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Chapter 1

Intr oduction

The modernworld relieson theavailability of hugecommunicationnetworksconnectingcomputersand
otherelectronicdevicesworldwide.Clearly, thereis anenormousnumberof problemsthatmustbesolved.
Theseproblemscanbemanifoldandverycomplex. We will makea theoreticalapproachof somespeci�c
issuesin thecontext of network communicationproblems.

1.1 BroadcastingInf ormation

Communicationnetworks areoften describedasundirectedgraphs. The participantsare nodesand in-
formationtransmissionis modeledby communicationlinks betweentwo nodes,abstractedby undirected
edges.Oneof thebasicinformationtasksis to spreadaninformationfrom onenodeto all membersof the
communicationnetwork.

Assumethat somepeople� '�� '�� '�������'�� try to organizea party. Everybodyknows only someother
people,e.g. � knows � , � and � , while � knows � and 	 , � knows � ,

.

and - etc. Suchrelations
canbedescribedby a graphwherea playeris depictedby a nodeand � knows � is presentedby anedge.
Sucharelationgraphis shown on thetopof Figure1.1.

Assumethat � is theonewho knows the time andlocationof theparty. In thebeginning � informs
� . In a secondround � and � can inform two participantsin parallel, namely � and 	 . Then, the
informedparticipants� , � , � , and 	 continueto inform all otherplayers.In Figure1.1 it is shown how
theinformationspreadsandhow this informationprocessterminatesaftersix round.

In oursimplemathematicalmodeleverycommunicationsteplastsonetimeunit andonenodecanonly
inform oneneighborednode.Informednodescaninform othernodesin parallel.Thisprocessbeginswith
oneor many informednodesat timepoint & . Thebroadcastingtime is thenumberof timeneededto inform
all nodes.Notethatgiventhegraphandtheinformednodesit is not clearhow long it takesuntil all nodes
areinformed.Observe in Figure1.2 thatfor thesamegraphanimprovedstrategy achievesa broadcasting
timeof four.

In this context a varietyof questionsariseandwe will discusssomeof them.

� Time: How longdoesit takeuntil all playershavebeeninformedin general?

Figure1.1and 1.2show thatthetime neededfor broadcastinginformationdependson thestrategy.
Hence,to solve this questionswe haveto solve thefollowing question�rst:

� Schedule:Which is theshortestscheduleto organizethebroadcast?

It turnsoutthatthereis noknownef�cient algorithmthatcomputessuchschedules[MJ90]. However,
thisdoesnotmeanthatfor a speci�c givengraphtheproblemcannotbesolvedat all.

� For whichgraphfamiliescanwe solve thisproblem?

� Approximability: If the optimal broadcastingschedulecannotbe computed,can we determinea
goodstrategy which is only someadditionalroundsslower thanthebestschedule?

1
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Figure1.1: Player � startsthebroadcastingprocess.Using this schedulesix roundssuf�ce to inform all
players.
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1.2 SpreadingRumor and Viruses

Themathematicalmodelingof thespreadingof infectiousdiseasesgoesbackto Bernoulli in the18thcen-
tury. In the �rst half of the 20th centuryprobabilisticmethodshave beenusedto predict the spreading
behavior of diseases.For anoverview see[Bai75]. In 1987Pittel [Pit87] analyzedtheexpectedcontami-
nationtime for a verysimplemodel.

Thevirus spreadsin rounds.In thebeginningoneindividual is infected. In eachroundeach
individualcontactsa randomotherof the

	

subjects.If the�rst individual is infectedthenthe
secondwill becontaminatedthis wayandstartsspreadingthevirus in thenext round.

If we choosethecontactedpartneruniformly over all participants,thenwith probability
�

�

���

	

two
individualsareinfectedin thesecondround(becausewith probability

���

	

the individual contactsitself).
Thesetwo will infect two morein thesecondroundwith probability

�

���

����� �	�

, andsoon. It is intuitively
clearthatthisway thenumberof infectedbeingsgrowsexponentiallyunlessaconstantfractionof subjects
is infected.Then,thenumberof uncontaminatedparticipantswill decreaseexponentially. For this model
Pittel showedthattheexpectedtime until all participantswill beinfectedis

�����

�

	

�

�

�

	

�

���

�

�

.
Unlike in the broadcastingmodeldiscussedabove, herethe informationstrategy is not the problem.

The virus, or the rumor, is spreadasoften aspossible. Furthermore,the informationprocessis robust.
If in oneroundsomeparticipantsfail to transmitthe rumor, this doesnot changethe generalbehavior.
Thesemayhave beentheargumentsendorsingtheapplicationof this spreadingmechanismto replicated
databasesunderthenameepidemicalgorithms.In thelandmarkpaper[DGH 
 87] Demersetal. introduced
this conceptto thepublic.

They proposedto extendtheinformationprocessasfollows. In theabovedescribedstandardmodelthe
callerinformsthecallee.In thecaseof contagiousdiseasesit is notclearwhy thecontactedsubjectshould
not alsoinfect thecontactingsubject.This form of transmittinga virus is calleda pull. It is not surprising
thatanadditionaltransmissionprocessspeedsuptherumorspreading.However, in thesecondphasewhen
at leasthalf of thesubjectsareinformedthenumberof informedplayersdecreasesdouble-exponentially,
i.e. if �

� 	��

is thenumberof uninformedplayersin round � then �

�

�

����

�

�

���

for someconstant� .
If we adoptthepushandpull transmissionschemeto broadcastinformation,we envisagea distributed

systemwherenew rumorspop up locally all the time and wherein a time unit, e.g. one hour, every
participatingservercontactsa randompartnerto exchangenew rumors.So,thefollowing questionsarise:

� Whenis a rumortooold to bedistributed?

� How many transmissionsarenecessaryto inform all participants?

� Is therea robust terminationmechanismensuringfastbroadcastingandsmall numberof transmis-
sions?

1.3 Bandwidth Allocation: Utilization versusFairness

TheTransmissionControlProtocol(TCP)usedin the Internetis anend-to-endcongestioncontrolmech-
anism. Oneof its main featuresis the so-calledAdditively IncreasingandMultiplicatively Decreasing
algorithm.In a simpli�ed settingit worksasfollows:

A routersuccessively sendspacketsin a transmissionrate.For everysuccessfulsentpacketan
acknowledgmentappearsaftersometime, this time is calledtheRound-Trip-Time (RTT). If
theacknowledgmentdoesnotappear, thenasendingfailureappearedpossiblydueto exceeded
bandwidth.

TheAIMD-mechanismworksasfollows. If packetsaresubmittedsuccessfully, thentheac-
quired bandwidthis increasedby an additive constantamount,if a failure occursthen the
acquiredbandwidthis reducedby aconstantfactor.
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Figure1.3: Schematicallocationbehavior of TCP
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Figure1.3showsa typical behavior of this protocol.We have threeplayerssharinga link of a speci�c
bandwidth.In thebeginningplayer1 startsandaftersometime player2 andthenplayer3 joins in. They
bothlinearly(additively) increasetheirshareof thebandwidthuntil thesumof theirallocationsexceedsthe
bandwidth.In �gure 1.3 this occursfour times.At the�rst occurrenceplayer2 is theonewho recognizes
it andhereduceshis allocationby aconstantfactor(in our examplehehalveshis packet rate).

Note that even in a bestcasescenariothis AIMD-mechanismutilizes only a constantportion of the
availablebandwidth. Onemight arguethat this is causedby the sparsefeedbackusedby the allocation
algorithm,whonever learnstheavailablebandwidthleft-overby theotherplayers.Theplayer'sonly feed-
backis whetherin thelastroundtheallocatedbandwidthwasat mostashighastheavailablebandwidth.

In the Internetpacket failuresarecausedby theallocationbehavior of otherprotocols. In Figure1.3
player1 receivesanunfair highshareof thebandwidthcomparedto player2 and3 althoughall playersuse
theAIMD-scheme.Onereasonfor this situationmight bethatplayer1 updateshis bandwidthmoreoften
thantheotherplayers,whichmightbecausedby differentroundtrip times(RTT). It seemsthatthetiming
behavior of updatesis oneof theobstaclesto achievefairnessandfull utilization in theInternet.

We will investigatethefollowing questions:
� Is it possibleto convergeagainstfull utilization for suchrestrictedfeedback?
� Is it possibleto enablefairnessunderadversarialtiming?
� Canwe achievefairnessandfull utilization?

1.4 Cost-distanceTrees

Assumethat the locationsof the terminalsitesof a network aregivenandthequestionis, how the inter-
connectingnetwork hasto bechosen.Then,thefollowing parametersareimportant:

� Thesize/costof thenetwork.
� Thedistancebetweentwo terminalsites,if oneusesonly thenetwork edges.
� Thetopology. Is thenetwork planar, or evena tree.

In Figure1.4 and1.5 two different(subway) network structurescanbe seen.In Figure1.4 we seea
densenetwork, allowing shortroutesbetweenall stations.In theothersubway network in Figure1.5 the
network is sparser;long detoursoccurbetweensomestations.However, thetree-likenetwork topologyof
thesecondnetwork maysimplify many coordinationproblems.

In general,oneexpectsthattreeswill increasethesizeof thenetworkor thelengthof necessarydetours.
Clearly, longdetourscannotbepreventedatall. Therefore,theweighteddistancewill beconsideredwhich
describestheaveragelengthof a route.

Weconsideramixedmeasurethatsumsover two typesof costs:the�x edcostsproportionalto thesize
of the network andthedynamiccostsproportionalto the averagelengthof a routein thenetwork. This
measureis calledtheweightedcost-distance(WCD). Givena non-negativeweighting ���

�

�

�����




�

andanodeset
�	�
���

wede�ne it by thefollowing equation:

WCD


�� �

� � �

�����������

� ���

�

�

�

�

 �

���

�

�

� '��

�

�

�

�

�*' �

�

'

where�

�

�

� '��

�

denotesthelengthof theshortestpathfrom � to � in


.
In this context spanner-graphshave beeninvestigated.Thesearegraphs- wherefor all nodes�*' � it

holds
�

�

�

�*' �

� �

� � �*' � �

�

'

wheretheconstant� is calledthestretchfactor. Suchspanner-graphscanbeconstructedef�ciently . Fur-
thermore,additionalconstraintssuchassmallsizecanbeful�lled. Suchaspanneris calleda light spanner
if for thesizeof thegraphit holdsfor a constant! :

�

�"���#�����

  �  

�

�

!
�

�����#� MST �$�%�&�

� ���

�

'
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Figure1.4: Thesubwaynetwork of New York downtown

Figure1.5: Thesubwaynetwork of Hanover
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Figure1.6: Traditionalmobilephonenetworks.No interconnectionsbetweenmobilephones

Figure1.7: A mobileadhocnetwork. Mobile phonescanconnectto closelylocatedpartners

whereMST
�

�

�

denotestheminimumspanningtreeof
�

.
Clearly, such light spannersapproximatethe optimal weightedcost-distancegraphby a factor of

�

��� ��'�! . However thequestionremains:

� How well cantreesoptimizetheweightedcost-distance?

1.5 Mobile ad hocCommunication

The standardapproachfor wirelesscommunicationnetworks is to install a centralradio stationthat re-
layscommunicationbetweenpartnersandconnectthemobilecommunicationpartnersto theotherwired
communicationpartners,seeFigure1.6.

Obviously, this network topologyhasa numberof disadvantages.First of all, the relay stationis a
naturalbottleneck.All informationmustpassthisstationandif thenumberof mobilephonesincreasesthe
capacitywill beexhaustedat somepoint. Anotherproblemis thatthepositionandthetransmissionpower
of thecentralantennadeterminesareaswithout reception.

A differentapproachis to usemobilead hoc networkswhich useneighboredradio stationsasrelay
stations,seeFigure1.7. Communicationbetweenmobilephonescanbedonewithout a designatedradio
stationusingmultiple hopsbetweenneighboredmobile devices. This decreasesthe transmissionpower
neededby eachmobiledevice. Furthermoreanincreasein thenumberof participantswill alsoincreasethe
availablebandwidth.

Howeverit isnotclearwhatkindof basicnetwork is thebestchoiceto optimizeparameterslikedilation,
energy anddatathroughput.

� Whichmobileadhocnetworksoptimizedilation,energy anddatathroughput?

� Canall of thesemeasuresbeoptimizedat thesametime?



Chapter 2

Main Results

In thepreviouschapterof this habilitationthesiswe presentedsomeintroductoryexamplesof communi-
cationnetwork problems.This chapteris dedicatedto a comprehensivesummaryof themainresultsand
modelspresentedin chapters4–10. In the next chapter3 we clarify somemathematicalandcomputer
scienti�c notations.

2.1 Overview

In this habilitationthesiswediscusscommunicationnetwork problemsof thefollowing areas.

1. Broadcastinformation

Broadcastingin processornetworks meansdisseminatinga single pieceof information, which is
originally known only at somenodes,to all membersof thenetwork. This is donein a sequenceof
roundsby pairwisemessageexchangeover thecommunicationlinesof thenetwork.

In this thesiswe considertwo differentmodels:

� In chapter4 and5 weconsiderbroadcastingin thetelephonemodelfor agivenundirectedgraph
describingthebidirectionalconnectionbetweenprocessors.Here,in oneroundeachprocessor
cansendamessageto atmostoneof its neighbors.Thegoalis to inform all processorsusingas
few roundsaspossible.Thisnumberis calledtheminimumbroadcastingtimeof thenetwork.
Given the network structureandthe informednodewe areinterestedin the optimal strategy,
whenwhichneighborednodehasto beinformedto minimizethenumberof rounds.We char-
acterizethealgorithmiccomplexity andwantto �nd graphfamilieswheretheoptimalsolution
canbefound.

� For randomizedrumorspreadingpresentedin chapter6 theconnectionsbetweennodeschange
in every roundandaregivenby arandomaddressingfunction. In onerounda processorhasto
decidewhetherto sendits information.Thus,in additionto minimizing thenumberof rounds
for broadcastinginformationwe have to take careof thequantityof messages.This mustbe
doneby a distributedalgorithmbecauseof therandomizedcommunicationstructure.

2. Distrib uted allocation of network bandwidth

The transportcontrol protocol(TCP) of the Internetusesa distributedalgorithmto determinethe
packet rate of connectionsbetweencomputers� and � . Here � adjuststhe packet rate by an
algorithmthatusesonly informationwhetherthe last transmissionwassuccessful,i.e. packetsare
notdropped.

Wewill investigatetwo typesof questions.In chapter7 wegeneralizethismodelby agame-theoretic
approachdealingwith aplayer, representingahost,andanadversary, representingall otherhostson
thenetwork. In ourmodeltheadversarychoosestheavailablebandwidthto maximizethecostof the
player. Theplayercanchoosea packet rate,i.e. allocatebandwidth,andsufferstwo typesof costs:

9
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� Allocationof morebandwidththanavailable:Thentheplayer'scostaccountfor re-transmission
delayandoverhead.

� Allocationof lessbandwidththanavailable:Thentheplayersuffersopportunitycosts.

Thealgorithmwill never learntheavailablebandwidthin a roundandthuscannotcomputethetotal
cost it is actually suffering. However, we presenta probabilisticalgorithm which usesthe little
feedbackinformationavailable,i.e. whethertheallocatedbandwidthwassmallerthantheavailable
bandwidth.

It turnsout that suchanalgorithmsolvesa generalclassof onlinepredictiongamesof all discrete
forecastingproblemsthat provide suf�cient feedbackinformation. This algorithmcanboundthe
relative loss,calledregret comparedto thebestconstantchoiceof packet rate.We canshow thatthe
averageregretof a roundtendsto & whenthenumberof roundsincreases.

Theallocationbehavior of sucha bandwidthallocationalgorithmtries to reachfull utilization, i.e.
thepacket rateequalstheavailablebandwidth,while it doesnot guaranteethatevery participating
processorreceivesa fair shareof theavailablebandwidth.Ontheotherhand,TCPtriesto distribute
fair shareswhile it doesnotconvergeagainstfull utilizationevenin abestcasesituation.In chapter8
we concentrateon the relationshipof full utilization and fairness. It hasbeenobserved that the
allocationbehavior of TCP dependshighly on the time pointswhena hostreevaluatesandadjusts
its packet rate. To describerobustallocationalgorithmswe consideran adversarial timing for the
updatesof theparticipatingplayers.It turnsout thatin thismodelfairnessandfull utilizationcannot
be both satis�ed and we presentfair distributed allocationschemesif the algorithmsreceive the
residualbandwidthasfeedbackinformation.

3. Designingef�cient communicationnetworks

Givenanodesetin Euclideanspaceweareinterestedin �nding thenetwork thatoptimizesthecosts
of thenetwork. In this thesisweconsiderthefollowing two optimizationconstraints.

� Theweightedcost-distancemodelis ameasurethatappliesalsoto othernetworks,e.g.street,or
railwaynetworks. In chapter9 wedescribetheoverallcostof anetwork by astaticcomponent,
calledcost,anda dynamiccomponent,calledweighteddistance.Thecostsimply dependson
thesizeof thenetwork, i.e. thesumof theedgelengths.While theweighteddistancecombines
a non-negative weightingbetweennetwork nodesdescribingthedemandor occurringtraf�c,
andtheshortestdistancebetweennodesusingthenetwork.

We will seethat theoptimizationproblemcanbeapproximatedby so-calledspanners.Then,
weconcentratehow theweightedcost-distanceincreasesif werestrictthenetwork topologyto
trees.It turnsout thatthis increasecanbeupper-boundedandlower-boundedby a logarithmic
factor.

� In chapter10 we concentrateon thequestionhow mobilead-hocnetworkscanbeoptimized.
Suchnetworks consistof radio stationswhich establisha node-to-nodecommunicationnet-
work. For this, every node,i.e. radiostation,canadjustthe transmissionpower suchthat the
transmissionradiusis givenby thedistanceto theaddressednode.Becauseonly onefrequency
is available,radio signalscaninterfereandthusadditionalconstraintsappearfor the routing
problem.

Wede�ne thepathsystemof amobileadhocnetwork astheunionof all pathsusedfor routing
information. Becauseof the radio interferencesthe choicesof thesepathscannotbe done
independently. Thereforewewantto �nd restrictedbasicnetworks,whoseedgesgiveanatural
upperboundon the numberof interferenceof pathsystemsthat useonly edgesof this basic
network.

We presentreasonablede�nitions for energy, dilation andcongestionof pathsystemsandgive
algorithmsthatoutputoptimal or nearly-optimalnetworks for thesemeasures.We show that
two of thesemeasurescannotbeoptimizedby thesamepathsystem.
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2.2 Broadcastingin Planar and DecomposableGraphs (Chapter 4)

Broadcastingin processornetworksmeansdisseminatingasinglepieceof information,which is originally
known only atsomenodes,to all membersof thenetwork. Thisis donein asequenceof roundsby pairwise
messageexchangeover thecommunicationlinesof thenetwork. In oneroundeachprocessorcansenda
messageto at mostoneof its neighbors.Thegoal is to inform everybodyusingasfew roundsaspossible.
This numberis calledthe minimumbroadcastingtime of the network. This shortdescriptionconstitutes
thetelephonemodelfor broadcastingin undirectedgraphs.

Givenagraphandasubsetof nodes,thesources,theproblemis to determineits speci�c broadcasttime,
or moregenerallyto �nd abroadcastscheduleof minimal length.This is known asaan

���

-hardproblem.
We areinterestedto �nd out moreaboutthecomputationalcomplexity of this problem. In particular, we
askwhich graphtopologyallows the ef�cient computationof a broadcastscheduleandfor which graph
familiestheproblemsremains

���

-hard.
For the lower boundswe considerthe decisionproblemof broadcasting:The MULTIPLE SOURCE

BROADCASTING DECISION PROBLEM (MB) is: Givenasetof sources,anundirectedgraphandadeadline,
determinewhetherthereexistsa broadcastingstrategy informing all nodeswithin the deadline.Further-
moreweconsidertheSINGLE SOURCE BROADCASTING DECISION PROBLEM (SB), which is MB reduced
to thecaseof a singlesource.We show thefollowing results:

� MB restrictedto planargraphswith degree4 anddeadline4 is
���

-complete.

� SBrestrictedto graphswith degree3 andis
���

-completeevenwhenthedeadlineis logarithmic.

� SBrestrictedto planargraphsof degree3 is
���

-complete.

On the otherhand,we investigatefor which classesof graphsthis problemcanbe solved ef�ciently
andshow thatbroadcastingandevenamoregeneralversionof thisproblembecomeseasyfor graphswith
gooddecompositionproperties.Thesolutionstrategy canef�ciently beparallelized,too.

For this purposewe have to extendthenotionof graphdecompositionto measureits propertiesmore
exactly. A carefulinspectionof thepossibilitieshow informationcan�o w within acomponentandbetween
differentcomponentsof a graphwill be required. For the internal �o w componentsthat areconnected
behavemostfavorably, but in generalconnectivity cannotalwaysbeachievedby a treedecompositioninto
smallcomponents.

In particular, weconsiderthefollowing two typesof treedecompositions:

� Edgedecomposition:

For a graph - �

�

�

' 	

�

an edgedecompositiongraph
�

�

�

���

'�	

�

�

providesthe following
properties:

– The nodes-�� of
�

�

representinducedsub-graphs-�� �

�

�

� '�	��

�

of - suchthat the
�

� are
pairwisedisjointand

�

���	��

����

�

� .

– � -
�

'1-������ 	

�

if f thereis anedgebetweenanodeof -
� andanodeof -�� �

A graph - is ������������ –edgedecomposableif thereexists an edgedecompositiongraph
�

�

�

� �

'�	

�

�

suchthat for all -
�

�

� �

� cut
�

-
�

� �"!

, 

�

�


�$#

and %&%

�

-
�

� �

� where %'%

�

-
�

�

denotesthenumberof connectedcomponentsof -
� . Thecut of a node -

� is theunionof all edges
of - thatconnect-

� to othercomponents.

Suchanedgedecompositiongraph
�

is calledan �(���)�����&� –edgedecompositiontr eeof - if
�

is
a tree.

� Nodedecomposition:

For a graph- �

�

�

' 	

�

a graph
�

�

�

�
�

' 	

�

�

is a nodedecompositiongraph if

– Thenodes-
� of

� �

representsub-graphs-
�

�

�

�

�
' 	

�

�

of - suchthat
�

�
�

�

 ���

�

�

� and
	 �

�
�


 ���
�
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– For eachnode � holds: if � �

�

�

�

�

� then
�

containsa path � from
�

� to
�

� suchthat �

belongsto everynode
���

in � .

