non-marked nodeswe end up with a non-marked nodeset , wherefor
all we have . Since , a straight-forvard
geometricagumentshows that eachnodemay causeonly 18 othernodesto be marked. Therfore,
we have — . Thisleadsdirectly to theclaim.
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for with
Let denotethe nodessortedfrom left to right. De ne
where is auniformrandomvariable(the samefor all ) of theintenal . Notethat and
. We will provethat
E (10.1)
Let and . Now for all with
we have inducingthreeelementsnto the differenceset
For all with we have analogously . But
since , theprobabilitythat actuallyoccursin  butnotin
canbe boundedby . Notethat andthat is addedto  with probability
. Thereforethe expectedhumberof elementdargerthan addednto  isatmostl.
Notethat andthereforeinequality10.limpliesthat
E
Hence thereexistsa choice with

Now thedifferentroundingpointsby introducingafactor mayatmostdoublethediversity, which
implies

for and

The -dimensionaktasecanbereducedo the -dimensionaktase.Now let bethe
orthogonabprojectionontotheaxes. Thenwe have

Now impliesthat . Of course
thisargumentcanbegeneralizedo  for aconstant .

Thelastinequalityfollows directly from the de nition. It implieslogarithmicdiversity for random

point setssincethe probability to choosea nodewithin a -neighborhoof anothercanbe
boundby . Hencefor all nodesthe probabilitythat canbeboundecby
atmost

Therearemary reasonsvhy in the realworld the diversity canalwaysbe estimatedoy , e.0.

the accurag of determininglocations;andthe ratio betweenthe physicalsize of a radio stationandits
transmittingrange.

10.3.3 Congestion

To approximatecongestion-optimatommunicatiometworksfor radionetworkswe will usethe -spanner
with boundedieggreeintroducedn [AS94]. A -spanneis agraphsuchthatfor eachpair thereexists
apathof atmostlength . Notethat -spanner@area commonchoicefor the communicatiorinks
in radionetworks,e.g.see[GGH 01].

ThealgorithmAS-spanner shavn in Figure10.4constructsucha spannefor apointset in

. Thealgorithmconsidersall orderedpairs of sitesin increasingorderof their distancesTheedge

is addedto the graphiff thereis no edge in the currentgraphsuchthat and have

roughlythesamedirectionandthepoints and arecloseto eachother, or thepoints and arecloseto
eachother



10.3. MINIMIZING ENERGYAND CONGESTION 137

Algorithm AS-spanner
* ot - *)
begin
list of all pairsof  sortedaccordingto their distances
for all orderedpairs do
add true
for eachedge do
if angle then
add add
if angle then
add add
od
if add truethen
od
return
end

Figure10.4: Thealgorithmof Arya andSmid[AS94] for the constructiorof a -spanner

Theorem40 [AS94 Thegraphconstructedy algorithmAS-spanneis a -spannemwith boundeddegree
— for .

Sucha -spannecause®nly asmallnumberof interference#f thenodeset hasasmalldiversity.

Lemma54 For anodeset with diversity theinterferencenumberof the -spannerconstructedy
algorithmAS-spanners boundedby

Proof: We choose - for . Hencethe stretch-actoris givenby

We de ne suchthat . We
consideran edge of length . We try to insertasmary edgesinterfering as
possible.Theirnumberis boundedby = — sincetheconstructedpannehasboundediegree  andfor
every edgeto a neighborechodewe canconstructat most  — paralleledgesnterferingwith
becausef the restrictionthatthe distancebetweerthe edgesmustbe at least (see gure 10.5). We
have andthereforethe numberof interferencess boundecby = —— . Usingthat and
areconstantthis completeghe proof.

A typical featureof radio communicationis that transmittinginformation blocks a region for other
transmission.We formalize this obsenation and de ne the capacityof a region following a similar ap-
proachpresentedn [GKOQ]. Let denotethe areaof a geometriaegion

De nition 15 Thecapacity of ageometricregion is de nedasfollows:

1. If ineverypointof thesamesetofedges interfere, then whele
denotegsheareaof . Sudaregionis calledelementary

2. Otherwisepartition into elementaryegions andde ne

Thisde nition impliesthefollowing relationshipbetweercapacity areaandcongestion.