A graph - �

�

�

'�	

�

is called �(���)���)�&� –nodedecomposableif thereexistsa nodedecomposition
graph

�

�

�

� �

'�	

�

�

suchthat for all -�� �

� �

holdscut
�

-��

� � !

, 

�

� 

� #

, and %'%

�

-��

� �

� .
Here,we de�ne thecut of a node - � astheunionof all cutscut

�

-��1'1- �

�

to neighboredsub-graph
- � , wherecut

�

-�� '1- �

�

� �

�

�

�

�

� .

Sucha decomposition
�

is calleda ���������)�&� –nodedecompositiontr eeof - if
�

is a tree.

Wepresentalgorithmsthatconstructtheoptimalbroadcastingschedulein polynomialgraphs,if oneof
thefollowing decompositionsis known for thegivengraph:

� Thegraphhasa
�����
	 ��

�

	 ����	 ��

���

'

���
	 ��

�

	 ���	 ���

���

'

�

�

�

�

�

–edgedecompositiontree.

� Thegraphhasboundeddegree� anda
� � ��	 ���

�

	 ���	 ��

�

�

'

�

� � � � 	��

'

�

�

�

�

�

–edgedecompositiontree.

� Thegraphhasa
� �

�

�

�

'

� �
	 ���

�

	 ���	 ���

���

'

���

�

�

�

–nodedecompositiontree.

� Thegraphhasmaximaldegree� �

����	 ���	 ���

�

	 ����	 ���	 ���

�
�

anda
�����
	 ���

�

	 ���	 ���

�
�

'

��� 	 ��

�

	 ����	 ���	 ���

�
�

'

�

�

�

�

�

–
nodedecompositiontree.

� Thegraphhasconstantdegreeanda
�

�
�
	 ��

�

	 ���	 ���

���

'

�

������� 	��

'

�

�

�

�

�

–nodedecompositiontree.

Thealgorithmevenworksfor amoregeneralversionof thebroadcastingproblem.Furthermore,it can
beparallelizedef�ciently to yield

���

-algorithms.
A preliminaryversionof this chapterhasbeenpublishedin [JRS94]anda journalversionappearedin

theJournalof DiscreteAppliedMathematics[JRS98].

2.3 On the Inappr oximability of Broadcasting(Chapter 5)

Then, we investigatethe computationalcomplexity of approximatingthe broadcastingtime of a given
graph.We show thefollowing results.

� Thereis noef�cient �

�

� � approximationalgorithmfor thebroadcasttimeof anetwork with asingle
sourceunless

�

�

���

. It is
���

-hardto distinguishbetweengraphshaving broadcasttimesmaller
than � ���

� 	

�

�

andgraphswith broadcasttime largerthan
�

�
� � �

�

� for any ��� & andsome��� & ,
where

	

denotesthenumberof nodes.

� For theadditive approximationof thebroadcasttime we show a tight lower boundof �

	

, i.e., we
show thatit is

���

-hardto distinguishbetweengraphswith broadcasttimesmallerthan � andlarger
than �

���

�

�

	��

.

� For graphswith degree3 we show that it is
���

-hardto decidewhetherthebroadcasttime is � �

�

������� 	��

or �

�

�

�

�

�

�

in thecaseof multiplesources.For graphswith singlesourcesanddegree3,
it is

���

-hardto distinguishbetweengraphswith broadcasttimesmallerthan � � �

�

�

	��

andlarger
than �

�

�

�

� � �

� .

We prove thesestatementsby polynomialtime reductionsfrom set-cover andE3-SAT. A preliminary
versionof this chapterwaspresentedat the3rd InternationalWorkshopon ApproximationAlgorithmsfor
CombinatorialOptimizationProblems[Sch00b].
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2.4 RandomizedRumor Spreading(Chapter 6)

In this chapterwe discusstheproblemof broadcastinginformationin a processornetwork in a different
communicationmodel.We investigatetheclassof so-calledepidemicalgorithmsthatarecommonlyused
for the lazy transmissionof updatesto distributedcopiesof a database.Thesealgorithmsusea simple
randomizedcommunicationmechanismto ensurerobustness.Suppose

	

playerscommunicatein parallel
roundsin eachof which every playercalls a randomlyselectedcommunicationpartner. In every round,
playerscangeneraterumors(updates)thatareto bedistributedamongall players.Whenevercommunica-
tion is establishedbetweentwo players,eachonemustdecidewhichof therumorsto transmit.

The communicationgraph - � �

�

�

'�	 �

� �

�

�

�

of round ���

�

is obtainedby a distributed,
randomizedprocess.In eachround,eachplayer � choosesa communicationpartner� from

�

at random
and � calls � . In round � , therumorandotherinformationcanbeexchangedin bothdirectionsalongthe
edgesof - � . Whenevera connectionis establishedbetweentwo players,eachoneof them(if holdingthe
rumor)hasto decidewhetherto transmittherumorto theotherplayer, typically withoutknowing whether
thisplayerhasreceivedtherumoralready. Regardingthe�o w of information,wedistinguishbetweenpush
andpull transmissions.Assumeplayer � callsplayer � .

� Therumoris pushedif � tells � therumor.

� Therumoris pulledif � tells � therumor.

The major problem(arisingdueto the randomization)is that playersmight not know which rumors
their partnershave alreadyreceived. For example,a standardalgorithmbasedon push-communication,
i.e. forwardingeachrumorfrom thecallingto thecalledplayers,for �

� � � � 	��

roundsneedsto transmitthe
rumor �

��	 ����� 	��

timesin orderto ensurethateveryplayer�nally receivestherumorwith highprobability.
We investigatewhethersucha largecommunicationoverheadis inherentto epidemicalgorithms.On

thepositive side,we show that thecommunicationoverheadcanbe reducedsigni�cantly if we usepush
andpull–communications:

� Westartwith asimplepush&pull algorithm thatterminatestransmissionwhentherumoris
� � �

�

	

�

��������� ����� 	��

roundsold. It turnsout thatthisalgorithmneedsonly
����	 �����
� � � 	��

transmissionsand
broadcaststherumorwith highprobability, i.e. with probabilityof at least

�

�

�

���

for any �x ed ���

�

.

� Shenker proposeda distributed terminationmechanismusing a counterindicating indirectly the
spreadof the rumor. We show that this min-counter algorithm performsaswell as the push&-
pull algorithm.

� In orderto improve therobustness,we devisea distributedterminationscheme,calledthemedian-
counter algorithm, that is provably robust againstadversarialnodefailuresaswell asstochastic
inaccuraciesin establishingtherandomconnections.

In particular, we show that the ef�ciency of the algorithm doesnot rely on the fact that players
choosetheircommunicationpartnersuniformly from thesetof all players.Weshow thatthemedian-
counteralgorithmtakes

��� � � � 	��

roundsandneedsonly
����	 ����� ����� 	��

transmissionsregardlessof
theprobability distribution usedfor establishingthe randomconnectionsaslong asall playersact
independentlyandeachplayerusesthesamedistribution ���

� ���

&�'

���

to selectits communication
partner.

� On thenegativeside,we show thatany address-obliviousalgorithm(i.e.,analgorithmthatdoesnot
usetheaddressesof communicationpartners)needsto send

�

� 	 ����� � � � 	��

messagesfor eachrumor
regardlessof thenumberof rounds.

� Furthermore,wegiveagenerallowerboundshowing thattime-andcommunication-optimalitycan-
not beachievedsimultaneouslyusingrandomphonecalls,that is, everyalgorithmthatdistributesa
rumorin

���������
	��

roundsneeds	

��	��

transmissions.

Theseresultswerepresentedat theSymposiumonFoundationsof ComputerScience[KSSV00].
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2.5 Online Prediction with Partial Feedback(Chapter 7)

Bandwidthallocationin the Internetis managedby theTransportControl Protocol (TCP). Whenhost �

transmitsinformationto � it is � who regulatesthe packet rate, calledallocatedbandwidth. However
� never learnsthe actualavailable bandwidthbut receivesa feedbackfrom which � learnswhetherit
over- or underestimatedthis value.Papadimitriou,KoutsoupiasandKarp [KKPS00] investigateprotocols
optimizing thecostneededto �nd theoptimalpacket ratewhentheavailablebandwidthis constant.We
extendthis approachand investigatethe dynamiccasewherein every round the availablebandwidthis
chosenby anadversary.

Thecost �

���

'��

�

of allocating � andavailablebandwidthis givenandre�ects two majorcomponents:
opportunitycostsdueto sendinglessthantheavailablebandwidthwhen ���

�

, andre-transmissiondelay
and overheaddueto droppedpacketswhen ���

�

. The goal of thehostA is to minimize the total cost
incurredoverall periods.In [KKPS00] thefollowing costmodelsareintroduced:thegentlecostfunction,

�

�

���

'��

�

�

�

�	� when �

�
�

and �

�

���

'��

�

� �

�

� �

� �

when � �

�

; andthe thesevere costfunction,
� ���

'��

�

�

�

��� when �

��

and
� ���

'��

�

�

�

when ���

�

. We model the feedbackby the threshold
feedback function �

���

'��

�

� & , if the allocatedbandwidthwashigher thanthe availablebandwidth,i.e.
�

��� and �

���

'��

�

�

�

elsewhere.
Given the lossfunction � andthe feedbackfunction � in this modelit is impossibleto minimize the

absoluteloss. Thereforewe only competewith the bestconstantchoiceof bandwidthallocation. We
generalizethis bandwidthallocationproblemto an online-predictionproblem,by allowing any discrete
feedbackandthelossfunction:

We investigatetheproblemof predictingasequencewhentheinformationaboutthepreviouselements
(feedback)is only partial andpossiblydependenton the predictedvalues. This settingcanbe seenasa
generalizationof theclassicalmulti-armedbanditproblemandaccommodatesasa specialcasea natural
bandwidthallocationproblem.Accordingto theapproachadoptedby many authors,we give up any sta-
tisticalassumptionon thesequenceto bepredicted.We evaluatetheperformanceagainstthebestconstant
predictor(regret),asit is commonin iteratedgameanalysis.

We describetheproblemasa gamebetweena playerchoosinganaction � � andanadversarychoosing
theaction

�

� at time � . Thereare � possibleactionsavailableto theplayer, without lossof generalityfrom
theset

�

�

�

� �

�

'�������'�� � , and � actionsin theset
�

�

�

from which theadversarycanpick from. At every
timesteptheplayersuffersa lossequalto �

���

�
'��

�

�

�

�

& '

� �

.
Thegameis playedin a sequenceof trials � �

�

'���'�������'�� . Theadversaryhasfull informationabout
thehistoryof thegame,whereastheplayeronly getsa feedbackaccordingto thefunction �

���

'��

�

. Hence
the � ��� -matrices� and

.

, with �
�

� ���

���

'��

�

and
.

�
� ���

���

'��

�

completelydescribeaninstanceof the
problem.At eachround � thefollowing eventstake place.

1. Theadversaryselectsaninteger
�

� �

�

�

�

.

2. Without knowledgeof theadversary'schoice,theplayerchoosesanactionby picking ��� �

�

�

�

and
suffersa loss (��

�

�

�

�

���

���

� '�� �

�

.

3. Theplayerobserves �
�

���

���

�
'��

�

�

.

Note thatdueto the introductionof the feedbackfunction this is a generalizationof thepartial infor-
mationgameof [ACBFS95].

Let �

�

�

�

� � ��!

��"

�

(#�

�

�

�

�

� ��!

��"

�

�

���

�1'�� �

�

be the total lossof player � choosing�

�

'�������'��

!

. We
measuretheperformanceof theplayerby theexpectedregret �%$ , which is thedifferencebetweenthetotal
lossof � andthetotal lossof thebestconstantchoice�'& , thatis ��!

��"

�

(#�)(

�

�

�

.

�*$ � �

�

���

+-,

/././. 

+)0

E

1

!

�

��"

�

�

���

�1'�� �

�

�

�

���

�

!

�

��"

�

�

���

� '2�

��3

whereeach
�

� is a functionof �

�

'������ '�� ��4

� . In someworksthecorrespondingmin-maxproblemis investi-
gated,transformingthelossinto a reward.Thetwo settingsareequivalent,asit is easyto check.
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� We presentanalgorithm ���������	��
� which solvesthis onlinepredictionproblemwith a sub-linear
expectedregret. More speci�c, if thereexistsa matrix - suchthat

.

- � � for feedbackmatrix
.

andlossmatrix � thentheexpectedregretE
�

� FeedExp3
�

�

�

�

of algorithmFeedExp3after � stepsis
boundedby

E
�

� FeedExp3
�

�

�

�

�

���

� �

���

���

� �

�

�

�

�

�

�

�

�

�

'

where� is thenumberof roundsand � thenumberof availablechoices.

� Weapplythistheoremto theoriginalbandwidthallocationproblemandshow thattheexpectedregret
with respectto

– thesevere costfunctionis boundedby
���

�

�

�

�������

�

�

,

�

�

� �

;

– thegentlecostfunctionis boundedby
���

� �

�

�

�������

�

�

,

�

�

� �

;

– theseverecostfunctionin thecontinuouscaseis boundedby
���

�

�

�

� � � �

�

�

,

�

�

;

– thegentlecostfunctionin thecontinuouscaseis boundedby
���

� �

�

�

�������

�

�

,

�

�

.

Thecontinuouscasere�ects thecasewherethealgorithmcanchooseany realnumberin theinterval
�

& '

� �

andit alsoappliesif thenumberof discretechoicesis largerthanthenumberof rounds.

� Weshow thatfor any discretelossfunction � andfeedbackfunction � only oneof two situationscan
occur:Either thereis a predictionstrategy thatachievessmall regretastheFeedExp3algorithm,or
thereis a sequencewhich cannotbepredictedby any algorithmwithout incurringa regretof

���

�

�

.
For this, we show how to constructa sequencethat no algorithmcanpredictwithout incurring a
linearregretwith probabilityat least

� �

� .

A preliminaryversionof thischapterwaspresentedat the14thConferenceonComputationalLearning
Theoryandthe5thEuropeanConferenceonComputationalLearningTheory[PS01].

2.6 Bandwidth Allocation under Adversarial Timing (Chapter 8)

Congestioncontrol algorithmslike, e.g.,TCP have to meetthe demandsof high utilization andfairness
simultaneously. We study the trade-off of thesetwo objectives in a plain model consistingof players,
sharedresourceswith boundedbandwidthcapacitiesandrateupdateevents,i.e., pointsof time at which
playerscanadjusttheir sharesof occupiedbandwidth.Thetimesat which playerscanperformtheir rate
updateoperationsis determinedby anadversary. As feedbackwe allow playersto receive thesizeof the
unusedbandwidth.

We investigatein�nite games,whereplayerscanenterandleave at any time but focusour analysison
thoseperiodsin which thesystemis closed,i.e., thesetof playersthatperformupdateoperationsis �x ed.
Themajornovelty of ourmodelis theadversarialtiming of therateupdateevents.

� We start our investigationwith bandwidthallocationon a single bus. The adversaryspeci�es a
sequenceof events � ���

�

�

�

�

�

����� , whereeachevent � � is a tuple
���

')(

�

with
�

� � and ( �

� enter' leave' update� . With eachplayer
�

� � , we associatea positive ratevariable�
� whosevalue

is zeroif theplayeris inactive, that is, theinitial valueof �
� is zeroand �

� is resetto zerowhenever
the adversarycalls

���

' leave
�

. The adversarycalls updateoperationsonly for the active player. In
particular, if the adversarycalls

���

' update
�

thenplayer
�

canset � � to any positive value. At any
giventime, we de�ne theshareof bandwidth� � thatplayer

�

receivesby � � ���)� if �

�

���
��

�

� ,
and & otherwise.Thus,theshareof bandwidthof all playersis zerowhenthesystemis overloaded.
(For analogousmodelssee,e.g.,[KKPS00].)

A fair andef�cient allocationprotocolaimsto settheratesin suchawaythatall playersin thesystem
getalmostthesameshareof bandwidthandtheunusedbandwidthis assmallaspossible.

It turnsout thata very simpleprotocol,calledVirtual Player Protocol (VPP), suf�ces to achieve
fairness:Supposeplayer� performsanupdateoperation.Let �� �

�

��� � � �
�

�

���
�

�
'1& � denotethe

unusedbandwidthimmediatelybeforetheupdateoperation.Thenplayer � sets��� � �

�

�




�

�

� �

�

��

�

.
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For � �

�

we show thatin a closedsystemperiod, wherethesame! playersparticipate,aftersome
���

!

� ����� �

!

�

�

�

phases,all allocatedbandwidtharealmostequal,i.e. �




�

�

�

�

�

� , while theresidual
bandwidthis at most

���

�

�

�

!

�

�

�

(Actually we statea moregeneraltheoremfor all ��� & ). Note
thata phaseis a setof contiguousroundswhereeachof the ! playersperformsat leastoneupdate
operation.

� We generalizethe above adversarialmodel to general networks. The network is modeledby a
(hyper)graph- �

�

�

'�	

�

. Edgesrepresentbuses,routers,or other sharedresourcesof limited
bandwidth.Thebandwidthcapacityof edge� is denotedby �

�

�

�

. Eachplayercomeswith a setof
edgesconstitutinga simplepath(i.e., a pathin which every edgeappearsat mostonce).For player

�

� � , let ��� �

� ��� �

denotetheplayer'spath,andfor anedge� � 	 let �

�

�

�

�

� denotethesetof
thoseplayerswhosepathscontain� .

As before,an adversarydetermineswhen playersenterand leave the systemand when they can
updatetheir rates.For thetime being,we assumethatupdateoperationsareperformedatomically,
i.e.,anupdateoperationis notperformedby theadversaryuntil thepreviousonehasbecomeeffective
on all edgesof the respective path. We generalizethe VPP asfollows. Here,player � sets � � � �

�

�




�

�

� �

�

�

���

�������

�
	

�

�

�

�

��

�

�

� � �

where � �

�

denotesaglobalparameter.

For every 0 � & , thenetwork is in astateof 0 -max-minfairnessif it is impossibleto increasetherate
� of any playerby morethana factorof

�

�

�

0

�

without exceedingtheedgecapacitiesin ��� �

� ��� �

or
decreasingtherateof playerswhoserateis at most

�

�

�

0

�

� .

TheVPPconvergesagainst
�

�

-max-minfairness,if for eachmemberof a same�nite setof players
arbitraryoftenupdatesoccur. We call sucha phaseaclosedsystemperiod.

� It is anopenquestionhow fastthegeneralVPPconverges.Thereforewepresentadiscretevariantof
thisprotocol,wheretheconvergencecanbedetermineddependingonthedilation � andtheconges-
tion � . Thedilation is themaximumlengthof apath(of participatingplayers)andthecongestionis
themaximumnumberof pathscontainingthesameedge.

We show that for every 0 � & , thereis a discretevariantof theVPPthatapproachesa 0 -max-min
fair statein any closedsystemphase.This stateis reachedafter

���

� �

�

�

� �

�������

�

�

�

0

� �

phases.

� Furthermore,asa lowerboundweprovefor thesinglebusmodelthatthereis noprotocolachieving
full utilization andfairnessin the limit, if an adversarydeterminesthe orderof rateupdateevents
andonecannotdistinguishbetweenslow andstalledplayers.

2.7 TreeNetwork Designfor the Cost-Distance-Model(Chapter 9)

Given
	

terminalpointsin theEuclideanspacewe investigatetheproblemof constructinga network with
small costandshortdistances.This researchis motivatedby a numberof practicalproblemsarisingin
network designfor traf�c in communicationnetworksaswell asreal traf�c in streetor railway networks.
If oneminimizesonly thenetwork size,i.e. thesumof all edgelengths,somedistancesbetweenterminals
mustbeconsiderablyincreased.On theotherhandif we minimizethedistancesbetweenall terminalswe
faceacompletenetwork with largecosts.Theseeffectsaredescribedby theweight cost-distancemeasure,
de�ned by

WCD


�  �

� �

�

�����#�����

�

�

�

�

�

�

�

 �

���#�����

�

�

� '��

�

�

�

�

�*' �

�

'

where �

�

�

�

denotesthe lengthof anedgeand �

�

�

�*' �

�

the lengthof theshortestpathfrom � to � in the
network



.
We investigatethefollowing problems:

� WEIGHTED COST-DISTANCE NETWORK PROBLEM (CDN): Given a setof sites
�

in Euclidean
spaceanda weighting � �

�

�

��� � �


 , �nd a network


�

�

�

' 	

�

thatoptimizestheweighted
cost-distanceWCD


�  �

.
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� WEIGHTED COST-DISTANCE TREE PROBLEM (CDT): Given
�

and � �

�

�

� �� �


 , �nd a tree
� �

�

�

' 	

�

thatoptimizestheweightedcost-distanceWCD


�

�

�

.

It turnsout thattheoptimalsolutionof CDN cancontainSteinerpointsaswell ascycles.Furthermore,
thereareinstanceswheretheoptimalsolutioncontainscrossings.We presentthefollowing results.

� For anodeset
�

in
���

CDN canbeapproximatedby aconstantfactorwithin time
����	 ����� 	��

, where


�

 �

	

.
� In

�

�

CDN canbeapproximatedin polynomialtime by a factorof
�

� ��� ����� .
� In

�#�

a polynomialtime algorithmapproximatesCDT by a factorof
��� � � � 	��

. Moreover, this tree
approximatestheoptimalsolutionof CDN within thesamefactor

��� � � � 	��

.
� Treescannotapproximateoptimal cost-distancenetworks betterthan

��� � � � 	��

. In particular, for
every spanningtree � of the

	

�

	

-grid, where �

�

� '��

�

�

�

if � and � areneighborednodesand
�

�

� '��

�

� & elsewhere,theweightedCost-Distanceis at least
�

� 	 � ����� 	��

, while theoptimalCost-
Distancenetwork hascostandweighteddistance

����	 � �

.

A preliminaryversionof thischapterwaspresentedat theInternationalSymposiumonAlgorithmsand
Computation(ISAAC'01) [SW01].

2.8 Energy, Congestionand Dilation in Wir elessNetworks
(Chapter 10)

We investigatetheproblemof pathselectionin radionetworksfor a givensetof sitesin two-dimensional
space.We considera set

�	�
�

�

of
	

radiostations,featuringbothtransmittersandreceivers,calledsites
or nodes,in 2-dimensionalEuclideanspace.Let � �

�

���

�

 �

���

 � '��  denotethegeometricdiameterof
�

.
Eachnode� �

�

canadjustits transmissionradiusto some� � & for sendingapacketto aneighbor� �

�

in range� . Then,thecommunicationnetwork


�

�

�

' 	

�

hastheedge � �*' � � , where  �*' �  � � . Note
thatfor adjustingthetransmissionpowernodesexchangingpacketsmustinteractduringthetransmission.
In our modelwe simplify this interactionby assumingthat the sendingandacknowledgingpart of this
interactionmayinterferewith any othersuchbi-directionalconnectionif thedistanceis toosmall.

In particular, this means:To acknowledgethis packet thereceiving siteadjustsits transmissionradius
to thesameradius � asthesendingradius. The transmissionneedsa unit time stepandtheareacovered
by sendingandacknowledginga packet along � �

�

�*' �

�

� 	 is �

�

�

�

� ���

�

�

���

���

�

�

�

, where ���

�

�

�

denotesa disk with center� andradius � . Of courseedgesonly interferewhentheroutingprotocoltries
to senda packet at thesametime andif �

�

��+

�

contains� or � . We expandthenotionof interferencesto
edges:Edge

�

� '��

�

interfereswith edge� + if � or � is in thearea�

�

� +

�

, whichde�nesthesetof interfering
edgesby Int

�

�

�

� � � ��+�� 	

�  �

 � + interfereswith � � .
We contributeto modelingwirelesscommunicationnetworkswith thefollowing de�nitions.

� Note that sendinga packet along � is successfulonly if no edgefrom Int
�

�

�

sendsconcurrently.
Theseinterferencesof network



describethe directedinterfer encegraph - Int
�� �

. Its nodeset
areall edgesof



andits edgesdescribeall interferences,i.e.
�

� ' �

�

� 	

�

- Int
�  � �

if f � � Int
�

�

�

.
Theinterferencegraphcanbeinterpretedasanadditionalconstraintfor routing.An edgeof theradio
network canonly beusedfor sendingapacket in a timeunit if all interferingedgesremainsilent.

� Thenumberof this interferingedgesis givenby the in-degreeof anedgein the interferencegraph
andis calledtheinterfer encenumber of acommunicationlink. Themaximuminterferencenumber
of a site � is themaximuminterferencenumberof all edgeswith receiving site � . The interference
numberof thenetwork is themaximuminterferencenumberof all edges.

Now considera routingproblem � �

�

�

� �
	

, where �

�

�*' �

�

packetshave to be sentfrom � to
� . Theproblemariseshow to choosea path system

�

in thegraphon
�

. This is a setof paths�

� from
sourceto destinationfor thepackets � in thegraphon

�

. Theunionof all edges	�� of this pathsystem
givesthelinks of communicationnetwork



�

�

�

' 	�

�

.
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� Wedenoteby thedilation ���

�

�

�

thelengthof a longestpathin
�

, alsoknown asthehop-distance.

� We distinguishtwo energy models. In the �rst model,calledunit energy model, we assumethat
maintaininga communicationlink � is proportionalto

���

 � 

� �

, where  �  denotesits Euclidean
length.Thereforetheunit energy U-Energyusedby radionetwork



is givenby

U-Energy
�

�

�

�

� � �

������� � � �

 � 

�

�

� The�o w energy model re�ects theenergy actuallyconsumedby transmittingall packets.Here,the
powerconsumptionof a communicationlink is weightedby theactualload �

�

�

�

onanedge� :

F-Energy
�

�

�

�

� �

�

�"����� �����

�

�

�

�

 � 

�

�

� Weshow thatenergy optimalpathselectionfor radionetworkscanbecomputedin polynomialtime.
Particularly, the minimal spanningtreedescribesan optimalpathsystemfor the unit energy anda
sub-graphof theGabrielGraphcontainsanoptimalpathsystemfor the�o w energy.

� A mainresultof thischapteris thataspanner-graphconstructionasacommunicationnetwork allows
to approximatethecongestionoptimalcommunicationnetwork by afactorof

���������

�



�



�

(underthe
condition

�����	��
 ��� �

 �

�

�

��� ����
 ��� �

 �

�

�

�



�

 �

�

�

�

).

Onemajorinsight is thefactthattrade-offs areunavoidable:Minimizing onemeasureis only possible
at thecostof enlarginganotherone.We show trade-offs lower-boundingcongestion� delayanddelay �

energy.

� Thereexistsa nodeset - � suchthatfor everypathsystem
�

thefollowing trade-off betweendelay
�

�

�

-
�

�

andcongestion�
�

�

-
�

�

canbeobserved: �
�

�

-
�

�

���
�

�

-
�

�

�

�

�

�

�

.

� Thereexistsanodeset � � with diameter� suchthatfor everypathsystem
�

thefollowing trade-offs
betweendelay � andunit energy U-Energy(resp.�o w energy F-Energy) occurs:

� �

�

� �

�

� U-Energy
�

�

� �

�

�

�

�

�

�

�

'

� �

�

� �

�

� F-Energy
�

�

� �

�

�

�

�

�

�

�

�

�

� For congestionandenergy the situationis even worse. It is only possibleto �nd a reasonableap-
proximationfor eithercongestionor energy minimization,while the otherparameteris at leasta
polynomialfactorworsethanin theoptimalnetwork: Thereexistsa nodeset

�

with minimal con-
gestion�%& , minimalunit energy by U-Energy& , andminimal �o w energy by F-Energy& suchthatfor
any pathsystem

�

on this nodeset
�

it holds:

�
�

�

�

�

�

�

� 	

�

�

� �

&

�

or U-Energy
�

�

�

�

�

�

��	

�

�

� U-Energy&

�

'

� �

�

�

�

�

�

� 	

�

�

�
�

&

�

or F-Energy
�

�

�

�

�

�

��	

�

�

� F-Energy&

�

�

A preliminaryversionof this chapterhasbeenpublishedasa technicalreport[MSVG01].



Chapter 3

Notations

In this chapter, we introducesomebasicnotationsandmathematicalconceptsusedthroughoutthis thesis.
This is not an introduction,but a presentationof basicde�nitions andfundamentalresultsrelevantto the
resultsanddiscussionpresentedin theotherchaptersof this thesis.

3.1 SetTheory

Theemptysetis denotedby � . Wedenoteby � � � � �

�

'���' � '�������' � thesetof integers,and � �

�

� � � �

�

� &�' � .
For any � � � � the set

�

�

�

representsthe set �

�

'������ ' ��� .
�

denotesthe setof reals,
�


 is the setof all
positivenumbers,i.e.

�


 � � � ( �

�

 ( � & � .
�




�

� �

�




�

� & � . For two realnumbers(

� �

we denote
theintervalsby

�

(*'

�

�

� � ���	�

�

 (

�

�

���

�

�

( '

� �

� � ��� �

�

�(

�

� �

�

�

�

(*'

� �

� � ���	�

�

 ( ��� �

�

�

�

( '

�

�

� � ��� �

�

�( ���

���

�

Givensets� ' � in adomain� :

�

�

�

� � � � (  ( � � or ( � � � denotestheunionof � and � ,

�

�

�

� � � � (  ( � � and ( � � � denotestheintersectionof � and � ,

�

��� � � � � (  ( � � and (	� � � � is calledthedifferenceof � and � ,

�

� � � � ( � �  (
� ����� � ��� � is calledthecomplementof � .

� If �

�

� , then � is a subsetof � , i.e. for all ( � � we have ( � � .

� By �� � we denotethat � is a propersubsetof � , i.e. �

�

� and ��� � � .

� We denotethepowersetof � by �

�

�

�

� � � �  �

�

��� .

� Two sets� , � aredisjoint if �

�

� ��� , where� � � � denotestheemptyset.

3.2 Combinatorics

We usethenaturallogarithm
�

� (��

�����

�

( aslogarithmto thebaseof ��� � ���

���

�

� ���

�

�

����� . By
�����

(��

�����

�

	

we denotethelogarithmto thebase2.
� � �

�

	

means
������� 	��

�

;
� � ���

���

	

denotesthe ! -timesiterated
logarithm.

Thefactorialof
	

is writtenas
	��

�

�

� � � � � ����� �

	

. By de�nition &

�

�

�

. Thebinomial �

�

���

is de�ned
for &

�

!

� 	

as �

	

!! 

�

	��

��	

� !

�"�

!

�

�
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For functions� '�� �

�




� �


 andaclassof functions� of suchfunctionswede�ne:
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� ����� �

	

�
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� �
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�

�

�

� �
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� �

���
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�
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�

���

�

�
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�

���
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�

�

'

�

�

�

�

� �
	

�

���

�

�

�

�

'

�

�

�

�

� � 	

�

���

�

�

�

�

' 	

�

�

�

� � 	

�

���

	

�

�

�

'

�

�

�

�

� �	
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���

�

�

�

�

�

For aclass� of functionswedenoteby �

�

� , thatthereis a function � ��� suchthat
�

�

� .

Table3.1: TheO-notations.

For every ( �

�

wehave

��� ���

�

�
"

�

(

�

� �

� ���

�

�

�

�

� (

�

���

�

�
"

�

�

�

�

�

�
4

�

(

�

�

�

We will usethefactthat
�

�

�

���

�

�

�

�

� �

	��

�

�

� �

� andparticularlywe havefor all
	

� � � :
�

�

�

�

	

 

�

�

�

�

�

�

�

�

�

	

 

� 4

�

�

We will useStirling's formula:

	��

� �

� 	��

�

� �

	

�

	

�

�

�

where�

� 	��

�

�

�

' �

�

�

�

�

�

�

�

Asymptotics

To comparetheasymptoticbehavior of functionsweusetheso-called
�

-notations,seetable3.1.
We denoteby pol thesetof all polynomialfunctions,i.e. pol � �

� �

����	

�

�

. Similarly, we denoteby
polylog � �

�
�

���������

�

	��

.

3.3 Graph Theory

A graph - consistsof a setof nodes(alsoknown asvertices)
�

andan edgeset 	 . The orderof - is
de�ned asthenumberof nodes

�

 , while thesizeis givenby  	  . We denotethenodesetof - by
�

�

-

�

,
andanalogouslytheedgessetof - by 	

�

-

�

. We distinguishdirectedandundirectedgraphs.Theedgeset
of a directedgraphsconsistsof pairs

�

� ' �

�

for vertices� �� � , � '�� �

�

. In undirectedgraphstheedges
setconsistsof subsetsof

�

of cardinality2, i.e. 	

�

� � � '����  � ' � �

�

� . Thedegreeof anundirected
graphis themaximumnumberof edgesincidentto a node.
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A graph- + is asub-graphof agraph- if
�

�

-3+

�

� �

�

-

�

and 	

�

- +

�

�

	

�

-

�

. A path � from node�

�

to node��� of adirectedgraphis asub-graphwith nodes
�

�

�

'������ ' ���

�

suchthat 	

�

�

�

� �

�

���)' ���




�

�



�

�

�

� �

� �

� and 	

�

�

�

� �

�

� ����' � �




�

� 

�

�

�

� �

���

� in thecaseof anundirectedgraph.If
�

+

� �

�

-

�

then
theinducedsub-graphof

�

+ of - is thesub-graphof - with nodeset
�

+ andmaximumnumberof edges.
A cycle is a pathwith at leastoneedgeandthe startingandendingnode. A directedacyclic graph

(DAG) is a directedgraph,wherenocyclecanbefound.
A connectedcomponentof anundirectedgraphis asub-graph- + wherefor all nodes� '�� in - + thereis

apathfrom � to � . All graphscanbeseparatedinto connectedcomponentsof maximumsize.Thenumber
of thesesub-graphsis calledthenumberof connectedcomponentsof anundirectedgraph.

3.4 Probability Theory

We denotetheprobabilityof anevent � by P
�

�

�

andtheconditionprobabilityof aneventby

P
�

�  �

�

� �

P
�

�

�

�

�

P
�

�

� �

Two events� and � areindependentif andonly if

P
�

�  �

�

� P
�

�

�

�

If this is not thecase,then � and � arecorrelated. � and � arecalled
� negativelycorrelated, if P

�

�  �

�

� P
�

�

�

and

� positivelycorrelated, if P
�

�  �

�

� P
�

�

�

.

andtheexpectationof a randomvariable� by

E
�

�

�

� �

�

�

���

( � P
�

� � (

�

�

Basicpropertiesof theexpectationare
� E

�

� ���

�

� � � E
�

�

�

.

� E
�

�

�

�

�

� E
�

�

�

�

E
� �

�

.

� If two randomvariables� and
�

areindependent, i.e. for (*'

�

�

�

: P
�

� � ( 

�

�

�

�

� P
�

� � (

�

,
thenE

�

� �

�

�

� E
�

�

�

� E
� �

�

.

Theconditionalexpectationof a randomvariable
�

with respectto anevent � is de�ned by

E
� �

 �

�

� �

�

+ ���

�

� P
� �

�

�

 �

�

�

A fundamentalpropertyof theconditionalexpectationis thatfor any randomvariables� '

�

:

E
� �

�

� E
�

E
� �

��

� �

�

Variance Theemvarianceof a randomvariable� , denotedby
� �

�

�

, is de�ned by
� �

�

�

� � E
�

�

� � 	

�

�

�

�

�

�

�

Thenumber� �

	

� �

�

�

is calledthestandard deviationof � .

Mark ov Inequality Let � beanon-negativerandomvariable.Thenfor any ! � & ,

P
�

� � !

�

� E
�

�

�

!

�
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Chebyshev Inequality Let � beanarbitraryrandomvariable.Then,for every ! � & ,

P
�

 � � E
�

�

�

 � !

�

�

� �

�

�

!

�

�

Basicprobability distributions A randomvariable � is uniformlydistributedover a �nite set � �

�

if for all ( ��� :

P
�

� � (

�

�

�

 � 

�

A randomvariable� is a binomialdistribution �

�

 � if for a � �

�

&�'

���

and
	

� � � we have

P
�

� � !

�

�

�

	

!  

�

�

�

�

� �

�

� 4

�

�

For its expectationandvariancewehave

E
�

�

�

�

	

� �

� �

�

�

�

	

� �

�

�

� �

�

�

A randomvariable � is geometricallydistributed if thereis a parameter� �

�

&�'

� �

suchthat for all
! � � �

P
�

� � !

�

�

�

�

� �

�

�

4

�

� �

Chernoff Bound If �

�

'�������' �
� areindependentbinaryrandomvariables,thenit holdsfor all 0 � & for

�

�
�

�

�

�

�

�

�

� � and
#

� E
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�

�

that
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�
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�

�

0

� #

�
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4 �
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,��
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����� �
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P
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� �

�

� 0

� #
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4��
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�

Martingales A sequenceof randomvariables�

�

' �

�

'������ is a martingaleif for all
�

�

�

E
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�
�

 �
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'�������' �
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� �
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Azuma Inequality Let �

�

' �

�

'������ bea martingalesatisfyingthepropertythat  � � � � �
4
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� � for all
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. Thenfor any � � & ,
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� �
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� �
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� �
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3.5 Geometry

We usein the ! -dimensionalEuclideanspace
� �

thestandardnorm

  � '��  
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�  � � �  �
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�
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� � � ���
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���

,

�

andtheabsolutenorm(Hammingdistance)
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The � -skeleton[KR85, Vel92] of a setof points is a graph,de�ned to containexactly thoseedges(a,b)
suchthatnopointc formsanangle �

�

� � � ' � � �

�

greaterthan �)���

4

�

���

� (if ���

�

) or � � �1� �

4

�

� �

� (if
���

�

). Equivalently, if ���

�

, the � -skeletoncanbede�ned in termsof theunionU of two circles,each
having

�

� ' �

�

asa chordandhaving diameter�	  � '� �

� . Edge
�

� '�

�

is includedin this graphexactly when
U containsnopointsotherthan � and � .

If � �

�

, an edge
�

� ' �

�

is includedin the � -skeletonexactly whenthe circle having ab asdiameter
containsnopointsotherthana andb. The1-skeletonis alsoknown astheGabrielgraph[GS69].

For a nodeset
�

in
���

anda path � �

�

�

�

'�������' � �

�

thestretch-factorof � is for �

�

�� � � de�ned
by ���

�

�

�

' � �

�

�

� �

�

' � � �

� , where���

�

�

�

' � �

�

� ���

� 4

�

� "

�

  ���)' � �




�

�

� . In agraph� is calledtheminimum
pathif for given � '�� it minimizes ���

�

� '��

�

. A graphhasa stretchfactor � if for all nodes� , � thereis a
connectingpathwith stretchfactorof atmost � . We call suchgraphs� -spanners.

Theminimumspanningtree(MST) of agivengraph- is aspanninggraphof - wherethecost,i.e. the
sumof all edgelengths,is minimized. Suchgraphscanbevery ef�ciently constructedby thealgorithms
of PrimandKruskal.

3.6 Computational Complexity

We follow thenotationsof [Pap94] and[Rei90] for a shortdescriptionof someimportantmodelsof com-
putationalcomplexity.

3.6.1 Machine Models

We give a roughoverview over machinemodelsrelevantto this dissertation.In generalonedistinguishes
betweensequentialmachinemodelsandparallel machinemodels. Themachinemodeldescribingmod-
erncomputingdevicesmostaccuratelyis therandomaccessmachine.Wheneverwedescribeanalgorithm
we measuretime andspacebehavior by this sequentialmachinemodel. Apart from this machinemodel
we will alsousethe (non-deterministic)Turing machineto describean algorithm. We now give a short
overview of thesemodels.

The deterministic Turing machine(DTM)

This sequentialmachinemodelwasintroducedby Alan Turing for theinvestigationof theprinciplecom-
patibility of problems. Every computingstepof the Turing machineinvolvesonly somesymbolsof an
alphabet,which arepositionedon oneor severalconstantnumberof tapes.A tapeis a non-endingstring
of a discretesymbolset,calledalphabet.The Turing machinemay accessonly the symbolat a special
position,calledheadposition,andafterperformingacomputationalsteptheTuringmachinemaymoveits
headonestepto theleft or theright.

Every stateof theDTM determinesthecomputation.TheTuring machineis completelydescribedby
���

'�� '
	 '
�

�

'
��

�

. The DTM hasa �nite numberof states
�

. Specialstatesarethe startingstate �

� and
the �nal state ��� . After changingthe symbolsat the headpositionsandmoving the heads,the Turing
machinemay switch to a new state(dependingon the symbolsreadon the tapes). More formally, the
completebehavior of sucha ! -tapeTuring machinecanbe describedby a so-calledtransitionfunction

	 �

�

���

� �

�

���

�

� ��� '���'

�

�

�

, where
�

describesthesetof states,� thealphabet,and � '���'

�

themotiondirectionof theheadona tape.Inputsaregivenon the�rst tape.At thebeginningall tapesare
empty, i.e. they are�lled with thesamesymbol.

The output is written on the last tape. If the Turing machinecomputesonly a predicate,we call the
machineanacceptor.

The non-deterministic Turing machine(NTM)

Here,wereplacethetransitionfunctionof aDTM with atransitionrelation 	

�

�

���

�

�

�

���

�

� ���

'���'

�

�

�

. For eachstate-symbolcombination,theremaybemorethanoneappropriatenext step—ornone
at all.
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A non-deterministicTuringmachineacceptsaninput if thereexistsavalid sequenceof transitionssuch
thattheTuringmachinetransitsfrom theinputcon�gurationto acceptingcon�guration.This interpretation
of theoutputbehavior of theNTM makesit dif�cult to predicttheoutputusingothermodels:In everyround
thenumberof possiblecon�gurationsmaygrow exponentially.

The RandomAccessMachine (RAM)

Thedatastructureof therandomaccessmachine(RAM) is anarrayof registers,eachcapableof containing
anarbitrarily large integer. RAM instructionsresemblethe instructionsetof actualcomputers,including
directandindirectaddressingof theregisters,addition,multiplication,andif-then-else.Theprogramis a
sequenceof elementarycommands.Loopscanbeimplementedusinggoto s. Recursiveprogramsarenot
available,but canbeeasilyimplementedin machinemodelwithout any additionaltime.

TheRAM givesa morerealisticmodelof acomputerhaving randomaccessto memory. However, if a
RAM computesa solutionin time � usingthe

�

contiguousmemorycellshaving maximalbit length � ,
thenaTuringcanperformthesamecalculationin time � �

�

� � andspace
�

� � . Hence,whenweconsider
polynomialcomplexity classesfor which it doesnot matterwhetherthe underlyingsequentialmachine
modelis a deterministicTuringmachineor a RAM.

Whenwespeakabouttherunningtimeof algorithmswereferto therunningtimeof animplementation
onaRAM, if notstatedotherwise.

The Parallel RandomAccessMachine (PRAM)

In this thesiswe will alsopresentsomeef�cient parallelalgorithms.Theunderlyingmachinemodelis a
parallel randomaccessmachine(PRAM). It consistsof an(unbounded)seriesof parallelprocessorsbased
on the RAM model. Every processorcanuselocal aswell asglobal memory, which both arerandomly
accessibleseriesof registers.Furthermore,eachprocessorhasaccessto its index number. All processors
usethesameprogramandwork synchronouslyafterbeingstartedat thesametime.

Of coursethe accessto the global memorycan lead to con�icts if morethanoneprocessortries to
changetheentryof a globalregister. Thereforethefollowing modelsareconsidered:

1. exclusiveread(ER): Only algorithmsarevalid whereprocessorsdonot readsameglobalregisterin
thesameround.

2. concurrentread(CR): Arbitrary many processorscansimultaneouslyreada memorycell.

3. ownerwrite (OW): For eachmemorycell thereexistsa dedicatedowner, who alonemaywrite into
thiscell. Otherprocessorsareallowedto readthis cell.

4. exclusivewrite (EW): Only PRAM algorithmsarevalid wherewrite-memorycon�icts donotappear.

5. concurrentwrite (CW): No restrictionsapplyfor thewrite-accessto memory.

The following modelsdescribethe con�ict solution, if collisionsoccur, i.e. two processorstry to
write to thesamememorycell.

(a) common: Only simultaneouswritesarevalid, if all con�icting processorstry to write thesame
value.

(b) collision: If more than one processorwrites to a register, a specialcon�ict symbol will be
written.

(c) priority: Accordingto someranking,the processorwith the highestpriority writes its value
into theregister.

Wheneverwe referto PRAMsin this thesiswe talk abouttheCRCW-PRAM-modelwherewrite con-
�icts aresolvedin thecommonmodel(5a).
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BooleanCir cuits

In computationalcomplexity Booleancircuitsarealsoa methodof describingparallelalgorithms.Depth
andsizearethemostofteninvestigatedcomplexity measuresof Booleancircuits.Let � � denotethesetof
Booleanfunctions � ��� &�'

�

�

�

�

� &�'

�

� .
A circuit is a directedacyclic graph(DAG) wherethesourcesconstitutetheinputs (

�

'�������')( � andthe
sinksrepresenttheoutputs

�

�

'������ '

�

� .
Circuitswill bede�nedoverthestandardbasisof AND, ORandNOTgates.ANDandOR-gatesarenodes

with an in-degree2 while theNOT-gatehasin-degree1. Thecomputationof an � -ary Booleanfunction
followsstraight-forwardby applyingthedesignatedfunctionof thenodeto theinput values.Theresultof
theoutputof thecircuit � on input ( is called � �����

�

(

�

.
BecauseBooleancircuitshave a �x ed input size,oneconsidersfamiliesof Booleancircuits. Sucha

family of circuits is calleduniform, if a deterministicTuring machinecanoutput the circuit for
	

input
bits usingonly space

���������
	��

(The output tapecannotbe readandthus is not accountedfor the space
complexity).