Lemmab5 Let bearegionand the congestionsof a path system . Then,the capacityof is
boundedby
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1/w

Figure10.6: Theedge interfereswith otheredges

Figure10.5: Foranedge toaneighborediode (at least)within the centraldisk. Its informationis
thereexistatmost — paralleledgesnterfering ~ reroutedon , lying completelywithin the outerdisk

with with radius-

Every edge with load hasa certainimpacton the capacityof the areacoveredby the radio-
network.
Lemma56 Anedge withload occupieghe capacity for a constant

Theprooffollows from thede nition of theinterferencearea.

Lemma57 Let  bethecongestionof the congestion-optimapathsystem  for a nodeset . Then,
every -spanner canhosta pathsystem sud thattheinducedload in is boundedy
for a positiveconstant .

Proof: Givena path of the pathsystem , we replaceevery edge that doesnot exist
in the -spanner with the shortestpath from to in  (which by de nition haslengthof at most

). Therefore the new route lies completelyinside a disk of radius - and
center-

Forthepathsystem theremayhave beeninterferencedetween andotheredgesFor simplicity we
underestimatéheareawhere caninterfereothercommunicatiorby thedisk with center-
andradius- (seeFigure10.6).

We wantto describeheimpactof reroutingall edgesn to a speci c edge in the
-spanner . If thisedge transmitsthetraf c of a detourof anedge

, thenthedistancebetweerthe centralpoints - of and - is bounded
by - .

Now considerthe edgeset of edges with length for which
reroutetheirtrafc to . Their centerpointsarelocatedinsidea disk with radius  andcenter . The
interferenceareaof every edge is describedby . It occupiesan areaof at least , Which lies
completelyinsideadisk  with radius andcenter . Theareaof is .

Lemma56 shaws that every edge reducesthe capacityin by at least . Becauseof
Lemmab5, the over-all capacityof is at most . Therefore,we have for
the sumof the loads for that By de nition thereare
at most non-emptysets . This implies for the sum of loads of the set :

, where .

Combiningthelasttwo lemmaswe canshow thatthe -spannemapproximateshe optimal network by
afactorof . Sincein practicethe diversity canbe seenasa logarithmicterm, sucha -spanner
providesa -approximatiorfor the congestion.

Theorem41 The -spanneiof[AS94 containsa pathsystem with congestion , Whee
denoteghe congestionoptimal path systenfor thenodeset



10.4. TRADE-OFFS 139

Proof: FromLemmab57 it followsthatthereexistsaroutingona -spannesuchthattheloadof anedge
is boundedby . Lemmab4 shaws thatthe interferencenumberof the network is
boundedy . Thisimplies

10.4 Trade-Offs

As we have seenthereareef cient waysfor selectingpathsto optimize enegy andto approximatecon-
gestion.Onemightwonderwhetheranalgorithmcancomputea pathsystentfor aradionetwork suchthat
enegy, congestioranddilation canbe optimizedat the sametime. It turnsoutthatthisis notthecase.

10.4.1 CongestionversusDilation

Foranodeset placedonthecrossingofa ~-grid the bestchoiceto minimize congestioris
to connectgrid pointsonly to their neighborsgiven the demand for all nodes(Figure
10.7). Thenthe congestioris " andthedilationis givenby ~ . In [GKOOQ] it is shavn that
sucha congestioris bestpossiblein aradionetwork. A fastrealizationis givenby atreefeaturinga hop-
distanceof andcongestion (Suchatree-constructioffior the Cost-distancgroblem
is presentedn [SWO01]). In both casesve obsene . Thisis alsotruefor ary
otherpathselection:

Theorem42 Giventhe grid nodeset , thenfor every path system the following trade-of between
delay andcongestion exists:

Proof: For partitionthegrid into three rectangleshapedhodesets , suchthat
containsall left nodes, all right nodesand thenodesn themiddle.

We consideronly an -th of the demandstartingat  headingfor nodesin . Let be the
delayof thenetworkand  denotetheroutefromnode tonode . Let denotethe
information o w on path

Considerntwo nodes and . Thenthepath  hasatmost edges.Theinduced
capacity of the path is at least This termis minimized
if the pathusesthe maximumpossiblenumber of edgeswith equallengthof at least
Thenwe have _—

The sumof the capacityover all pathscannotextendthe capacityof the -squarecontaining
all possibleinterferenceareas. This gives . Combiningthe inequalities

stategheclaim: —

10.4.2 Dilation versusEnergy

The simplestlocationof sitesis theline nodeset  asinvestigatedn [KKKPQO], seeFigure10.8. Here
all nodes areplacedon aline with equaldistances —. Only the rst and
thelastnodewantto exchangemessages,e., and for all otherpairs
The enegy-optimalnetwork for unit and o w enepy is the path , giventhe unit enegy
U-Enegy —, the ow enegy F-Enegy —— andthedelay .