3.6.2 Complexity Classes

Traditionally, complexity classesarede�ned for decisionproblems,which solve predicates(e.g. givena
graphdoesthereexists a Hamiltoniancycle). Furthermore,thesepredicatesaredescribedby the setof
inputsgivena positive output,wherethe inputsaregivenaswordsover analphabet� . Thesesinput sets
arecalledlanguages�

�

� & anda machinethatcandecidewhethera wordof sucha languageis givenas
input,acceptsthelanguage.However, it justcomputesthebinaryoutputof apredicatede�nedoverstrings.

For a function � � � �

�

� � a machinedecidesa languagewith resource� , if thereis a machineof that
machinemodelfor every input of length

	

, at most �

��	��

of this resourceis used.We needthefollowing
basiccomplexity classes:

Theclassof languages(predicates)thatcanbedecided

�

� � DTime
�

�

�

: � canbedecidedby a deterministicTuringmachinein time �

��	��

�

� � NTime
�

�

�

: � canbedecidedby a non-deterministicTuringmachinein time �

��	��

�

� � Space
�

�

�

: � canbedecidedby a deterministicTuringmachinein time �

��	��

�

� �

���
�

: Thereexistsa uniform circuit family �

�

'��

�

'������ ' suchthat for all
	

and ( ��� & '

�

�

� :
res�

�

�

(

�

�
�

�

(

�

andthedepthof circuit �
� is boundedby

���������

�

	��

andthesizeof circuit �
� is

polynomial.

Importantcomplexity classesderivated from this de�nition are
�

� � DTime
�

POL
�

and
���

� �

NTime
�

POL
�

.
For an intuition

�

canbe seenastheclassof problemsef�ciently solvableby a sequentialmachine,
while theclass

���

� � �

�

���

�

describestheclassof problemswhich canbe solvedvery ef�ciently by
parallel computers.For this note that any problemin

���

�

can be solved by a CRCW-PRAM in time
���������

�

	��

with a polynomialnumberof processors.
In the areaof computationalcomplexity very few problemsareknown whereonecanactuallyshow

thatit is computationallyinfeasibleto solve them.At leastit is possibleto show for a numberof problems
thatthey are

���

-hard:If an
���

-hardproblemcanbesolvedin polynomialtimeonasequentialmachine
model(like DTM or RAM), then

���

collapsesto
�

i.e.
���

�

�

. This is oneof the mostimportant
openquestionin computerscience,andmostof theresearchingcommunitybelievesthatsuchacollapseis
not thecase.

The techniqueto show suchrelative resultsrelies on polynomial time reductionsand is excellently
presentedin [GJ79]. A problem�

� (alsoknownaslanguage,predicate)canbereducedto �

� in polynomial
time,denotedby �

�

�

pol �

� , if thereis a function � computablein polynomialtimesuchthatfor all inputs
( : �

�

�

(

�

� �

�

�

�

�

(

� �

, in languagenotation: ( � �

�

��� �

�

(

�

� �

� .
A problemis

���

-hard,if everyproblemof
���

canbereducedto thisproblem.An
���

-hardproblem
is

���

-complete,if it is in
���

. Therearenumerousnatural
���

-completeproblemsandif oneof these
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problemsis in
�

, then
���

�

�

, which is (if we recall the differencebetweenthe underlyingmachine
models)absolutelycontra-intuitive.



Chapter 4

Broadcastingin Planar and
DecomposableGraphs

4.1 Intr oduction

Broadcastingin processornetworksmeansdisseminatingasinglepieceof information,which is originally
known only to somenodes,calledthesources,to all membersof thenetwork. This is donein a sequence
of roundsby pairwisemessageexchangeover thecommunicationlinesof thenetwork. In oneroundeach
processorcansenda messageto at mostoneof its neighbors.The goal is to inform everybodyusingas
few roundsaspossible.This numberis calledtheminimumbroadcastingtimeof thenetwork. This short
descriptionconstitutesthetelephonemodelfor broadcastingin undirectedgraphs.

Broadcastingis a basictask for multiprocessorsystemsthat shouldbe supportedby the topologyof
the network. This problemhasbeenstudiedextensively, mostly in the caseof a singlesource– for an
overview see[HHL88, HKMP96]. In severalpapersthebroadcastcapabilitiesof well known familiesof
graphslike hypercubes,cube-connected-cycles,shuf�e exchangegraphsor de Bruijn graphshave been
investigatedandcompared.In [MJ90] Hromkovi �c, Jeschke andMonienhavestudiedtherelationbetween
thebroadcastingtimeandthetimefor solvingtherelatedgossipingproblemfor specialfamiliesof graphs.

On theotherhand,onehastried to �nd optimaltopologiesfor networkswith a givennumberof nodes
suchthat the broadcastingtime is bestpossible.Herethe worst caseover all nodesasthe singlesource
shouldbeminimized. Theproblemgetsmorecomplicatedwhenrestrictingto graphsof boundeddegree.
In [LP88] LiestmanandPetershave studiedseveralclassesof boundeddegreegraphsin this respect,see
also[BHLP92]. Balancedbinarytreesalreadyachieve a broadcastingtime of logarithmicorder, therefore
thequestionis theoptimalconstantfactorin front of thelogarithm.

In this chapterwe will investigatetheoptimizationproblemfor arbitrarynetworks. Thatmeans,given
a graphand a subsetof nodesas sources,determineits speci�c broadcasttime or more general�nd a
broadcastscheduleof minimal length. This problemin generalis

���

-complete.We will show that this
propertyremainseven if one restrictsto planargraphsof boundeddegreeor constantbroadcasttime.
Furthermore,theproblemcannotbesolvedapproximatelywith anarbitraryprecisionunless

�

�

���

.
On the otherhand,we will investigatefor which classesof graphsthis problemcanbe solved ef�-

ciently. All that seemsto be known is that broadcastingis easyfor treesasshown by Slater, Cockayne,
andHedetniemiin [SCH81]. Many combinatorialoptimizationproblemsfor graphshavebeenshown to be
solvablein polynomialsequentialtimeandevenin poly-logarithmicparalleltime for moregeneralclasses
of graphs: graphsof boundedtree-width(seefor examplethe paperby Arnborg, LagergrenandSeese
[ALS91]) andgraphsof smallconnectivity ([Rei91a]) – anoverview canbefoundin [Rei91b].

The broadcastingproblemseemsto be moredif�cult in this respectsinceit doesnot have the �nite-
state-propertyor a boundednumberof equivalenceclasses.Thusthemethodsof [ALS91] and[Rei91a]
arenotdirectlyapplicable.Still, modifying theframework developedin [Rei91a] wecanshow thatbroad-
castingbecomeseasyfor graphswith gooddecompositionproperties.For this purposewe have to extend
thenotionof graphdecompositionto measureits propertiesmoreexactly. A carefulinspectionof thepos-

27
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sibilities how informationcan�o w within a componentandbetweendifferentcomponentsof a graphwill
be required. For the internal �o w componentsthat areconnectedbehave most favorably, but in general
connectivity cannotalwaysbe achieved by a treedecompositioninto small components.The algorithm
even works for a moregeneralversionof the broadcastingproblem. Furthermore,it canbe parallelized
ef�ciently to yield

���

-solutions.
As a conclusionwe cansaythatcombiningthesenew negativeandpositiveresultstheparametersthat

make broadcastingdif�cult aredeterminedquiteprecisely. Thecomplexity of this problemjumpsfrom
�

to
���

dependingon theinternalstructureof thenetworks.

4.2 De�nitions and Previous Results

We statea formalde�nition of theBROADCASTING DECISION PROBLEM [GJ79], which is alsoknown as
Broadcastingin theTelephoneModelandthesingle-portinterconnectionarchitecture [Rav94].

De�nition 1 Let - �

�

�

'�	

�

be a (directed)graphwith a distinguishedsubsetof vertices
�

�

���

, the
sources, and � & � � � bea deadline. Thetaskis to decidewhetherthere existsa broadcastschedule, that
is a sequenceof subsetsof edges

	

�

' 	

�

'�������'�	

!

(

4

�

'�	

!

(

with theproperty
�

!

(

�

�

, where for
�

� & wede�ne
�

�
� �

�

�
4

�

�

� � 

�

�*' �

�

� 	
� and � �

�

�
4

�

�

andrequire

	
�

�

�

�

�*' �

�

� 	 �� �

�

�
4

�

� � � �

�

� �

�

�
4

�

�  	
�

�

�

� � � �

�

�



�

�

�

Let usdistinguishbetweenthe MULTIPLE SOURCES BROADCASTING PROBLEM MB andthe restricted
versionwith onlya singlesource: theSINGLE SOURCE BROADCASTING PROBLEM SB. �

Themeaningof thesets	�� and
�

� is thefollowing:
�

� denotesthesetof nodesthathave receivedthe
broadcastinformationby round

�

. For
�

� & this is just thesetof sources.By thedeadline� & theset
�

!

(

shouldincludeall nodesof thenetwork. 	
� is thesetof edgesthatareusedto sendinformationin round

�

,
whereeachprocessor� �

�

�
4

� canuseatmostoneof its outgoingedges.
MB (denotedND49 in [GJ79]) hasshown to be

���

-complete.

Theorem1 [SCH81] MB for graphswith unboundeddegreeis
���

-complete, evenif restrictedto a �xed
deadline� & �

�

.

For a�x eddeadlinethenumberof sourcesobviouslyhasto grow linearlyin thesizeof thewholegraph.
But eventhesinglesourceproblemis dif�cult, in thiscasethedeadlinehasto grow at leastlogarithmically.

Theorem2 [SCH81] SBfor graphswith unboundeddegreeis
���

-complete.

The proofsof both resultswerepublishedby Slater, Cockayne,andHedetniemi([SCH81]). For the
secondresult,their reductionof the3-dimensionalmatchingproblemto SB requiresa deadlineof order

�

	



�

 for thebroadcastproblem.Furthermore,in thesamepaperit is shown:

Theorem3 [SCH81] SBcanbesolvedin linear timefor trees.Thisalsoholdsfor theconstructiveversion
of this problem�nding anoptimalbroadcastschedule.

Previous resultsconcerningthe approximationof the broadcastingproblemcanbe found in the next
chapter.

4.3 New Results

All theoremsabovecanbeimprovedsigni�cantly. For thelower boundsit suf�ces to considerundirected
graphs,theupperboundsgivenbelow alsohold for themoregeneralcaseof directedgraphs.
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4.3.1 Lower Bounds

Designingmorecomplicatedreductionsfrom the3-dimensionalmatchingproblemandthe3-SAT problem
we canshow:

Theorem4 MB restrictedto planar graphswith degreeat most
�

and a �xed deadline � & at least � is
���

-complete.

After apreliminaryrepresentationof Theorem4Middendorfwasableto improveit to degree3anddeadline
2 [Mid93].

Thebroadcastingproblemwith a singlesourcedoesnotbecomesubstantiallyeasier, evenfor bounded
degreegraphswith a logarithmicdiameter.

Theorem5 SBrestrictedto graphs- �

�

�

' 	

�

withdegreeat most� is
���

-complete, evenif thedeadline
growsat mostlogarithmicallyin thesizeof thegraph.

Also planaritydoesnotmake thingsmuchsimplerasthefollowing resultshows.

Theorem6 SB restrictedto planar graphs - �

�

�

' 	

�

of degree � is
���

-complete(in this casethe
deadlinegrowslike

	



�

 ).

4.3.2 Upper Bounds

Onthepositiveside,wewill extendtheclassesof graphsfor whichthebroadcastingproblemcanbesolved
fast.For this purpose,differentwayson how a graphcanbedecomposedinto smallercomponentswill be
considered:by removing edges(edgeseparators)or by removing nodes(nodeseparators).Theconceptof
graphdecompositionbasedonthe ! -connectedcomponentsof agraphis developedin [Hoh90] and[HR89]
andis stronglyrelatedto thenotionof tree-widthintroducedby RobertsonandSeymour[RS83,RS86].

In [Hoh90] and[HR89] only nodeseparatorshave beenconsidered.For the broadcastingproblema
slightly differentnotionof graphdecompositionseemsto bebettersuited.Furthermore,theweakernotion
of edgeseparationis of interestbecausethe analysisin this caseis slightly lesscomplicatedandyields
betterbounds.For ef�ciency reasonsanimportantpoint is to getgoodboundsontheroundnumbers,when
nodesmayreceivethebroadcastinformation.Thingsareeasyif all componentsof thegraphdecomposition
areconnected,which in generalcannotbeassumed.

Herewe restrictonly to decompositionsthatgeneratea treeof components.Usingmorecomplicated
techniquesotherdecompositiongraphscanalsobehandled.For thepurposeof decomposinga graph- it
suf�ces to consideronly thecaseof undirectedgraphs.Thus,if - is directedin the following de�nition
we simplymeanthecorrespondingundirectedgraph.

De�nition 2 A graph
�

�

�

�
�

' 	

�

�

is an edgedecompositiongraph of a graph - �

�

�

'�	

�

if the
followingconditionshold:

� Thenodes-
� of

� �

representinducedsubgraphs -
�

�

�

�

�
'�	

�

�

of - such that the
�

� are pairwise
disjointand

�

�

�
�


 ���
�

�

� .

�

� -
�

' -������ 	

�

iff there is anedgebetweena nodeof -
� anda nodeof -�� �

�

is calledan edgedecompositiontr eeof - if
�

is a tree. De�ne thecut of an edge � - �)'1-
�

� , thecut
of a node -�� , and the cut of

�

as thoseedgesof - that connect- � and -
� , resp.connect-�� to other

componentsor connectanypair of components:

cut
�

-
�

'1-��

�

� � ��� �*' � ��� 	  � �

�

�
� ��� � �

�

� � for
�

�� � '

cut
�

-��

�

� �
	

�
��




�

���

��� �

cut
�

-��)' -
�

�

and cut
�

�

�

� �
	

� 

���)�

cut
�

-��

�

�

Theborder of a node-�� are thenodesof othercomponentsthathaveconnectionsto - � :

border
�

-
�

�

� � � � '� �*' � ��� cut
�

-
�

�

� ��� � �

�

�
� �
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V1

m

n

V V V V2 3 4 m

Figure4.1: A (2n,n,1)-edgedecompositionof the � �

	

-grid

Figure4.2: A (4,2,2)-edgedecompositionof acycle

A graph - �

�

�

'�	

�

is �(���)�����&� –edgedecomposableif there existsan edge decompositiongraph
�

�

�

� �

' 	

�

�

such that for all -
�

�

� �

�

 cut
�

-��

�



� !

' 

�

�	

� #

and %&%

�

-��

��

� '

where %&%

�

-
�

�

denotesthe numberof connectedcomponentsof -
� . In this casecut

�

�

�

will be called a
������������ –edgeseparatorof - . �

Notethatthedecompositionprocesspartitionsa graphinto differentcomponents.Eachcomponent- �

itself maybeconnectedor fall into severalconnectedcomponents.For example,a � �

	

-grid is
�

�

	

'

	

'

�

�

–
edgedecomposableinto a tree,seeFigure4.1. For a cycle of length

	

the parametersare
�

�

'���'��

�

, see
Figure4.2. Taking thenumberof connectedcomponentswithin eachcomponentinto considerationwill
allow usto boundthealgorithmiceffort to solve thebroadcastingproblemin a nontrivial way.

Otherapproacheshave beenproposedhow to decomposea graphinto smallercomponents,basedon
the notionsof tree-width([RS83], [RS86]), seefor example[ALS91],[BK91],[Lag90]. It is known that
graphswith smalltree-widthallow theef�cient solutionof otherwiseinfeasibleproblemslikeHamiltonian
circuit or Independentset. For anoverview see[Bod93]. However, it is anopenproblemwhetherthis is
alsothecasefor thebroadcastingproblem.

In the following we assumethatanedgedecompositionof thenetwork is givenandarenot bothered
how to obtainsucha decomposition.
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Theorem7 For a graph - �

�

�

'�	

�

of maximaldegree � with a given
� !

'

#

' �

�

–edge decompositiontree
MB canbesolvedin time

�

�

���
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�



�



�




�

� !

�

#��

�




�




�

�

�

�

 	 



�

  

�

 

�

# ��!

� �

�	�

� � �



�



�

� !

�

�

�

�

����� � !

�

#��

�

#

�

�����

�

�

�

Thealgorithmwe have designedactuallyworks for a moregeneralversionof thebroadcastingprob-
lem, in which thesourcesmayreceive thebroadcastinformationin differentroundsandeachnodeof the
network mayhave its individualdeadline.Let uscall this thegeneral broadcastingproblemGB (A formal
de�nition canbefoundonpage43).

Thetime boundbecomespolynomialfor classesof graphsthatcanbedecomposedinto smallercom-
ponentsusingnot too largeseparators.

Corollary 1 Restrictedto graphs- �

�

�

' 	

�

with

�

�

�

�

	 ���

�

	 ���	 ���

�

�

'

�

�

	 ��

�

	 ���	 ���

�

�

'

�

�

�

� �

–edgedecompositiontreesor

� to graphswith boundeddegreeand
�

�

�

	 ��

�

	 ���	 ���

�

�

'

�

������� 	��

'

�

�

�

� �

–edgedecompositiontrees

MB (andevenGB)canbesolvedin polynomialtime.

So far, we have only consideredthedecisionversionof MB, resp.the taskto determinetheminimal
lengthof a broadcastschedule.But applyingideassimilar to theonein [Rei91a] onecanalsodesignan
algorithmfor constructinganoptimalbroadcastscheduleby usingthesametechniquesasfor thedecision
problem.

Theorem8 Constructingan optimal broadcastschedulecanbe donein thesametimeboundsas stated
for thedecisionproblemin Theorem7.

Using the machinerydevelopedin [Rei91a] we canalsoderive a fastandprocessoref�cient parallel
algorithm. Even if the decompositiontreeis not nicely balancedusingpathcompressiontechniquesthe
problemcanbesolvedwith alogarithmicnumberof iterations(with respectto thenumberof components).
Thebasictaskonehasto solve is how a chainof two componentscanbereplacedby a singlecomponent
thatexternallybehavesidenticallywith respectto broadcasting.

Theorem9 For a graph - �

�

�

'�	

�

of maximaldegree � with a given
� !

'

#

' �

�

–edge decompositiontree
MB canbesolvedon thePRAMmodelin parallel time

�

�

�����



�

 �

�

� �

� � �



�



�

� !

�

�

�

�

� � � � !

�

#��

�

#

�

� � �

�

�

�

with a processorboundof # ��!

�

�

�	�

� � �



�



�

� !

�

�

�

�

����� � !

�

#��

�

#

�

�����

�

�

�

For nicelydecomposableclassesof graphstheseboundsput theMB-probleminto
���

.

Corollary 2 Restrictedto graphs- �

�

�

' 	

�

with

�

�

�

�

	 ���

�

	 ���	 ���

�

�

'

�

�

	 ��

�

	 ���	 ���

�

�

'

�

�

�

� �

–edgedecompositiontreesor

� to graphswith boundeddegreeand
�

�

�

	 ��

�

	 ���	 ���

�

�

'

�

������� 	��

'

�

�

�

� �

–edgedecompositiontrees

MB is in
��� �

.

Furthermore,we considera decompositionof graphswhich is moreclosely relatedto the notion of
tree-width.

De�nition 3 A graph
�

�

�

� �

' 	

�

�

is a nodedecompositiongraph of a graph - �

�

�

'�	

�

if
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Figure4.3: A (8,8,3)-nodedecompositiontreeof anexamplegraph

� thenodes- � of
� �

representsubgraphs - � �

�

�

� ' 	 �

�

of - such that
�

� � ��
 ����

�

� and 	 �

� � 
 ���)� 	 � ,

� for each node� holds: if � �

�

�

�

�

� then
�

containsa path � from
�

� to
�

� such that � belongsto
everynode

���

in � .
�

is called a node decompositiontr ee of - if
�

is a tree. Figure 4.3 givesan exampleof a node
decompositiontree.

Similarly to above, wede�ne thecut of an edge � - �1'1-
�

� , of a node -�� , andof
�

ascut
�

-��1'1-
�

�

� �

�

�

�

�
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cut
�

-
�

�

� � 	

�
��




�

���

��� �

cut
�

-
�

' -��

�

' cut
�

�

�

� � 	

�

 ���
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Theborder of a node-�� are thenodesof othercomponents-
� thatareconnectedto cut
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A graph - �

�

�

' 	

�

is called ���������)�&� –nodedecomposableif there existsa nodedecompositiongraph
�

�

�

�
�

' 	

�

�

such that for all -�� �

�
�

holds:
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�

-
�
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� #

' and %'%

�

-
�
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In this casecut
�

�

�

is a �(���)������ –nodeseparatorof - . �

Theorem10 Givena graph - �
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of maximaldegree � with a
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#
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–nodedecompositiontree
MB canbesolvedin time

� �



�



�




�

�

� �

� �

�

�

�

!

�

#��

�




�

�

�

�

�

�

�

�




�

�

�
� �

�

�

�

�

�

# ��!

� �

� �

�����



�



�

!

�

����� �

� �

!

�

#��

�

� #

�

!

� �

�

�

� � �

�

�

�

Similarly, wegetin theparallelcase:

Theorem11 For graphsof maximaldegree � with a
� !

'

#

' �

�

–nodedecompositiontreeMB hasa parallel
solutionof timecomplexity
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andprocessorcomplexity #���!

� �

� �
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�
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As in thecaseof edgeseparatorsfor nicelynode-decomposablegraphsweget:
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Corollary 3 Restrictedto graphs- �
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�

with

�

�

�

�

�

�

'

�

�

	 ��

�

	 ����	 ��

�

�

'

���

�

� �

–nodedecompositiontrees,or

� with maximaldegree �

�

�

�

	 ����	 ��

�

	 ����	 ���	 ���

�

�

and
�

�

�

	 ���

�

	 ����	 ��

�

�

'

�

�

	 ���

�

	 ���	 ����	 ��

�

�

'

�

�

�

� �

–nodedecomposi-
tion trees,or

� with constantdegreeand
�

�

�

	 ��

�

	 ���	 ���

�

�

'

�

������� 	��

'

�

�

�

� �

–nodedecompositiontrees

MB canbesolvedin polynomialtime, evenin
��� �

.

All theseboundsapplyto theGeneralbroadcastingproblem(GB) aswell astheconstructivevariantto
determineabroadcastingschedule.

Theremainingpartof this chapteris organizedasfollows. In thenext sectionthe
���

-completeness
of multiple sourcebroadcastingin planar, boundeddegreegraphsis proven(Theorem4). Section4.5de-
scribesasetof basicbuilding blocksthatareusedin thelowerboundproofsfor singlesourcebroadcasting.
In thefollowing two sectionswegivethemainideasof thereductionsthatyield Theorem5 and6. Ef�cient
algorithmsfor edge-,resp.node-decomposablegraphsaredescribedin thelasttwo sectionsof thischapter.

4.4 MB with Deadline4 is
���

±Complete

Let us �rst observe how a nondeterministicTuring machinecansolve the Multiple sourcebroadcasting
problem(MB).

Lemma 1 MB canbesolvedbya NTMin time
�

�



�



�

�

� � �



�



�

.

Proof: For a graph - �

�

�

' 	

�

with maximaldegree � speci�edby adjacency lists, a setof sources
�

� ,
anddeadline� &

�



�

 we cansolveMB by thefollowing nondeterministicstrategy:

Step1: For eachnode � ��

�

� chooseoneedge
�

��+/' �

�

� 	 with the interpretationthat � receivesthe
broadcastinformationfrom its neighbor��+ ( � � ��+ meansthat � doesnot receive the information
from somebodyelse).

Step2: Let
.

bethesubgraphof - consistingof theedgeschosenin step1. Verify that
.

hasnodirected
cycle. If this conditionholds

.

is a forestof rootedtreeswith edgespointingaway from their roots.

Step3: Solvethebroadcastingproblemfor thetreesconstructedin step1. Analyzingthetimecomplexity
of thestrategy in [SCH81] for broadcastingin treesonecanshow thata RAM cansolve this stepin
time

�

�



�



�

. Hence,a Turingmachinecansolve it in time
�

�



�



� � � �



�



�

.

Thecorrectnessfollows from the fact thateachbroadcastingschedulecanbe describedby a directed
forest,in whichtheedgesarelabeledby theround,thebroadcastinformationis sentacrossthisedge.Step1
guessessucha forestandstep3 checkswhetherit is possibleto inform this forestwithin thedeadline� & .

�

The
���

-hardnessof MB will beprovedbyareductionof 3-DIMENSIONAL MATCHING (3DM [GJ79]):

De�nition 4 3DM Givena set �

�

� � � � � , and � , � and � aredisjointsetshavingthesamenumber
� of elements,decidewhether� containsa matching, i. e., a subset� +

�

� such that  � + �� � andno
two elementsof � + agreein anycoordinate. �

Thegraph- + � -

�

�3' � '�� '��

�

of aninstance
�

� '�� '�� '��

�

with �

�

� � � � � of the3DM problem
is de�ned asfollows: Eachelementof thesets� , � and � andeachtriple of � is representedby avertex.
Themembershiprelationbetweensetelementsandtriplesde�nestheedgesbetweenthesevertices.

- + � �

�

�

+ '�	 +

�

with
�

$ � � � �

�

 ( � ��� '

���

� � � �

�

 ( � � � '

�

� � � ���

�

�( � � � '

���

� � �

#

+



�

� � � '

�

+ � �

�

$

�

�
�

�

�

�

�

���

'

	 + � � �

� #

+

' �

�

�



�

� � '%�

�

�

�

$

�

�	�

�

�

�
� ��� ( �

�

�
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Thereductionwill usearestrictedversionof the3DM problem,whichis still
���

-complete[DF86]. For an
instance

�

� ' � '�� '��

�

of RESTRICTED PLANAR 3-DIMENSIONAL MATCHING the following properties
arerequired:

�

-

�

� '�� '�� '��

�

is planar.

� For eachelement( of �

�

�

�

� thereareatmost3 triplesin � containing( (thus,  �  is bounded
by � � where� � �  � ��  � ��  �  ).

Proof of Theorem4: Let
�

� ' � '�� '��

�

beaninstanceof 3DM with  �  � � andlet -3+ � -

�

�3' � '�� '��

�

bethematchinggraph.Thecorrespondingbroadcastinggraph - is obtainedby replacingeachnode � � �

�

� of - + by a chain � � 

� , � � 

� and � � 

�

of length3 (seeFigure4.4). The othernodesandedgesremain
unchanged.

�

$ 

� is chosenasthesetof sources,andthedeadlineis setto � .

-

�

� '�� '�� '��

�

� �

�

�

' 	

�

with

�

� �

�

$ 

�

�

�

$ 

�

�

�

$ 

�

�

�	�

�

�

�

�

� �

'

	 � � �

� #

+

'��

�

�



�

��� ' �

�

�

�

$

�

�	�

�

�

� � ��� ( �

�

�

�

�

�

� �


�

' � �


�

�

'

�

� �


�

' � �


�

�



�

� � � �

Thenodesets
���

'

�

�
'

�

$ 

�

'

�

$ 

�

'

�

$ 

�

' and
�

�

arede�ned asfollows.

�	�

� � � �

�

 ( � � � '

�

�
� � � �

�

�( � � � '

�

$ 

�

� � � �
�



�



�

� ��� '

�

$ 

�

� � � �
�



�



�

� ��� '

�

$ 

�

� � � �
�



�



�

� ��� '

�
�

� � �

#

+



�

� � � �

A, 1V     :

CV   :BV   :

a i,1

a i,2

a i,3bj gk

rmMV    :

G :

Figure4.4: Thebroadcastinggraphcorrespondingto aninstanceof the3DM problem

Observethat -

�

� '�� '�� '��

�

hasdegree4 andis planarif -3+ is planar.

Lemma 2 -

�

�3' � '�� '��

�

hasa broadcastscheduleof length3 iff � hasa matching.

Proof: Let � +

�

� be a matchingfor � , � and � . Thenthe following strategy informs all nodesof
-

�

�3' � '�� '��

�

within 3 rounds:

Round 1: The � sourcesin
�

$ 

� sendtheinformationto thenodesof
� �

�

� � �

#

�
�� � � + � which

representthetriplesof � + , hence
�

�

� �

�

�

�

���

� .

Round 2: The � sourcesinform thenodesin
�

$ 

� . The � nodesof
�

�

� informedin round1 inform the
nodesof

�
�

, thatmeans
�

�

� �

�

�

�

�

$ 

�

�

�
�

.

Round 3: Thenodesof
�

$ 

� sendtheinformationto thenodesin
�

$ 

�

, thenodesin
�

�

� to thenodesof
�

� , andthenodesin
�

$ 

� and
���

to thenodesof
�

�

�

�
�

� , thatis
�

�

� �

�

�

�

�

$ 

�

�

�

�

� �

�
�

�

�
�

�

�

�

�

.
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Since � + is a matchingfor � , � and � , thenodesin
� �

� caninform all nodesin
���

in round2, andall
nodesin

�

� in round3.
It is alsopossibleto inform thenodesin

� �

�

���

� in round3, becausethey canbematchedwith the
nodesin

�

$ 

�

�

� �

. Thiscanbeseenasfollows: Eachnodeof
� �

�

���

� is connectedto onenodeof
�

$ 

�

andonenodeof
� �

, whereaseachnodeof
�

$ 

� andeachnodeof
� �

is connectedto atmosttwo nodesof
� �

�

� �

� . Thuseachsubset
�

+ + of
� �

�

� �

� is connectedto a subsetof
�

$ 

�

�

���

of at leastsize 

�

+ +  .
Thereforethereexistsa matchingof

� �

�

� �

� with
�

$ 

�

�

���

.
For the otherdirectionobserve that eachnode � � 

�

�

�

$ 

� hasto inform � � 

� in the �rst or second
round. Thusit is only possibleto inform � nodes

�

+ of
� �

by round1 or round2. These� nodeshave
to sendtheinformationto the ��� nodesof

���

and
�

� . Thustheneighborhoodof
�

+ containsall nodesof
�

$ 

� ,
���

and
�

� . Sincenodesin
�

+ have degree3, the triplescorrespondingto
�

+ establisha matching
� + of � ' � '�� . �

�

4.5 Modular Construction of Dif�cult BroadcastNetworks

For thesinglesourceproblemthereductionto show
���

–hardnessis muchmorecomplicated.Wewill give
amodulardescriptionby �rst constructingaseriesof somebasicgraphswith specialbroadcastproperties.

De�nition 5 Let a graph - �

�

�

' 	

�

anda broadcastschedule
�

� 	

�

' 	

�

'������ for - begiven.The�r st
roundin which a node� getstheinformationis calledits starting round ���

�

�

�

. If � sendstheinformation
to a neighborin round � wecall � active in that round.Let ���

�

�

�

bethe�r st roundby which all neighbors
of � are informed.A node � is busy in

�

if it is activein all rounds���

�

�

�

�

�

'������ ' � �

�

�

�

�

�

is busy if all
nodesare busy. �

Observe thateachbroadcastschedulecaneasilybetransformedinto a busybroadcastscheduleof the
sameor smallerlength.Thereforewewill only considerbusybroadcastschedulesin thefollowing.

Theproof of Theorem6 is basedon an intricateconstructionof a specialbroadcastnetwork - . This
sectionprecedeswith an analysisof somespecialsubgraphsthat will be usedasbasicbuilding blocks.
Eachsuchsubgraph- + hasa designatedsetof input andoutputports. Subgraphswill beconnectedover
theseportsonly. If outputportsof - + areconnectedto input portsof anothersubgraph- + + we call - + + a
successorof - + , and - + apredecessorof - + + .

If the broadcastinformationis sentover sucha connectingedgewe saythat the edgeis usedin the
correspondinground.Obviously, eachedgedoesnothaveto beusedmorethanonce.The�nal network -

will bebuilt in suchaway thatin anoptimalscheduletheinput andoutputedgesof a subgraph-
+ haveto

beusedat speci�c times.

De�nition 6 Let, for a givenscheduleof - , the input edges �

�

' �

�

'������ ' �

� of a subgraph - + be usedin
rounds�

�

' �

�

'������ ' �

� . Thenthevector � ��� �

�

' �

�

'������ ' �

��� is calledan input time table of - + . Thesetof
all possibletime tablesis called the input time sheet 	

�

-3+

�

of - + . Analogously, wede�ne output time
tablesandoutput time sheets. �

The broadcastnetwork we aregoing to constructhasthe propertythat in optimal scheduleall input
edgesof a subgraphhave to beusedwithin a time interval of lengthat most2, thatmeansoptimal input
time tablesareratherrestricted.

De�nition 7 For a subgraph - + andaninput timetable � �
� �

�

' �

�

'�������' �

��� of - + let ��������

�

- + '��

�

denote
theminimal timethat elapsesbetweentheroundthebroadcastinformationenters - + (that is theminimal

�
� ) andthe�r st roundanoutputedgeof -3+ is used. �

A lowerboundfor thetimewhenaninputedge� of -3+ canbeusedis obtainedby addingupall delays
on theshortestpathfrom � to asource.
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De�nition 8 Let �

� betheuniquesourceof thebroadcastnetwork- , andlet path
�

�

�

'1- +

�

bethesetof all
pathsfrom �

� to thesubgraph - + of - . Thende�ne

� 

���

�

-

+

�

� �

�

� �

�

� path�

��� 

�

�

�

�

� crosses�

� ���

"

�

�

�

� �

� �
	 � �

� �

�

rm delay
�

-

+ +

' �

�

�

If a nodeof a subgraph - + is informedin round � we call � � dawn
�

- +

�

the relative round this nodeis
informed. �

Althoughedgesbetweensubgraphsareundirectedandthuscouldbeusedin eitherdirectionwe want
to ensurethat informationentersa subgraphonly at its input ports. A ghost messageis a messagethat
entersa subgraph- + throughoneof its outputports. To preventghostmessagesthefollowing properties
arehelpful:

1. All successorsof asubgraph-3+ havethesamedawn.

2. All input portsof - + canbeusedin rounddawn
�

-

�

�

� at thelatest.

3. Let the minimal numberof roundsthe informationneedsto reachan input port of - + startingat
anotherinput port of - + andusingonly edgesof - + betheghost time of - + . Theghosttime of all
subgraphswill beat least3.

Let uscall themappingfrom theinput time tablesof a subgraph-
+ to its outputtime tablesthebroadcast

relation � of - + , or moreformally:

De�nition 9 For thesetof graphs � describedbelowthebroadcastrelation

� � � � � � � � �

�

�

�

�

� �

�

� ���

is givenby
�

�

�

'�������' �
�

�

� �

�

- + '�� & ' �

�

����� � �

�

if thefollowing two conditionshold:

�

� � � �

�

'������ ' � �

� is an input timetablefor -
+ ,

� if the � inputedgesof - + areusedaccordingto � thenthe
	

outputedgesof - + canbeusedaccording
to theoutputtimetable �
�

�

'�������' �
�

� andall nodesof - + canbeinformedwithin thedeadline� & .

�

�

- +/'�� &�' �

�

'�������' � �

�

�

�

iff it is not possibleto inform all nodesof -3+ within thedeadline� & usingthe
input timetable � . �

Obviously, �

�

-
+

'��
&

'��

�

describestheinformation�o w propertiesof -
+ .

4.5.1 BasicBroadcastNetworks

Now we will analyzethefunctionalityof thebroadcastnetworksdescribedin Figure4.5,4.7,4.6and4.8.
The �rst subgraph�����
	

�� � is called initializer (seeFigure 4.5). If we choosethe parameter� �

� &�� dawn
�

����� 	
�� �

�

with � � �

� � � 	

�

�

the input node � hasto sendthe information to �

� in round
dawn

�

����� 	
�� �

�

�

�

. Otherwisethe lastnodesof thechaincannotreceive the informationwithin thedead-
line. Hence, �

� and �

� can inform their successorsusing the edges
�

��	

� and
�

��	

� simultaneouslyin
relative round � . The initializer transmitsthe informationsimultaneouslyover all its

	

outputedges,i.e.
rm delay

�

�����
	��� � ' dawn
�

��� �
	��� �

� �

� �

� � � 	

and

�

�

�����
	 �� � '��

&

' �

+

�

�



� �

�

�

�

� � � 	

'�������' �

����� 	

� ��� �

�

�

� if ��+ � dawn
�

����� 	 �� �

�

'

�

if �
+

� dawn
�

����� 	
�� �

�

�

The following subgraphsmodel a binary coding system. The two possiblevaluescorrespondto a
receiving thebroadcastinformationat relative rounds& , resp.� .
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Figure4.5: Therecursiveconstructionof theinitializer ����� 	��� �

1 a2

In2

t-4
t-1

In1

b

g

Out

tMax   :

a1 a2

In

a

2

1

In1

b

Out

Min :

b2 b2

Out

a
In

Out2

tExist   :

t-2t-2

Figure4.6: Themax–graph�����
� , themin–graph��� � andtheguess–graph��������	 �

Theguess–graph��������	
� (seeFigure4.6) with � � � & � dawn

�

�������)	
�

�

and � ��� is usedto generate
this encoding.It holdsrm delay

�

� �����)	
�

' 0

�

��� and

�

�

�������)	
�

' �

+

�

���

�

�

0

���

' 0

���

�

'

�

0

���

'10

���

�

� if ��+ � 0 '

�

if �
+

� 0 '

with 0 � dawn
�

��������	
�

�

. Notethatafter informing � thebroadcaststrategy hasto decidewhether� sends
theinformationto �

� or �

� �rst. We will interpretthis decisionassettinga Booleanvariable.
Thesubgraphduplicator �%��!

�

(seeFigure4.7)with � � � & � dawn
�

� ��!

�

�

and � ��� will beusedto
duplicatethis binaryencoding.Theinput edges���

� and ���

�

inform �

� and �

�

in rounddawn
�

� ��!

�

�

. For
0 � dawn

�

�%� !
	

�

it holdsrm delay
�

�%� !�	�'10�' 0�'10

�

� � and

�

�

�%� !
	 '�

&

'10�')	

+

'10

�

�
�

�

�

0

�

��' 0

�

�

�

� if ��+ � 0 '

�

�

0

�

��' 0

�

�

�

� if ��+ � 0

�

� �

To combinetwo binaryencodingsweusethemax–graph (see4.6) ����� � with � ���
&

� dawn
�

��� ���

�

and the min–graph ��� � . It is easyto seethat rm delay
�

��� �*' �1+

�

� � . If �

� �

�

�

�

' �

�

� �

� & � � we
get �

�

��� � '�� &�' �

�

' �

�

�

� �

�

���

�

�

�

' �

�

�

�

��� , and else �

�

��� �,' � & ' �

�

' �

�

�

�

�

. The max–graphdoes
not simulatethe computationof the maximumof two input roundsprecisely. If both input edgesare
usedlater than dawn

�

�����
�

�

at leastone node � � ��� �
� doesnot receive the information within the

deadline.Notethatwe have to guaranteethat � receivesthe informationbeforedawn
�

�����
�

�

�

�

. Sowe
getrm delay

�

�����
�

' dawn
�

�����
�

�

' dawn
�

�����
�

� �

� � and

�

�

�����
�

'��

&

' �

�

' �

�

�

�



�
�

� dawn
�

� �����

�

�

��� if �

�

� �

�

� dawn
�

��� ���

�

'

� dawn
�

� �����

�

�

�&� if  � �
�

 �
�

� dawn
�

�������

�

'

�

� �

�

'���� �  �

�

'

�

if �

�

' �

�

� dawn
�

� �����

�
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�

andseparator"�#�!

�

Thesubgraphseparator(seeFigure4.7) "�#�!

�

with � � � & � dawn
�

"�# !

�

�

and� � � realizesathreshold
function. It separatesthesetof all inputconstellationswhere���

� is usedat dawn
�

"�# !

�

�

into two groups:

�

�

"�# !

�

' �

&
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�
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' �
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�

�

Furthermore,thecrossinggraph $%���

�

�

with � ��� & � dawn
�

$ � �

�

�

�

and � � � realizesswitchingthe
locationof incominginformation.In particular, if bothinputsareactivatedat dawn thesameholdsfor the
outputs.If oneinput is late, i.e. informationarrivesat dawn

�

$%���

�

�

�

�

� , only theoppositeoutputis late.
Observethatrm delay

�

$ � �

�

�

' dawn
�

$%���

�

�

�

' dawn
�

$%���

�

�

� �

��� and

�

�

$ � �

�

�

'��

&

' �

�

' �

�

�

�
�

�

�

�

�

�

��' �

�

�

�

�

� if �

�

� dawn
�

�

�
�

or �

�

� dawn
�

�

�
�

'

�

else,

where �

�

' �

�

� � dawn
�

$ � �

�

�

�

' dawn
�

$%���

�

�

�

�

�&� . An extendedcompleteanalysisof thesegraphsanda
descriptionof otherelementarybroadcastingsubnetworksaregivenin [JRS94].
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Figure4.9: Theconstructionof theplanarduplicator

Using this crossing-graphwe cansubstitutethe duplicatorby a planar duplicator asshown in Fig-
ure4.9.

4.5.2 An Exact Encoding for Planar Crossings

The crossinggraph $%���

�

�

doesnot simulatea crossingof two broadcastsignalsexactly. If both input
edgesareusedlate, thatmeansat dawn

�

$ � �

�

�

�

�

� , thentherearesomenodes� � $ � �

�

�

which cannot
receivedthe informationwithin thedeadline.In the following we describehow to constructthecrossing
graph ���

�

�1�
� thatovercomesthis dif�culty . Two techniquesareappliedfor this purpose.

1. Thebinaryencodingof input roundsis maderedundantby usingpairsof inputs:dawn
�

���

�

�1�
�

�

and
dawn

�

���

�

� �
�

�

�

� . Suchapaircanbegeneratedby aguess-graph��������	 �

� . Wesayascheduleusesan
inputedge

�

�*' �

�

of asubgraph-3+ in time (I) if � receivestheinformationfrom � in rounddawn
�

-

�

.
If � receivestheinformationfrom � in rounddawn

�

-

�

�

� , thescheduleuses
�

�*' �

�

late (L) .

2. Thecrossingof two pairs
�

( ')( +

�

'

���

'

�

+

�

� �

���

' �

�

'

�

� '

� �

� will berealizedby thefollowingstrategy:
We �rst convertbothpairsinto anunarycoding

�

�

(*')(

+

�

'

���

'

�

+

�

�

�

� �

�

�

��� � � '�� �

�



� � �

�



�

�

�

�����

�

� � +



+

�

�

�

�

This canbe doneby usingseveral planarduplicators,min–graphsandcrossingsasshown in Fig-
ure4.10.In a secondstepwe decodethis unarynotationto thetwo binaryexchangedpairsby using
duplicators,crossingsandmax–graphsasshown in Figure4.11. Notethattheunaryencodingcon-
tainsalwaysa permutationof

�

�

'1& '1& '1&

�

. Hence,an arbitrarypermutationof the positionsof this
unaryencodingcanberealizedby usingcrossing–graphs$ � �

�

�

� � . Thedawnsof subgraphsusedin
theconstructionabovearesynchronizedby additionalchains.

The completecrossinggraph ���

�

�1�1� with � � � & � dawn
�

���

�

�1���

�

and � � ��� & canbe constructed
suchthatrm delay

�

���

�

�1�1� ' 0

�

� � �

�

and

�

�

���

�

� �
�

'��

&

'10

�

( '10

�

� � (*'10

�

�

' 0

�

� �

� �

� �

�

0

�

�

�

� �

�

'10

�

� �

�

�

� �

�

'

0

�

(

�

� �

�

'10

�

� � (

�

� �

�

�

�

with (*'

�

� � &�' �&� and � � dawn
�

���

�

�1�
�

�

�

Combiningsomeduplicatorsandsomecrossing-graphs$ � �

�

�

it is possibleto constructa graphthat
duplicatesthepairs

���

'

�

' �

�

and
���

' � '

� �

asshown in Figures4.12.We call sucha grapha multiplicator
���

�

	��� � where � � � & � dawn
�

���

�

	��� �

�

and
	

denotesthe numberof outputpairs. This graphcanbe
constructedsuchthatrm delay

�

���

�

	��� �

�

� �	�

����� 	

and

�

�

���

�

	 �� � ' �

&

' 0

�

(*'10

�

� � (

�

� �

�

�

0

�

�
�

����� 	

�

(*'10

�

�
�

����� 	

�

� � (

�

�

�

�

with ( � � & '��&� and 0 � � dawn
�

���

�

	��� �

�

. All thesegraphscaneasilybetransformedinto bipartitegraphs
with thesamefunctionality.
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Figure4.10:A schematicview at a binary-unary-converter

24

36

4,t
Init

min{x,y}

min{x,y'}

min{x',y'}

min{x', y}
24

18

12

6

12 36

24

6

6

48 60

24

12

48
96

36

18

6

30

96

24

18

12

max
y

max
y'

max
x

max
x'

0

Figure4.11:A schematicview at a unary-binary-converter



4.6. SINGLESOURCEBROADCASTING IS
���

±COMPLETE 41

Init

0 x x'

0 x x' 0 x x'

Figure4.12:Themultiplicatorsub-graphsduplicatesinputs &�'1( '1(,+

4.6 SingleSourceBroadcastingis
���

±Complete

The
���

–hardnessof theSB problemfor graphswith boundeddegreewill beprovedby a reductionof a
restrictedversionof 3DM problem,wherefor eachelement( of �

�

�

�

� thereareexactly threetriples
in � containing( [Bun84]. Themainideais similar to thereductionin theproofof Theorem4.