The fastednetwork realizesonly the edge with hop-distance andunitenegy (and ow
enegy ). Thereare pathsystemghat cangive a compromisebetweerntheseextremes. However, it
turnsoutthatthe productof delayandenegy cannotbedecreased:

Theorem43 Giventhenodeset  with diameter , thenfor everypathsystem thefollowing trade-ofs
betweerdelay andunitenegy U-Enegy (resp. ow enegy F-Enegy) exist:

U-Enegy
F-Enemgy
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Proof: Let bethenumberof edgesof the longestpathof the radio network (wlog. we assumehat
thereareonly edgeswith non-zeroinformation o w ). For theunit enegy modelwe canassume
thatthereisonly apath from to (becauséntroducingmoreedgeseedsadditionalenegy without
decreasinghe delay). We have to minimize U-Enegy de ned by the edgelengths
, Where . Clearly, the sumis minimal for — giving
U-Enegy
Theboundfor the o w enegy follows analogously

10.4.3 The Incompatibility of Congestionand Energy

We will shawv thatfor somenodesetscongestiorandenegy areincompatible.This is worsethanatrade-
off-situationsincethereis no compromisegpossiblefor enegy andcongestion.

The nodeset for - consistsof two vertical parallelline graphs . Neighboredand
opposingnodeshave distance—. Thereis only demand betweerthe horizontalpairsof opposing
nodesof theline graphs.Therestof the nodesareequidistantlyplacedbetweerthenodesof each
line graphandthelowesthorizontalpair of nodes seeFigure10.9.

Theminimumspanningreeconsistof nodeswhereall edgeshave length . Thisresultsin
atotal unit enegy of U-EnegQyyst andcongestion st . Theow

enepy of the (same)minimal network is givenby F-Enegy,,st .
The congestioroptimal pathsystem  connectonly nodeswith non-zerodemand.lts congestioris

andits unitenegy is U-Enegy . The ow enegy is given
by F-Enegy
Lemma 58 For - andthenodeset with diameter let be the numberof
edgesoflength of a pathsystenfor theradio networkandlet betheinformation ow on

theseedges. Then,we havefor thecongestion , unitenegyand ow enegy:

U-Enelgy — _ — (10.2)
— (10.3)
F-Enemgy — - — = (10.4)
— (10.5)

Proof: Theminimumunit enegy network is givenby the MST which is a U-shapedath. Note thatno
shortcutwithin the left andright vertical barsof this pathcanreduceenegy or congestionTherefore the
only reasonablehoicefor anedgeis to connectsome( ) of the horizontalnodeg(andpossiblyto discon-
nectarouteto averticalneighbors) Adding thehorizontalchanneimpliesadditionalenegy consumption
of —. For horizontalroutes(including the original low enegy route)the bestchoiceis to fairly
distributethetraf c.

Forthe o w enegy thearguments analogous.

Theorem44 Thele existsanodeset with a pathsystenminimizingcongestionto  , andanotherpath
systemoptimizingunit enegy by U-Eneilgy and minimal ow enegy by F-Enelgy sud for any path
system onthisnodeset wehave

or U-Enegy U-Enegy
or F-Enegy F-Enemgy

Proof: followsby Lemma58usingthegraph .
Hence thereis no hopethatcommunicatiometworks canoptimizemorethanoneparameteatatime.
Thenetwork designethasto decidewhetherto go for smallcongestioror low enegy consumption.
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Figure10.7: Thegrid Figure10.8: Theline Figure10.9: Nodeset

10.5 Conclusionsand Further Work

The main differencebetweenwired networks and radio networks is that the choice of communication
links in wirelessnetworks in uencesthe quality of the edges. We modelthe type of in uences by the
interferencegraph, which gives a very generaldescriptionhow links caninterfere. If the sendingand
receving characteristic®f the radio stationsare known, this interferencegraphcanbe describedoy the
geometricpropertiedik e thelocationof sitesandtransmittempower.