Considerthetree ����� 	��
 � in Figure4.5with its root astheonly sourceand � outgoingedges� � , where

� � �

�

�����

��� . It hasthefollowing properties:
� With adelayof 0 � � �

�

�����

��� �

�

roundsthis treecanreachastatesuchthatin thenext round 0

�

�

theinformationof thesourcecanbepropagatedsimultaneouslyoverall outgoingedges�
� .

� If a broadcastschedulefor ����� 	
�

 � �nishes by round � thennoneof theseedgescanpropagatethe
informationbeforeround 0

�

�

.

Connecteachleafof thetreewith a nodeof
�

$ 

� of thegraph- de�ned above. Let ��� � �

�

�����

���

�

� and
connecttherootof ����� 	��

 � with thesource�

� . Thenthisnew graph- + hasabroadcastscheduleof lengthat
most �

�����

�

�

�

if f � containsamatching.Theresultinggraphhasdegree� , but is notnecessarilyplanar
sinceedgesfrom

�

$ 

� to
�

�

mayhave to becrossedby theedgesleaving ����� 	
�

 � . By additionaleffort - +

canbemodi�ed to decreasethenodedegreeto � .
Observe that a graph - �

�

�

'�	

�

with a singlesourcecannotbe informedwithin lessthen
� � �



�



rounds.Ourconstructionyieldsthattheproblemto �nd a minimal broadcastschedulis
���

-completefor
logarithmicdeadlines.
Proof of Theorem 5: Let � ' � '�� '�� bean instanceof 3DM with  �  � � . Thecorrespondinggraph -

with uniquesource� consistsof 4 levels(seeFigure4.13):
The�rst level consistsof thesource� connectedwith therootof aninitializer thatduplicatesthenumber

of sources.Thesecondlevel consistsof somesubgraphs� � simulatethenodesof
�

$ 

� and
���

in theproof
of Theorem4. Thethird level consistsof theedgesconnectinga leafof thesubgraph��� with aninputnode
of thesubgraph�

� andaninput nodeof �

� if f
���

'�� '�!

�

� � . This meansthattheleavesof thesubgraphs
� � simulatethenodesof

� �

. Thefourth level consistsof somesubgraphs�
� and �

� which simulatethe
nodesof

�
�

and
�

� . Thedeadlineis chosenas � & � �

�

&

�

� �

�����

� . Observethat - hasmaximumdegree
3.

Lemma 3 Let
�

- �

�

�

' 	

�

'

�

�

'��
&

�

representaninstance�

�

� � � � � of therestricted3DM-problem.
Then- canbeinformedwithin � & roundsiff � containsa matching.

Proof: Let
�

+ � �

�

�

�

�

�

�
"

�

�

�	�




�

�

�




� �

and - + � �

�

�

+/' 	 +

�

with 	3+ � � �

�

� '��

�

� 	  � '�� �

�

+ � .
Then for eachschedule

�

+ for - + with deadline� & it holds: At mostone leaf of each �
� receives the
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Figure4.13:A broadcastgraphcorrespondingto aninstanceof the3DM problem

informationin round � & � � andat leasttwo leavesin a round � & � � or later. Sotheclaimfollowssimilar
to theproofof Lemma2. �

ThisprovesTheorem5. �

4.7 SBof Planar Graphs is
���

±Complete

To achieve planarityin thesinglesourcecasewe constructa directreductionof 3SAT. Thereductionwill
usethefollowing restrictedversionof thesatis�ability problem:Let

.

beaBooleanformulasuchthatfor
eachvariable ( ��� � thereareat most5 clausesin

.

thatcontaineither (�� or ( � andeachclause� ���

.

satis�es  ��� �� � . This restrictedversionof 3SAT remains
���

–complete[GJ79].
Proof of Theorem 6: We reducea given instance

.

of the restrictedversionof 3SAT with clauses
�

�

�������
� andvariables(

�

�����1( � to a graphconsistingof 5 levels(Figure4.14).

1. The �rst level consistsof the source� connectedwith the root of an initializer ����� 	��� � with � � �

� & �

�

.

2. The leavesof the initializer areconnectedwith the inputsof
	

parallelguess–graphs��������	 �

� with
��+ � � � & � �

� � � 	

. Let -

� bethesubgraphconsistingof thesource,theinitializer andtheguess–
graphs. Let

�

be an arbitraryschedulefor -

� achieving the deadlinesuchthat the outputedges
�

��	

� and
�

��	

� of theguess–graphs(Figure4.6) canbe usedwithout arti�cial delay. Thenoneof
theedges

�

��	

�

'

�

��	

� canbeusedin round �

����� 	

�

� andtheotheronein round �

� � � 	

�

� . We
will denotethisbehavior by thetimetuples

�

&�' �

�

or
�

��' &

�

relativeto thedawn of thesuccessors,and
interpretthesepairsascodingsfor trueandfalsesettingof thecorrespondingvariable.

3. Thethird level consistsof
	

parallelmultiplicators���

�

	

�

 �

� � , whichareusedto increasethenumber
of binaryencodingschosenin level � .

4. On this level we sendthesebinaryencodingsto thesubgraphsof the last level which representthe
clauses�

�

'������ '��
� . In this network we will usea specialcodinganddecodingnetwork to realizea

crossingof therelative time tuples
�

&�'��

�

and
�

��'1&

�

. We call apair of codinganddecodingnetworks
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a doublecrossing.Thesecomponentsarecombinedin anallocationnetwork depth � �

�

�

�

�

	��

and
size

��� 	 � �

.

5. Finally, we connecttheoutputnodesof theallocationnetwork to theOR–graphs� � .
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Figure4.14:A planarbroadcastinggraphcorrespondingto aninstanceof therestrictedversionof 3SAT

For theresultinggraph - with source� thedeadlineis setto dawn
�

�

�

�

�

�

, i.e.

�

&

� � �

� � � 	

�

�

�

�	� � �

�

�

�

� �

�

� �

�

� �

Lemma 4 Let
�

- '

�

�

'�� &

�

representaninstance
.

of therestrictedversionof3SAT. Then- canbe�nished
within � & roundsiff there is a satisfyingtruth assignmentfor

.

.

Proof: Theclaimfollowsfrom thefactthataschedulecanonly achievethedeadlineif f for eachsubgraph
�

� thereexists at leastone input node � that is connectedto an inner nodeof �
� and � receives the

informationin round � & � � . �

Thiscompletestheproofof theorem6. �

4.8 Ef�cient Algorithms for DecomposableGraphs

We startwith a generalizationof the broadcastproblem. So far, eachsourcenodehasgot the broadcast
informationin round0. In themoregeneralcase,a source� maygettheinformationin anarbitraryround

�

�

�

�

� & . Furthermore,for eachnode � thereis an individual deadline�

�

�

�

insteadof a globaldeadline
� & identicalfor all nodes.Thisgeneralizationmaybeof lessinterestwith respectto practicalapplications.
Nevertheless,it is necessaryin orderto applyanapproachbasedon graphdecompositions,asit hasbeen
for severalothergraphtheoreticaldecisionandoptimizationproblems.

De�nition 10 GENERAL BROADCAST PROBLEM [GB] :
Givena graph - �

�

�

' 	

�

and two partial functions � '�� �

� �

� � , decidewhetherthere existsa
broadcastschedule	

�

' 	

�

'�������' with
�

�
�

�

�
4

�

�

� � 

�

� '��

�

� 	
�

� ��� � �

�

�
4

�

�

�

� � �

�

 �

�

�

�

�

�

� '

	
�

�

�

�

�*' �

�

� 	 �� �

�

�
4

�

� and
�

� �

�

�
4

�

�  	
�

�

�

� � � �

�

�



�

�
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such that
�

� �

�

� � �

���

�

�

� if �

�

�

�

is de�ned. �

The setof sources
�

� is given by the domainof � � The GB–problemcanbe solved similarly to the
strategy of Lemma1. Note that this problemis also

���

–complete. If we restrict the GB–problemto
graphs- �

�

�

'�	

�

with maximaldegree� thenumberof differentchoicesof step1 is boundedby

�

�

���

� �

�

�

� �  	 + 



�

  

 � 

� �

�

�

�

�

 � 

where��� denotesthedegreeof � �

�

in -3+ . Thusfor a graph- �

�

�

'�	

�

theGB–problemcanbesolved

in time
� �



�



�

�

�

� �

 � 




 � 

 � 

�

 � 

�

� Let
�

+ denotethesetof nodesof degree1 in - , thenrestrictedto a

node � �

�

+ we cansimplify step1 of thealgorithmgivenin theproof of Lemma1 asfollows: if � is a
sourcewith �

�

�

� �

�

�

�

�

we choosetheedge� ��+/'�� � , and � � '���+ ��� 	 else.Thus,thereareat most

�

�

����� �

�

0

+

�

�

� �

�

� �

 	 

�



�

 � 

�

+ 



�

 � 

�

+

  

 � 

4

 �

�



� �

�

�

�

�	 � 

4

 �

�



differentchoices.

Lemma 5 Let
�

+ denotethesetof nodesof - of degree1. ThentheGB–problemfor - canbesolvedin
time

� �



�



�

�

�

� �

 � 




 � 

4

 �

�



 � 

4

 �

�



�

 � 

4

 �

�



�

�

Thestrategy abovecanbeparallelizedin asimpleway.

Lemma 6 TheGB–problemrestrictedto graphs - �

�

�

'�	

�

with maximumdegree � canbesolvedby a
CRCW–PRAMwith O

� �

� �

�

 	 

�



�



�

�



�



�

 � 

�

processors in timeO
�



�



� �

�

Thesestrategieswill beusedasbasicroutinesfor thecomponentsof agraph.
Proof of Theorem 7: Let

�

�

�

�
�

'�	

�

�

bea
� !

'

#

' �

�

–edgedecompositiontreeof a graph - �

�

�

' 	

�

with
�

�

� � -

�

'������ '1-

�

� � Figure4.15shows sucha component-

� which is connectedto threecompo-
nents-

� , -

�

and -

� . A componentgeneratedby
�

mayfall into severalconnectedsubgraphswhich we
will call subcomponents.
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Figure 4.15: A node -
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edge decompositiontree and its
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Figure 4.16: A possible infor-
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schedule:from -
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used.
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Let � � � � � -

�

�

'�������'1-

�




�

� with ���

�

�

�

�

�

�

' 	

�

�

�

be thesetof subcomponentsof thecomponent- �

andde�ne cut
�

-

�

�

�

asthesetof edgesof cut
�

-��

�

with oneendpointin -

�

�

. De�ne

cut
�

-

�

�

' -��

�

� � cut
�

- � ' -��

�

�

cut
�

-

�

�

�

� ���

cut
�

-

�

�

' - �

�

�

� � cut
�

-

�

�

'1-��

�

�

cut
�

- �

�

�

� ���

border
�

-

�

�

�

� � � � '� �*' � ��� cut
�

-

�

�

�

and � �

�

�

�

� �

To describea broadcastingschedule
�

of - , eachedge � �*' � � of - is labeledby
�

�

�

� '��

�

'��

�

� '��

� �

� The
�rst value �

�

�*' �

�

denotesthe roundthis edgeis usedandthe second�

�

� '��

�

the direction(
�

�

�

�

�

or
�

�

�

�

�

). If this edgeis notusedwe set �

�

� '��

�

� � �

�

�

If we restrict
�

to cut
�

-

�

�

�

weconsiderasthe�rst round �������

�

� whena nodeof -

�

�

getsthebroadcast
information.For eachedge� �*' � � with �

�

� '��

�

� & therelativeround
�

���	� ��
 � � � �

�

� '��

�

� �

�

-

�

�

�

�

If the edge � �*' � � is not usedwe set
�

�

�

� '��

�

� � �

�

� Let ������

�

�����

�

� be the �rst round an edgeof
cut

�

-

�

�

'1-

�

�

�

is used.If noedgein cut
�

-

�

�

' -

�

�

�

is used�

�

-

�

�

'1-

�

�

�

� � �

�

. Similarly de�ne
�

�������

�

�����

�

�
� � �

�

-

�

�

'1- �

�

�

� �

�

-

�

�

�

if �

�

-

�

�

'1-

�

�

�

� &�' elselet
�

�

�

-

�

�

' -

�

�

�

� � �

�

�

Thefollowing two lemmatashow thatwith thehelpof theconceptof relative rounds
�

� thenumberof
possibleprotocolsof informationexchangebetweentwo componentscanbeboundedquitesubstantially.
Thispropertywill bebasicfor thetimeef�ciency of thealgorithm.

Lemma 7 If
�

is a busybroadcastschedulethenfor all � �*' � ��� cut
�

-

�

�

'1-

�

�

�

holds:
thenumbers

�

�

�

�*' �

�

and
�

�

�

-

�

�

'1-

�

�

�

aresmallerthan  cut
�

-

�

�

�
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� !

�

#

�
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�

Proof: Let -
+

�

�

�

�
�

�

�

border
�

-

�

�

�

'�	

�

�

�

cut
�
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�
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� ). Observe that this valueis independentof thestructure
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Step1: For eachcomponent- � �
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� �� � determine	

�

- � '

�

�

�

.

For eachedge� � ' ��� � cut
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Theconstructionof - +
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for theexamplegivenin Figure4.16is illustratedin Figure4.17.
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This �nishes theproofof Theorem7 and8. �

By usingtreecontractionmethodstheevaluationof the 	 -functioncanalsobedonein parallelrequir-
ing only a logarithmicnumberof iterationswhichyieldsTheorem9. Thedetailsaredescribedin [Rei91a].

4.9 NodeSeparation

Thesametechniquewith a slightly worsetime bounddueto a largernumberof statesalsoworksfor node
decompositionsof graphs.
Proof of Theorem 10: Let

�
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�
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G3

G4

G1

G2

Figure 4.18: A node -

� of an
edge decompositiontree and its
neighbors

G2extended

G3

G4

G1

G2

Figure 4.19: The extendedcom-
ponentof -

�

G3

G4

G1

G2

G2shrinked

Figure4.20: Theminimumdead-
line of thegeneralbroadcastprob-
lem of this graphis usedto calcu-
late the minimum broadcasttime
for thegraphabove.
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�

andall its descendants.Evaluatethefunction 	

�

- &

�

'

�

�


�

�

for all -
� and

�

�


� startingwith the leaf
componentsof

�

.
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Lemma 12 Let - � 

�

'������ '1- �  4


 denotethesonsof - � andlet
�

�  � bea stateconnecting- � and - �  � . The
minimaldeadlinefor thegeneral broadcastproblemfor - &

�

with respectto external informationexchange
�

� 

� canbecomputedas

	

�

-

&

�

'

�

� 

�

�

�

�

� �

�




"

�

�

� "� � cut� � 
&� � � � 


� �

	 	

�


 


� �

�




�

���

�

�

	

�

-

&

�  �

'

�

�1 �

���

�

� �

�

�

������ �

���

�

� 	

�

- � '

�

�

�

���

with
�

�1 � � �

�

�

�

 � � cut
�

- � ' - �  �

� �

�

�

� �

Theproof is almostidenticalto theoneof Lemma9. �

As in thecaseof edge-decomposition	
�

- &

�

�

� 	

�

- &

�

'��

�

denotestheminimal schedulelengthfor
thegraph- itself.

Thecorrectnessof step1 followsdirectly from thede�nition of a surfaceandthecorrectnessof step2
from Lemma12. Accordingto Lemma5 thecomputationof 	

�

- � '

�

�

�

requiresatmostO
� � �

��� �

�

�

!

�

�

#

�

� �

�

�

�

�

�

�

�




�

steps.FromLemma11 follows thatstep1 canbeexecutedin time

�

� 


�

� !

� '

#

� ' � �

�

�

� �

� �

� �

�

�

�

!

�

#��

�

�

�

�

�

�

�

�

�

�

� �



�



�

�

� �

� �

�

�

�

!

�

#��

�




�

�

�

�

�

�

�

�




�

�

�

�

�

Thecomputationof 	

�

- &

�

'

�

�


�

�

is independentof theremainingstructureof - . Notethatfor �x ed
�

�


� the
numberfor

�

�
 � thatmayappearin abusybroadcastscheduleis boundedby �

�

�

4

�

�

�

�

. Thusgivenall values
	

�

-��1'

�

�

�

and 	

�

-
&

�
 �

'

�

� 
�

�

thecomputationof all 	

�

-
&

�

'

�

�


�

�

canbeexecutedin time
�

�

�

� !

�)'

#

�1' � �

�

�

� � � �

�

�

4

�

�

�

�

�

� Summingupoverall -�� givesthebound

�

�



�

�

�

� !

�
'

#

�
' �

�

�

�-�
�

� �

�
�

�

� !

'

#

' �

�

�

�

�



�
�

�

�

�

�



�

 � �

�

�
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�

�

�

� � �

� !

'

#

' �

� �

�

All together, we geta total timeof
�

�



�



�




�

�

� �

� �

�

�

�

!

�

#��

�




�

�

�

�

�

�

�

�




�

�

�
� �

�

�

�

�

�

�

Again the evaluationof the 	 -function can also be donein parallel with a logarithmic numberof
iterations,whichgivesTheorem11.

4.10 Conclusions

We have shown thatthesinglesourcebroadcastingproblemremainshardfor planarnetworksof bounded
degreeif theinternalconnectivity is high,thatmeansthereis noedge-or node-decompositionwith compo-
nentsof smallsize.On theotherhand,evena muchmoregeneralversionwith many sinksandindividual
deadlinescanbesolvedef�ciently ongraphsthatcanbedecomposednicely.

Thusonecanconcludethatgeneratingoptimalbroadcastschedulesis a dif�cult taskin general.The
intuition thatthismustbedueto acomplex structureof thenetwork whichgivesalot of freedomdesigning
a schedulehasbeenveri�ed by a rigorousproof. Most interestingly, suchstructurescanalreadyoccurin
boundeddegreeplanargraphs.
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Chapter 5

On the Inappr oximability of
Broadcasting

5.1 Intr oduction

We have seenthat theexact solutionof theBroadcastingproblemis combinatoricallyinfeasible,if
�

��

���

. In this chapterwe discussthe computationalcomplexity of approximatingbroadcastingtime. An
approximationalgorithmfor broadcastingis an algorithmthat on input

�

- '

�

�

�

of a graph - anda set
of sourcesoutputsa broadcastingschedule

�

. For the performancequality we distinguishadditive and
multiplicativeapproximationschemes.

If anpolynomialtime algorithmapproximatesa problemby anadditive term �

��	��

, thentheperfor-
mance�

�

(

�

(broadcastingtime �

�

�

- '

�

�

) of theoutputof aninstancex (agraph- andasourceset
�

) of
size

	

(thenumberof nodesin - ) differsfrom theoptimalsolutionOpt
�

(

�

� �

�

- ' �

�

atmostby �

� 	��

, i.e.
 �

�

(

�

� Opt
�

(

�



� 	

. Theapproximationalgorithmachievesa multiplicati ve approximation by �

��	��

,
if �

�

(

� �

�

��	��

Opt
�

(

�

for all
	

andall instancesof size
	

.

Thus,the
���

-hardnessresultsof Theorem6 canbetranslatedto aninapproximabilityresult:Consider
the setof graphsresultingfrom the reductiondescribedin Theorem6. The broadcastingtime of these
instancesis either

�

or � . TheTheoremprovesthatit is
���

-hardto distinguishbetweenthesetwo setsof
instances.Hence,if anpolynomialtime approximationalgorithmfor broadcastingwith multiple sources
exists with multiplicative approximationratio

�

�

� � for � � & , then it could make this distinctionand
�

�

���

would follow. This inapproximabilityfactor increasesto �
� � � whenwe apply the resultof

[Mid93].

Sucha direct transferof lower boundsfrom decisionproblemsto inapproximabilityresultsis an un-
usualproof technique. Recall that this trick doesnot work with singlesourcebroadcasting,sincehere
broadcastingtime increasesby thesizeof thegraph.For a comparisonthesametechniqueonly impliesa
trivial constantadditive inapproximabilityboundof

�

��� for � � & .

In this chapterwe will concentrateon additive andmultiplicative inapproximabilityboundsfor single
sourcebroadcasting(SB) andadditive boundsfor multiple sourcebroadcasting(MB). This chapteris or-
ganizedasfollows. In the next sectionwe will presentprevious work andstatethe main resultsof this
chapter. In section5.3werepeatsomenotationof thelastchapterandintroducethesub-graphsusedin this
chapter. In section5.4we provethemultiplicative inapproximabilityof �� � � for SB.Then,in section5.5
we presenta tight lower additive approximationboundfor SB.We will show in section5.6additive inap-
proximability boundsfor multiple andsinglesourcebroadcastingin ternarygraphs.In the lastsectionof
this chapterwewill concludetheseresults.
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5.2 Previous Work

Broadcastingis thetaskof disseminatinginformationfrom oneor many sourcesto all membersof a com-
municationnetwork. We envisagea staticnetwork whereit makessenseto computebroadcaststrategies
of�ine. We alreadyintroducedthetelephonemodelasoneof thesimplesttiming modelsin De�nition 1.
A straight-forwardgeneralization,the postalmodel[BNGNS98, BNK94], modi�es theedge delayof an
edgeandswitching timeof a node.Theedgedelaydelaystheinformationof a nodealongthis edge.The
switchingtime is thetime spana nodeneedsto startthethenext transmissionto a neighbor. Againnodes
canparticipatein only onecall at eachtime. In heterogeneousnetworks every nodeandedgemay have
different timing behavior unlike in homogeneousnetworks wherethe ratio betweenthe network's edge
delayandswitchingtime describesthe latencyof thenetwork. Choosinga latency of 1 leadsbackto the
telephonemodel.An interestingspecialcaseis theopen-pathmodelwheretheedgedelayis zeroandthe
switchingtimeis 1. Clearly, if broadcastingwith respectto oneof thesimplestcommunicationmodels,the
telephonemodel,is infeasiblethenthesituationfor theheterogeneousmodelcannotbebetter.