However, the main differenceis still that choosinga certaincommunicationink for sometime de-
creasesheability of transmittinginformationin someotherpartsof theradionetwork. Sincethe analysis
of point-to-pointcommunicationor permutationnetworks)in wirelessnetworksis relatively young(see
[AS984), we startour investigationwith a staticsimpli ed model: The point-to-pointcommunicatiorand
the location of the sitesis x ed (unlike in mobile ad hoc networks). You canalso seethis modelasa
snhapshobf amoredynamicmodel(whereresearchasjust begun[ABBS01]).

We investigatethe questionof whatis the optimal choiceof communicatiorlinks to achieve the best
possiblenetwork. We measurehe quality by congestiongnegy anddelay Givena pathsystemfor the
pacletswe presentisoundde nition of congestionywhich takesinto accounthe actualinformation o w,
i.e.,load,overalink andtheinterferencesf otherlinks.

Therealreadyexists a probabilisticsolution for solving interferencesf the network parametersare
known [AS984. We shav how this algorithmcanbe appliedto our setting. Further we relatethe routing
to our notionof congestioranddilation, which is the maximumlengthof a path.

We prove thatfor our notion of enegy (dependingn the paclet o w) the optimal pathsystemcanbe
computedn polynomialtime. Furthermorewe provethata -spanneconstructiorfor thecommunication
networksallows pathsystemawith smallcongestionConcretelywe shov anapproximatiorof a factorof

of theminimal congestionwhere denoteghediversity of thenodeset. We introducethis
measurdo characterizenalformednodelocations.For practicalapplicationsve have ,e.g.
if thenodesetis random or if theratio of maximumandminimumdistanceof nodeds atmostpolynomial.
An overview of theseresultsis shavn in Table10.1.

However thereare situationswhereit is not possibleto optimizetwo of thesemeasuresit the same
time (seeTable10.2). We prove trade-of resultsfor congestiorversusdilation andenegy versusdilation.
For congestiorandenegy we shav thatevery pathsystemtrying to approximatehe congestiorwithin a
smallerfactorthan of the optimal congestionsuffers underanincreasectnegy consumptiorof
atleastafactorof , andvice versa.Hence enegy andcongestiorminimizationin radionetworks
areincompatibletasks.

Besideghe standardnodelof omni-directionacommunicatiorwe arecurrentlyinvestigatinga sector
modelwheresenderandrecever canfocussignals(e.g.infrared). Suchsectorcommunicatioris a special
caseof so-calledspaceamnultiplexing techniquedo increasahe network capacity(e.g. by usingdirectional
antennagkSVvo0]). All resultsshavn in this chaptercanbe easilytransferredo suchamodel.

Another possibility to decreasenterferencess to use multiple frequenciegas donein Bluetooth
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Congestion Dilation Unit Enegy Flow Enegy
Structure| AS-spanner| CompleteNetwork MST GabrielSub-Graph
Approx.-factor log optimal optimal optimal

Table10.1: Approximationresultsfor logarithmicdiversity

Delay Congestion
Congestion —
it E E or
Unit Enegy U UE UE
Flow E FE or
QW Enegy FE FE

Table10.2: Trade-Ofs andIincompatibilitieson network parameters

[Miy00] or IEEE 802.11[IEE97]). As long asnumber of frequencieds small (which is the casein
practice becausef governmentstregulationof the entirefrequeny spectraejhis mayimprove the con-
gestionby . However, usingfrequeng hoppingcannotcompletelyresohe the shavn the trade-of and
incompatibility problemsshawvn here.

This work is partof a projectwherea prototypecommunicatiorsystemis beingdevelopedbasedon
infrareddirectedcommunicationTheprototypewill beableto communicatén eightsectorsndependently
with adjustabldéransmissiorpowers. Furthermoreijt canbe usedasan extensionmodulefor the mobile
mini robotKhepera([MFG99, KTe0d). Thus,realisticscenariogor ad hoc networks canbereproduced
by performingexperimentswith thesemini robots. Thus,besidecomputersimulationspurcommunication
stratgyieswill alsobevalidatedundemracticalconditions.Suchanetworkis technicallymorecomplicated,
but our goalis to shaw thatit is possibleto setup ageometricspannegraphasa communicatiometwork.
Notably, this chaptershavs that suchgeometricspannersalways provide good solutionsfor congestion
minimizationin radionetworks.
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