5.2.1 Approximation algorithms

In [Rav94] it is shown that broadcasttime in the telephonemodelcanbe approximatedwithin a factor
of

���

	 ���

�

�

	 ���	 ��

�

�

given a network of
	

nodes. Bar-Noy et al. [BNGNS98] improve thesetechniquesand
presenta polynomial-timeapproximationalgorithmfor the singlesourcebroadcastingproblemwith an
approximationfactorof

��� � � � 	��

for themoregeneralpostalmodel.
For graphswith boundedtree-widthwith respectto thestandardtreedecompositionthebroadcasttime

canbeevenapproximatedwithin
���

	 ��

�

	 ���	 ���

�

�

[MRS
 98].
For broadcasttime in the telephonemodel thereexists an additive

���

�

	��

-approximationalgorithm
[KP95]. In particularthereis a polynomial time boundedalgorithmthat for a graphwith

	

nodesand
broadcasttime �

�

-

�

constructsa broadcastscheduleof length �

�

-

�

�

���

�

	��

.

5.2.2 Inapproximability results

In [BNGNS98] heterogeneousnetworks in thepostalmodelwereconsidered.For this timing modelit is
notpossibleto approximatethebroadcasttimewithin a factorof � � � for any � � & unless

�

��

���

. The
proofusesa reductionfrom set-coverusinga latency varyingfrom & to

���

� �

�

�

.
Allowing multiple sourcescanreducethebroadcasttime to a constant.Yet for deadline2 thedecision

problemis still
���

-completeeven for planargraphsof small degree[Mid93]. As we alreadyhave dis-
cussedthis

���

-completenessresultfor broadcastingin thetelephonemodelimpliesaninapproximability
factorof

�

� . Notethatthisdoesnotimply thatgraphsof higherbroadcasttime � � � cannotbedistinguished
from graphswith broadcasttime �

� � .

5.2.3 Newresults

In this paperwe investigateinapproximabilityboundsfor the broadcasttime in the telephonemodel for
undirectedcommunicationnetworks.Thelowerboundsreferto thelengthof theoptimalbroadcastsched-
ule andnotnecessarilyto its computation.Clearly, computinggoodbroadcastschedulesis at leastashard
asapproximatingtheoptimallengthof valid broadcastschedules.

We solve the openproblemrecentlyaddressedby [BNGNS98] whetherthereis a polynomial time
algorithmapproximatingbroadcastingby an additive constant. We statean inapproximabilityfactorof

�

����� for any � � & usinga polynomialtimereductionfrom set-cover.

Theorem12 For every � � & there exist graphswith
	

nodeswith broadcasttimeat most � such that it is
���

-hard to distinguishthosefromgraphswith broadcasttimeof at least
�

�
�

���

�

� .

Then,we concentrateon the lower additive approximabilitybound.We prove that theapproximation
algorithmof Kortsartzet al. [KP95] is bestpossibleup to a constantfactorof the additive term. Unless

�

�

���

broadcastingcannotbeapproximatedby apolynomialtimeboundedalgorithmwithin anadditive
termof � �

	

for someconstant� . In particularweprove:
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Figure5.1: Thechainandits symbol.

21 3 4
Figure5.2: Thestarandabroadcastschedule.

Theorem13 For every ��� & there exist graphs - with
	

nodesandbroadcasttimeat most � � �

�

�

	��

such that it is
���

-hard to distinguishthosefromgraphswith broadcasttimeat least
�

���

�

�

� �

�

� .

Theproofsof thesetheoremsusegraphswith largedegree.In thelastchapterwe have seenthatthere
aresituationswherelow degreesimpli�es thecomplexity of broadcastingto someextent. We show how
to transferthesetechniquesto ternarygraphs,which areundirectedgraphswith a degreeof at mostthree.
For ternarygraphsandmultiple sourcesweproveanadditive lowerboundof �

� � � � 	��

.

Theorem14 It is
���

�

�

����� to distinguishternarygraphs- �

�

�

'�	

�

with multiplesourcesandbroad-
casttime ��� �

�������



�



�

fromthosewith broadcasttime �

�

�

�

� for anyconstant� .

Theseindistinguishableternarygraphshavea polynomialnumberof informationsources.We arealso
interestedin thecaseof asingleinformationsourceandternarygraphs.Modifying theproofof Theorem14
we canstatea loweradditive inapproximabilityboundof

�

�

�

����� 	��

:

Theorem15 It is
���

-hard to distinguishternarygraphs - �

�

�

' 	

�

with singlesourcesandbroadcast
time ��� �

�

	



�



�

fromthosewith broadcasttime �

�

�

�

�����

� for someconstant� .

5.3 Notationsand BasicTechniques

For a self-containedrepresentationwithin this chapterwe repeatDe�nition 1. Let - �

�

�

' 	

�

be an
undirectedgraphwith asetof nodes

�

�

� �

, calledthesources. Thetaskis to computethebroadcasttime
�

��� �����&� , theminimumlength � of a broadcastschedule
�

. This is a sequenceof setsof directededges
�

�

�

	

�

' 	

�

' 	

�

'������ ' 	

!

�

. Their nodesarein thesets
�

�

'

�

�

'

�

�

����� '

�

!

�

�

, wherefor
�

� & we de�ne
�

� � �

�

�
4

�

�

� � 

�

� '��

�

� 	���� . A broadcastschedule
�

inducesa directedspanningforestwith the
sourcesasroots,anddirectededgesdescribingtheinformation�o w.

�

ful�lls theproperties

1. 	 �

�

�

�

� '��

�

�� �

�

�
4

�

' � �*' � ��� 	 � and

2.
�

� �

�

'

�

� �  	
�

�

�

� ��� �

�

�



�

�

�

Wede�ne thebroadcasttimeof a graph - with sources
�

� ,
�

��� ���
�

� , to betheminimumtimerequired
to completebroadcastingfrom nodes

�

� . Let
�

bea broadcastschedulefor
�

- '

�

�

�

, where - �

�

�

'�	

�

.
Thebroadcasttimeof a node� �

�

is de�ned as �

�

�

�

�

�

�

� � �

�

 � �

�

�
� �

Furthermore,as we have alreadydiscussedin the last chapterwe canrestrict our considerationsto
busybroadcastschedules.Hereevery processortriesto inform a neighborin every stepstartingfrom the
momentit is informed.Whenthis fails it stops.By this time,all its neighborsareinformed.Furthermore,
every nodeis informed only once. Every broadcastschedulecan be transformedinto a busy schedule
within polynomialtime without increasingthebroadcasttime of any node. For a detailedproof we refer
to [Sch00a]. From now on, every scheduleis consideredto be busy. In [BNGNS98] this argumentis
generalizedto thepostalmodel(theauthorscall busyschedulesnot lazy).
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Figure5.3: The ternarypyramid anda broadcast
schedule.
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Figure5.4: A completebinarytreeandabroadcast
schedule.

5.3.1 Sub-Graphs

As a basictool weconsidera chain (in theprecedingchaptercalledtimer, seeFigure5.1)

� �

�

� '��

�

�

�

� � � �

�

' �

�

����� ' � � ' � � � �




�

� ' � � � � '�� �




�

� �

�

startingat node � andendingat � with � interior nodesthat arenot incident to any other edgeof the
super-graph.A starconsistsof a centralnode� and

	

raynodes�'� (Figure5.2)

�

�
�

�

� � '��

�

'�������'��
�

� ' � � ��' ��� � �

�

�

In Figure5.3 a pyramid is shown. A pyramidconsistsof a honeycombstructurewherethe top nodehas
equaldistanceto thebasenodes�

�

'������ '�� � .
The broadcastingbehavior of thesesub-graphsis the following (For simplicity we assumethat the

sourcesinform nodesof thesub-graphat �rst).

Lemma 13 Let theends� and � of a chain �

�

�

� '��

�

beinformedin time � � and �


 , where �




� !

�

� �

�

�


 . Then,thetotal chain is informedin time
�

�

� �

�

�




�

!

�

�

� � .
Thecenterof star

�

� can use
	��

different busybroadcastschedulesto inform all ray nodes. Their
broadcasttimescandescribeanypermutationsof �

�

'�������'

	

� .
Therootof a completebinary treeof depth� informs �

�

�

�

leavesin time �

�

�

.
For a pyramidwith

	

basenodesthetop nodeinformsall but onebasenodesin time �

	

� � . Thelast
basenodeis informedin time �

	

� � .

5.4 Inappr oximability by a Factor of �

���

�

In this sectionweshow thatthelowermultiplicative inapproximabilityboundof �
�

� � . Theproofconsists
of a reductionto theset-coverproblem.

De�nition 11 (Set-cover) Let
�

bea setof
	

elementsand
.

� �

�

�

'������ '

�

�
� a collectionof subsetsof

�

. Set-cover is the problemof selectingas few as possiblesubsetsfrom � such that every point in
�

is
containedin at leastoneof theselectedsubsets.

Feige[Fei98] provedthefollowing hardnessresult.

Theorem16 ([Fei98]) Unless
���

�

� �

�

� �

��	

�

�

	 ��� 	 ��

�

�

�

, the set-cover problemcannotbe approxi-
matedbya factorwhich is betterthan

�

�

	

.

Here,we will only useaconstantlowermultiplicative inapproximabilityboundfor set-cover.

Theorem17 ([Hoc97]) Unless
�

�

���

, theset-coverproblemcannotbeapproximatedbyanyconstant
factor.
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Figure5.5: Thereductiongraph-

�/.

'10

�

.

Proof of Theorem12:
Givenaninstanceof set-coverwith

.

�

� �

�

'�������'

�

�

�

and � elementsthereductionconstructsagraph
-

� .

' 0

�

( 0 � � � will bechosenlateron):
� Thesinglesource�

� is thecenterof a starwith raynodes�

�

'�������' �
� .

� For all
�

thenode �)� is the root of a binarybalancedtreewith 

�

�  leaves. Eachleaf is thestarting
point of a chainof length 0 which endsat a leaf of a binarybalancedtreewith a root named(

� if
� �

�

� for � � �

�

'������ ')� � .

� Thesenodes(
� representthegroundset �

�

'�������')� � . Their treeshave �

�

�

�

� �  �

�

 (
�

�

�

� �  leaves,
eachleaf is connectedto only oneof theabovementionedchains.

An exampleof this graphis shown in Figure5.5. Notethat thenumberof nodesof this graphis bounded
by

���

0

�

�

�

�

� �

. Let � � �

�����

�

� � � � 

�

� 
'�

��� �

� bethemaximumdepthof thebalancedbinarysub-trees.

Lemma 14 A set-cover for
.

of size � implies �

�

-

�/.

'10

� � �

�

�

� 0

�

� � .

Proof: We presenta broadcastschedulefor -

�/.

'10

�

. The source�

� informs the � setnodes�
� corre-

spondingto theminimumset-cover. Accordingto Lemma13 all elementnodes(
� areinformedin time

�

�

� �

�

0 .
Now all nodeswill be informedby nodes(

�

'������ '1( � . They inform their treesin time � � andall set
nodes��� in additionaltime 0

�

� . Thenall nodesareinformed. �

Lemma 15 If anyset-coverof
.

hasat leastsize � 0

�

�

then �

�

-

� .

' 0

� �

� � 0 .

Proof: Wewill show thatthereis anelementnode(
� whichcannotbeinformedin time � 0 . Fix abroadcast

schedule
�

. In every stepthesourcecanonly inform oneneighbor��� . Let
�

� � � �)�

,

'������ ' �)�

�

�

� bethose
neighborsinformedin the�rst � 0 steps.Notethateverypathdisjoint from thesourcebetween�

� and �

� is
longerthan � 0 . Thereforeno furthersetnodecanbeinformedby this time.

Wepick anelement� from theset �

�

'������ '

	

� �

� �

�

,

�

������'

� �

�

�

�

�

which is non-emptysincethereis no
set-coverof size � 0 . Thedistancefrom thecorrespondingnode( � to any nodein

�

is largerthan � 0 , since
noneof theleavesof the

�

's treesis directly connectedto theleavesof ( � 's tree.
If (�� wasinformedby a nodein

�

then �

�

�

(��

�

� � 0 . On theotherhand,if ( � wasinformedby a set
nodenot in

�

, thenthis setnodewasinformedin time � 0

�

�

at theearliest.This setnodehasdistanceof
at least 0 to (�� , which resultsin a broadcasttime �

�

�

( �

�

� � 0 . �
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We continuethe proof of Theorem12. For any ! �

�

it is possibleto describea set
�

of set-cover
instanceseitherhaving a set-cover of sizeat most � or having oneof at leastsize ! � . Sincethis proof is
constructive,thedecisionof thispropertyin

�

is
���

-hardevenwith theknowledgeof � [Hoc97].
For our reductionwe want to ensurethat �

�

�

�

� . This propertycanbeeasilyguaranteed:Consider
thegroundset

���

'2�

�

for
�

� �

�

'������ '

	

� and � � �

�

'�������'"�

� � � 	

� andfor ! � �

�

'�������' �'� let
���

'2�

�

�

�

+

�

 �

if f
�

�

�

� . This paddingincreaseseveryset-coverof size � to ��+ � � �

� � � 	

, but doesnot increase� . Since
�

� ����� 	

, wehave then �

�

� +

�

� � �

� � � 	

.
Wereducethisset

�

to agraph- by theconstructionabovewith thechoice0 �

�

�

� . Lemma14implies
for a set-coverof at most � a broadcasttime of at most

�

�

�

�

�

�

0 , while Lemma15 impliesfor a set-cover
instanceof at least ! � aminimumbroadcasttimeof � 0 .

This completestheproof. For � � ��

�




� we have constructeda setof graphsfor which it is
���

-hard
to distinguishwhetherthebroadcasttime is smallerthan � �

�

�

�

�

�

�

0 or largerthan
�

�� ���

�

� . �

5.5 A Tight Additi ve Bound

Now wepresenttheproof for anloweradditiveboundthatmatchestheboundof apolynomialtimeapprox-
imationalgorithmpresentedin [KP95]. We usea polynomialtime reductionfrom E3-SAT which denotes
thesatis�ability problemof BooleanCNF-formulaswith exactly threeliteralsin eachclause.

Theorem18 [H 	as97] For any � � & it is
���

-hard to distinguishsatis�able E3-SAT formulasfrom E3-
SAT formulasfor which onlya fraction �

� �

�

� of theclausescanbesatis�ed,unless
�

�

���

.

Let
.

bea 3-CNFwith � clauses�

�

'������ ' �
� andvariables(

�

'������ '1( � . Let �

��� �

denotethenumberof
occurrencesof thepositive literal (

� in
.

. In theproof of Theorem18 H	astadusesa variantof E3-SAT
whereevery variableoccursequallyoften aspositive andnegative clausein

.

. Let 0 � � � � � + , where
� + � ���

�

�
"

�

�

��� �

with � beinga largenumberto bechosenlateron. Notethat � �

�

�

� + .
Theformula

.

is reducedto anundirectedgraph- 2
 4 (seeFigure5.6)asfollows.

� The source�

� is the centerof a star
�

� with 0 rays (

�

�
 �1

� , for � � � & '

�

� ,
�

� �

�

'�������'

	

� , � �

�

�

'�������' �

��� �

� , and ! � �

�

'������ '�� � .

� We call thenodes(

�

�
 �1

� literal nodes. They belongto � disjoint isomorphicsub-graphs-

�

'������ '1- 4 .
A sub-graph-

� containsliteral nodes(

�

�
 �1

� , representingtheliteral (

�

�

( (

�

�

� (
� , (

�

�

� (
� ).

� Betweentheliteral nodescorrespondingwith a variable(
� in -

� we insertchains�

�

�

(

�

�
 �1

�

'1(

�

�
 �

�



�

�

for all
�

� �

�

'������ '

	

� and� '��

+

� �

�

'������ ' �

��� �

� .

� For every clause ��� � (

�

,

�

,

�

(

�

�

�

�

�

(

�

�

�

�

we insert clausenodes ���


� which we connectvia the

threechains�

�

�

�

�

���


�

')(

���

�

�

 �

�



�

�

for � � �

�

'���' ��� of length 0

�

� to their correspondingliteral nodes

(

�

,

�

,

 �

,



�

'1(

�

�

�

�

 �

�



�

'1(

�

�

�

�

 �

�



� . This way, every literal nodeis connectedto oneclausenode.

Theunderlyingideaof this constructionis thattheassignmentof a variable(
� correspondsto thetime

whenthe correspondingliteral nodeswill be informed. For the upperboundwe canusethe satisfying
assignmentof

.

to constructa fastbroadcastschedule.

Lemma 16 If
.

is satis�able, then �

�

-
2

 4 ' �

�

��

0

�

���
+

�

� .

Proof: Theschedule
�

informsall literal nodesdirectly by �

� . Let �

�

'������ ' � � bea satisfyingassignment
of

.

. The literal nodes(

�



�
 � 

� of graph -

� areinformedwithin the time period
�

! �

�

�

��+

�

�

'������ '�!�� + .

Theliteral nodes(

�'


�
 �1

� areinformedwithin thetime period 0 � !���+

�

�

'������ ' 0 �

�

! �

�

�

� + .
Notethat � + is a trivial upperboundfor thedegreeat a literal node.So,thechainsbetweentwo literal

nodescanbeinformedin time 0

�

� ��+

�

�

. A clausenodecanbeinformedin time !���+

�

0

�

�

�

�

by an
assignedliteral nodeof the�rst type,whichalwaysexistssince�

�

'������ ' � � satis�es
.

. Notethatall literal
nodescorrespondingto thesecondtypeareinformedwithin 0 �

�

! �

�

�

� + . Sothechainsbetweenthose
andtheclausenodeareinformedin time 0

�

� ��+

�

� . �
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Figure5.6: Thereductiongraph -
2

 4 .

Lemma 17 Let
�

bea busybroadcastschedulefor -32
 4 . Then,

1. everyliteral nodewill beinformeddirectlyfromthesource �

� , and

2. for �
�



�

� (

�
,

�

,

 �

,



�

�

(

�

�

�

�

 �

�



�

�

(

�

�

�

�

 �

�



� : �

�

�

�
�



�

�

�

�

�

�

�

���

�

� �

�

�

(

�

�

�

�

 �

�



�

�

� .

Proof:

1. Everypathbetweentwo literal nodesthatavoids �

� hasat leastlength 0

�

�

. By Lemma13eventhe
�rst informedliteral nodehasno way to inform any otherliteral nodebeforetime point 0 , which is
thelasttimea literal nodeis goingto beinformedby �

� .

2. followsby 1.

�

If only oneclauseperBooleanformula is not satis�ed, this lemmaimplies that if
.

is not satis�able,
then �

�

- 2
 4

' � �

�

�

�

� 0

�

� . A betterboundcanbeachievedif theinapproximabilityresultof Theorem18
is applied.A busyschedule

�

for graph-
2

 4 de�nesanassignmentfor
.

. Then,we will categorizeevery
literal nodeashigh, low or neutral, describingwhetherits broadcasttime correspondsto theassignment
andwhetherit is delayed.Clausenodesareclassi�edeitherashigh or neutral. Everyunsatis�edclauseof
theE3-SAT-formula

.

will increasethenumberof high literals. Besidesthis, high andlow literal nodes
comein pairs,yet possiblyin differentsubgraphs-

� and -

�

� . Theoverall numberof thehigh nodeswill
belargerthanthoseof thelow nodes.
Proof of Theorem13: Consideranunsatis�ableE3-SAT-formula

.

, theabovedescribedgraph-
2

 4 anda
busybroadcastschedule

�

onit. Theschedulede�nesfor eachsubgraph-

� anassignment(

�



�

'������ ')( ��

�

�

� & '

�

�

� asfollows. Assignthevariable(
�



�

� � if thenumberof delayedliteral nodeswith �

�

�

(

�

�
 � 

�

�

�

0

�

� is smallerthanthosewith �

�

�

(

�

�
 �1

�

�

� 0

�

� . If bothnumbersareequal,w.l.o.g. let ( �


�

� & .

1. A literal node (

�

�
 �1

� is coherently assigned, if f �

�

�

(

�

�
 �1

�

� �

0

�

��� (
�



�

� � . We also call
coherentlyassignedliteral nodesneutral.
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Assignment

-

- +
+

+

0 1 0 0 11

low node

high node

clause-node

+
-

delayed literal-node

early literal-node

Figure5.7: The circle denoteliteral nodes.Literal nodesin a rectanglebelongto the samevariable. A
given broadcastscheduleinforms literal nodesearly or delayed. This timing de�nes the assignmentof
variablesandwhethernodesarelow, high or neutral

2. A literalnode(

�

�  � 

� is highif it isdelayedandnotcoherentlyassigned,i.e., ( � 

�

� � and �

�

�

(

�

�  � 

�

�

�

0

�

� .

3. A literal node (

�

�
 � 

� is low if it is not delayedand not coherentlyassigned,i.e., ( �


�

� � and
�

�

�

(

�

�
 �1

�

��

0

�

� .

4. A clausenode ���


� is high, if all of its threeconnectedliteral nodesareneutralanddelayed,i.e.,
�

� � �

�

' ��' ��� �

�

�

(

� 


�

�

 �

�



�

�

� 0

�

� .

5. All otherclausenodesareneutral.

Everyhigh literal node(

�

�
 �1

� with broadcasttime 0

�

�

�

�

� for �

�

� & canbematchedto aneutraldelayed
literal node(

�

�
 �

�



� with broadcasttime �

�

�

(

�

�
 �

�



�

�

� 0

�

�

�

�

� for �

�

� & . Lemma13shows thatthechain
betweenbothof themcanbeinformedin time 0

�

�
,




�

�

� at theearliest.
For a high clausenodewith literal nodes(

�



�

�

 �

�



� andbroadcasttimes �

�

�

(

�



�

�

 �

�



�

�

� 0

�

�

�

�

�

with
�

�

' �

�

' �

�

� & , Lemma17 shows that this high clausenodegets the information not earlier than 0

�

�

� � � �

�

' �

�

' �

�

� . So,thechainto themostdelayedliteral nodewill beinformedat 0

�

�

�

��� � �

�

' �

�

' �

�

�

�

�

����� �

�

' �

�

' �

�

�

�

�

� at theearliest.

Lemma 18 Let � bethenumberof low literal nodes,� thenumberof highliteral nodes,and � + thenumber
of high clausenodes.Thenthefollowingholds:

1. � � � ,

2. �

�

�

- 2
 4

'��

�

�

� 0

�

� ,

3. �

�

�

-
2

 4 '��

�

�

� 0

�

�

�

�

� � +

�

�

� .

Proof:

1. Considerthe set of nodes(

�

�
 �1

� , for � � �

�

'�������' �

��� �

� and � � � & '

�

� . For this set let � �


� be
the numberof high nodes,�

�


� the numberof low nodesand �
�



� the numberof nodeswith time
greaterthan 0

�

� . By thede�nition of highandlow nodesthefollowing holdsfor all
�

� �

�

'������ '

	

� ,
! � �

�

'�������'�� � :
�

�


�

� �
�



�

�

�
�



�

� �

��� �

�

Lemma13 andLemma17 show thathalf of the literal nodesareinformedwithin 0

�

� andthe rest
lateron:

�

�


�

�
�



�

� 0

�

� �

�

�


�

�

��� �

'
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It thenfollowsthat:
� � � � �

� 

�

�

�� 

�

� � � 

�

�

�� 

�

� �

��� � �

� & �

2. Note that we canmatcheachof the � high (delayed)literal node (

�

�  � 

� to a neutraldelayedliteral
node (

�

�  �

�



� . Furthermore,thesenodeshave to inform a chainof length 0 . If the latestof thehigh
nodesandits partnersis informedat time 0

�

�

�

� , thenLemma13 shows that thechaincannotbe
informedearlierthan 0

�

�

�

� .

The broadcasttimesof all literal nodesarepairwisedistinct. Thereforeit holds � � � � , proving
�

�

�

- 2  4 '��

�

�

� 0

�

� .

3. Every high clausenodeis connectedto threeneutraldelayedliteral nodes.The taskto inform all
chainsto thethreeliteral nodesis doneat time 0

�

� +

�

� at theearliest,if 0

�

�

�

� + is thebroadcasttime
of thelatestliteral node.For � + highclausenodes,thereare ��� + correspondingneutraldelayedliteral
nodes.Furthermore,thereare � delayedhigh literal nodes(whosematchedpartnersmay intersect
with the ��� + neutralliteral nodes). Nevertheless,the latesthigh literal nodewith broadcasttime

0

�

�

�

� + + causesa broadcasttimeon thechainto a neutraldelayedliteral nodeof at least 0

�

��+ +

�

� .

Frombothgroupsconsiderthemostdelayedliteral node�

��� � . Sinceeveryliteral nodehasadifferent
broadcasttime it holdsthat ��+ + � � � +

�

� , andthus �

�

�

�

�����

�

� 0

�

�

� � +

�

�

�

�

� .

�

Supposeall clausesaresatis�able. ThenLemma16 givesan upperboundfor the optimal broadcast
timeof �

�

- 2
 4

' �

�

� �

0

�

� � +

�

� .
Let usassumethatat least

!

� of the � clausesareunsatis�edfor everyassignment.Consideraclause
nodethatrepresentsanunsatis�edclausewith respectto theassignmentwhich is inducedby thebroadcast
schedule.Thenat leastoneof thefollowing casescanbeobserved:

� Theclausenodeis high, i.e., its threeliteral nodesarecoherentlyassigned.

� Theclausenodeis neutralandoneof its threeliteral nodesis low.

� Theclausenodeis neutralandoneof its threeliteral nodesis high.

Sinceeachliteral nodeis chainedto oneclausenodeonly, this implies

!

� �

�

�

+

�

�

�

� � �

+

�

� � �

Thecase� � � �
+ implies � �

�

�

�

� �

�

�
+

�

. Thenit holdsfor thebroadcasttime of any busyschedule
�

:

�

�

�

- 2
 4

' �

�

�

� 0

�

� � 0

�

�

�

�

� �

�

�

+

�

�

Otherwise,if � � � � + , then
�

�

�

�

�

��� +

�

�
�

�

�

� �

�

� +

�

and

�

�

�

-
2

 4 '��

�

�

� 0

�

�

�

�

�

�

� �

+

�

� 0

�

�

�

�

� �

�

�

+

�

�

Notethat 0 � � � � . Combiningbothcases,it follows that

�

�

�

-
2

 4 '��

�

�

� 0

�

�

�

!

� � � 0

�

�

�

�

�

!

� �

For any � � & this gives,choosing��� �

�

�

�

for suf�cient large �

�

�

�

- 2
 4

'��

�

�

�

�

-
2

 4 '��

�

�

�

�

�

�

�

!

�

�

�

�

�




�

�

�

�

�

�

�

!

� � �

Theorem18states
!

�

�

�

� � + + for any � + + � & which impliesclaimedlowerboundof
���

�

�

�

�

� for any
�

� � & .
Notethatthenumberof nodesof -

2
 4 is in �

�

�

�

�

and 0 � �

�

�

� �

. �
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Figure5.8: Thereductiongraph-3+

2
 4

.

5.6 Lower Boundsfor Ternary Graphs

Thepreviousreductionusesgraphs-32
 4 with a largedegreeat thesourcenode.To addressternarygraphs

with multiple sourceswemodify this reductionasfollows.
Theproofusesareductionfrom theE3-SAT-6 problem:aCNFformulawith n variablesand � �

	

�

�

clausesis given.Everyclausecontainsexactly threeliteralsandeveryvariableappearsthreetimespositive
and threetimesnegative, but doesnot appearin a clausemorethanonce. The output is the maximum
numberof clausesthatcanbesatis�edsimultaneouslyby someassignmentto thevariables.

Lemma 19 For some ��� & , it is
���

-hard to distinguishbetweensatis�able 3CNF-6 formulas,and
3CNF-6formulasin which at mosta

�

�

���

�

-fractionof theclausescanbesatis�edsimultaneously.

Proof: Similar asProposition2.1.2in [Fei98]. Here,every secondoccurrenceof a variableis replaced
with a freshvariablewhenreducingfrom E3-SAT. This way thenumberof positive andnegative literals
remainsequallyhigh. �

How canthestarat thesourcebe replacedby a ternarysub-graphthatproduceshigh differencesbe-
tweenthebroadcasttimesof theliteral nodes?It turnsout thata goodway to generatesuchdifferencesin
a very symmetricsettingis a completebinarytree.Usingtreesinsteadof a starcomplicatesthesituation.
A busybroadcastscheduleinforms �

�

�

�
leavesin time �

�

� wherein thestargraphonly onewasinformed
in time � . This is thereasonfor thedecreaseof theinapproximabilitybound.

The ternaryreductiongraph - +

2
 4

, given a 3CNF-6-formula
.

and a number � to be chosenlater,
consistsof thefollowing sub-graphs(seeFigure5.8).

1. Thesources�

�

'������ '�� � arerootsof completebinary trees�

�

'������ ' � � with depth 0 �

����� �

�

� �

�

and
leaves �

�

�

'������ '��

�

�

�

. Thenumber� will bechosensuchthat 0 is anevennumber.

A constantfractionof theleavesof �
� aretheliteral nodes(

�

�
 � 

� of a subgraph-

� . Therestof them,
�

�

�
 �

is connectedin pairsvia 0 -chains.For anaccuratedescriptionwe introducethefunctions

�

�

�

�

� �

�

�

�




�

�

�
"

�

�

�




�

�

0

�

 

and �

�

(

�

� �

�

� � � �  �

�

�

�

� (�� .
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Figure5.9: A ring of
	

nodesasreplacementof astar-sub-graph.

Lemma 20 1. For � � �

�

'�������'

�

0'� :

�

�

&

�

�

�

0

�

�

�

�

��

�

�

�

�

0

�

2. For ( �

�

&�'

�

�

� �

�

:

(

�

0

�

�

�

�

�

(

��

�

& (

�

0

�

�

�

Proof: Note that Stirling's formula implies �

�

�

�

� �

�

�

�

�

�

and �

�

�

�

�




�

�

� �

�

�

� �

�

�

. Since the series

�

�

�

�

' �

�

�




�

�

'������ decreasesfor
�

� 0

�

� this impliestheclaim. �

Every nodeof �
� is labeledby a binary string given by the path from the root, i.e., for the root �

label ��� � is the emptystring � ; two successingnodes�

�

' �

� of a node � arelabeledby label ��� ��� and
label ��� ��� . We call two leaves ( '

�

are oppositeif label
�

(

�

can be derived from label
��� �

by negating
everybit. For abinarystringlet 	

�

�

�

� �  	

�

�

�

�

�
	

�

�

�

�

 bethedifferenceof occurrencesof 1 and0 in � .
Consideranindexing �

�

�

'������ ' �

�

�

�

of theleavesof �
� suchthatfor all � � �

�

'�������' �

�

�

�

� � 	

�

label
�

�

�

�

� ��

	

�

label
�

�

�

�




�

� �

, and �

�

�

and �

�

�

�

4 �




� haveoppositelabelsfor all � � �

�

'�������'��

�

� .

2. For every binary tree �
� accordingto theseindicesthe literal nodesof -

� arede�ned by (

�

�
 �1

�

�

�

�

�

���

,




�

�

�

4

�

�




�

and (

�

�
 � 

�

� �

�

�

���

,

4

�

�

�

4

�

�

4 �




� for � � �

�

'�������' ��� , and ! � �

�

'�������'�� � .

3. Theotherleavesof � � areconnectedpairwiseby chainsof length 0 suchthatoppositeleavesof a
treerepresentfreeliteral nodes

�

�

�
 �

and
�

�

�
 �

. Thesenodesarenotpartof any sub-graph-

� .

4. Thesub-graphs-

� for ! � �

�

'�������'�! � describedin theprevioussectionhaveadegree5 at theliteral
nodes.Thesenodesarereplacedwith ringsof size5 to achievedegree3 (seeFigure5.9).

Proof of Theorem 14: If
.

is satis�able, then thereis a coherentlyassigningbroadcastschedulewith
�

�

- +

2
 4

��

� 0

�

�

.
An analogousobservationto Lemma17 for a busybroadcastschedule

�

for - +

2
 4

is thefollowing

1. Every literal nodewill beinformeddirectly from thesourceof its tree;

2. For all
�

� �

�

'������ '

	

� andfor all � � � & '������ ' 0'� it holds

 �)� � �

�

'������ '��

�

�  �

�

�

�

�

�

�

� �

�

0'�  �

�

0

�" �

3. For ���


�

� (

� ,

�

,

 �

,



�

�

(

�

�

�

�

 �

�



�

�

(

�

�

�

�

 �

�



� :

�

�

�

�
�



�

�

�

0

�

�

�

� �

�

� �

�

�

(

�

�

�

�

 �

�



�

�

�

�

���

�

�

�

Againliteral nodesarede�nedto beeitherlow, high,or neutral.Clausenodesareeitherhighor neutral.
For thenumber� of low literals, � of high literals,and�,+ thenumberof high clausesit holds� � � . There
are � � , resp. ��� + nodesin differentchainsthatareinformedlaterthan � 0 �

�

. Thereforethereis a tree �

�
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thatinformsat least � �

�

	

, resp. ��� +

�

	

delayednodes.Using �

� it is possibleto describea lowerboundof
thetime delaycausedby �

� asfollows:

�

�

�

- 2  4

�

� � 0 �

�

�

�

�

�

��� � �

�

�

� �

	

 

'��

�

�

� � +

	

 

�

�

Let usassumethatat least
!

� clausesareunsatis�edfor every assignment.Theconstantfractionof
�

-leavesof trees� � canbeseenasanadditionalsetof unusedliteral nodes.Now consideraclausenodethat
representsanunsatis�edclausewith respectto theassignmentwhich is inducedby thebroadcastschedule.
Thenthereis at leasta highclausenode,aneutralclausenodeconnectedto a low literal node,or aneutral
clausenodeconnectedto a high literal node.

Sinceeachliteral nodeis chainedto atmostoneclausenode,this implies

!

� �

�

�

+

�

�

�

� � �

+

�

� � �

Notethat �

�

� � �

�

. Theseobservationcombindwith Lemma20now imply

�

�

�

-

+

2  4

' � �

�

'������ '�� � �

�

� � 0 �

�

�

�

�

�

�

�

!

� �

�

	

 

� � 0

�

�

�

0

for some� � & . Sincefor thesetof nodes
�

of -3+

2
 4

it holds 

�

 � �

�

� �

�����

�

�

it is suf�cient to choose�

asa nonconstantpolynomialof � . �

Proof of Theorem 15: We startto combinethereductiongraphof theprecedingtheoremwith a ternary
pyramid (seeFig 5.3). The single source �

� is the top of the pyramid. The
	

basenodeshave been
previously the sources�

�

'�������' � � . Note that the additionalamountof broadcasttime in a pyramid is
�

	

� � for
	

�

�

nodesand �

	

�

�

for onenodefor any busybroadcastschedule.Thus,theformersources
areinformednearlyat thesametime.

For thechoice� � �

�

�

	 ��

�

�

thenumberof nodesof thenew graphisboundedby �

�

�

� �

. Thebroadcast
time increasesfrom �

� � � �

�

�

of - +

2
 4

to �

�

�

�

andtheindistinguishabledifferenceremains�

�

�

�����

�

�

.
�

5.7 Conclusions

The complexity of broadcasttime is a key for understandingtheobstaclesto ef�cient communicationin
networks. This article answersthe openquestionstatedrecentlyby [BNGNS98], whethersinglesource
broadcastingin theTelephonemodelcanbeapproximatedwithin any constantfactor. At themoment,the
bestupperboundapproximationratio for broadcasttime is known

���������



�



�

[BNGNS98] andasa lower
boundwe statea factorof �� � � . For this problemof themultiplicative approximationis still wide open
andthereis a new unpublishedresultof ElkenandKortsartz[EK01] which improvesthis boundto � � �

undertheassumption
���

�

DTime
� 	

�

�

	 ���

�

�

�

.
Theorem13closesthegapfor theadditiveapproximation.In [KP95] anadditive

���

�

	��

-approximation
algorithmwaspresentedfor generalgraphswith

	

nodes. Here,we presenta lower additive boundof
�

�

�

	��

.
It is possibleto transferthis resultto boundeddegreegraphs.But thereconstructionof sub-graphswith

largedegreedecreasesthelowerbounddramatically. Nevertheless,for ternarygraphswith a singlesource
this paperimprovestheinapproximabilitydifferencefrom

�

[JRS98] up to �

����� 	

. For theapproximation
factorof suchgraphslittle is known sofar. Theupperboundis aconstantfactorandTheorem15 impliesa

lowerboundof
�

�

�

��	 ��

�

�

�

�

. Somatchingupperandlowerboundsremainunknown.
Froma practicalpoint of view, network structuresareoftenuncertainbecauseof dynamicandunpre-

dictablechanges.And if the network is static, it is hardly ever possibleto determinethe ratio between
switchingtime on a singleprocessorandthedelayon communicationlinks. But evenif theseparameters
areknown asconstantslike in telephonemodelof broadcasting,theseresultsshow thatdevelopinga good
broadcaststrategy is a computationallyinfeasibletask.



Chapter 6

RandomizedRumor Spreading

6.1 Intr oduction

In this chapterwe investigatethe problemof broadcastinginformation in a processornetwork from a
differentview. Unlike asin theprecedingchaptersan interconnectionnetwork allows arbitrarypoint-to-
point communication.The messageto be passedwill be calledrumor to emphasizethe speci�cs of this
communicationmodel.We investigatetheproblemof spreadingrumorsin adistributedenvironmentusing
randomizedcommunication.Suppose

	

playersexchangeinformationin parallelcommunicationrounds
overaninde�nite time. In eachround � , theplayersareconnectedby acommunicationgraph- � generated
by randomphonecalls asfollows: eachplayer � selectsa communicationpartner� at randomand � calls

� ; two players� and � areconnectedby anedgein - � if � calls � in round � . Rumorscanbestartedin any
roundby any playerandcanbetransmittedin bothdirectionsalongtheedgesin thegraph - � in round � .
Thegoalis to spreadtherumoramongall participatingplayersusingasmallnumberof roundsandasmall
numberof transmissions.

Themotivationfor usingrandomizedcommunicationis thatit naturallyprovidesrobustness,simplicity,
andscalability. For example,considerthefollowing so-calledpushalgorithm. Startingwith theroundin
which a rumor is generated,eachplayer that holds the rumor forwardsit to a communicationpartner
selectedindependentlyanduniformly at random.The distribution of the rumor is terminatedafter some
�x ed numberof

��������� 	��

rounds. At this time all playersareinformedwith high probability. The term
with highprobability(w.h.p.)meanswith probabilityat least

�

�

��� 	

4

�

�

for anarbitraryconstant� � & .

Clearly, onecanalsoinform all playersin
��������� 	��

roundsusinga deterministicinterconnectionof
constantdegree,e.g.,a shuf�e network (For an overview of deterministicinformationdisseminationwe
referto [HHL88] or [HKMP96]). Theadvantageof therandomizedpushalgorithm,however, is its inherent
robustnessagainstseveralkindsof failurescomparedto deterministicschemesthateitherneedsubstantially
moretime [GP96] or cantolerateonly a relatively smallnumberof faults[LMS92]. For example,consider
nodefailuresin whichaplayer(differentfrom theplayerstartingtherumor)failsto communicateor simply
crashesandforgetsits rumors.Obviously, whenusinga sparsedeterministicnetwork, evena singlenode
failurecanresultin a largefractionof playersnot receiving therumor. Whenusingtherandomizedpush
algorithm,however, the effectsof nodefailuresarevery limited. In fact, it is not dif�cult to prove that

.

nodefailures(speci�ed by an obliviousadversary)result in only
���/. �

uninformedplayerswith high
probability.

Unfortunately, thepushalgorithmproducesa largecommunicationoverhead.In fact, it needsto for-
wardeachindividual rumor �

��	 ����� 	��

timesbeforeall playersareinformed,in comparisonto adetermin-
istic schemewhich requiresonly

	

�

�

transmissions.It seemsthat the largenumberof transmissionsis
thepricefor therobustness.Thisgivesriseto thequestionwhetherthisadditionalcommunicationeffort is
a specialpropertyof theabovepushalgorithmor is inherentto rumorspreadingusingrandomphonecalls
in general.
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6.1.1 Background

The rumor spreadingmodel is originatedin the mathematicalmodelingto the spreadof an infectious
disease.In 1926McKendrickdevelopedthe�rst stochastictheoryin 1926.An overview oversuchmodels
is presentedin [Bai75]. Standardmathematicalmodelsof viral infection characterizeindividualsby a
smallnumberof states,e.g. infected,uninfected,immune, etc. Thepushmodelconsidersuninfectedand
infectedindividuals. In the �rst roundone individual is infected. Every infectedindividual contactsa
randompartnerof the whole group (possiblybeingalreadyinfected)and transmitsthe disease.In1987
Pittel [Pit87] analyzedfor this modelthat theexpectednumberof rounds� � to infect all

	

participantsis
boundedby

�,� �

����� 	

�

�

�

	

�

���

�

�

with probabilityconvergingto
�

.
Demersetal. [DGH 
 87] introducedtheideaof usingso-calledepidemicalgorithmsfor thelazyupdate

of dataobjectsin adatabasereplicatedatmany sites,e.g.,yellow pages,nameservers,or serverdirectories.
In particular, they proposethefollowing two concepts:

� Anti-entropy: Every site regularly choosesanothersite at randomand resolvesall differencesby
exchangingthecompletedatabasecontents.

� Rumormongering: Whena sitereceivesa new updateit becomesa “hot rumor”. While a siteholds
a “hot rumor”, it periodicallychoosesanothersiteat randomandsendstherumorto theothersite.

It turnsoutthatanti-entropy isextremelyreliablebutproducessuchanenormousamountof communication
that it cannotbe usedtoo frequently. The ideaof rumor mongeringis to exchangeonly recentupdates,
therebyreducingthe communicationoverheadsigni�cantly. In practiceonemight usea combinationof
both concepts,that is, usingrumor mongeringfrequentlyandanti-entropy very rarely in orderto ensure
thatall updatesarerecognizedby all sites.In thispaper, wesolelyinvestigatealgorithmsimplementingthe
rumormongeringconcept.

The original idea for rumor spreadingwas to sendrumorsonly from the caller to the calledplayer
(pushtransmission) [DGH 
 87]. Severalterminationmechanismsdecidingwhena rumorbecomes“cold”
so that it transmissionis stoppedwere investigated.All thesealgorithmssharethe samephenomenon:
the fraction � of playersthatdo not know a particularrumordecreasesexponentiallywith thenumberof
transmissions� (i.e.,messagesthatcontainthisrumor).So-calledmean�eld equations(implicitly assuming
that � is sharplyconcentratedaroundits meanvalueE

�

�

�

) leadto theconjecturethat � � # ��!

�

� �

�

	��

for
all variantsof the pushalgorithmthat have beeninvestigated.In other words, a pushalgorithmneeds

�

��	 ����� 	��

transmissionsfor sendingarumorto all players.
A further ideaintroducedin [DGH 
 87] is to sendrumorsfrom the calledto the calling player(pull

transmission). It wasobservedthat thenumberof uninformedplayersdecreasesmuchfasterusinga pull
schemeinsteadof a pushscheme.This kind of transmissionmakessenseif updatesoccurfrequentlyso
that (almost)every playerplacesa randomcall in eachroundanyway. Mean�eld equationsleadto the
conjecturethat � � #���!

�

� �

�

�

for pull schemes.Clearly, thisdoubleexponentialbehavior impliesthatonly
�

��	 � � � ����� 	��

transmissionsareneededif thedistribution of therumorcanbestoppedat theright time.
Sucha terminationmechanism,however, is not presented.Instead,theauthorspredictthat �

��	

�

�

����� 	��

transmissionsaresuf�cient for someotherspeci�c terminationmechanisms.
The work of Demerset al. initiated an enormousamountof experimentaland conceptualstudy of

epidemicalgorithms.For example,thereis a varietyof researchissueslike consistency, correctness,data
structures,andef�ciency [AAS97, GL91, GPP93, LLSG92, RGK96]. Recenttheoreticalworkconcentrates
ontherobustnessagainstByzantinefailures[MMR99]. In thispaper, weconcentrateonly ontheef�ciency
of theserandomizedalgorithms.In particular, we studytheir time andcommunicationcomplexity usinga
simplemodelfor theunderlyingrandomizedcommunication.

6.1.2 The RandomPhoneCall Model

Let
�

denotethe setof players. The communicationgraph -3� �

�

�

'�	 �

� �

�

�

�

of round � �

�

is
obtainedby a distributed, randomizedprocess.In eachround,eachplayer � choosesa communication
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partner� from
�

at randomand � calls � . Unlessotherwisestated,weassumethatall playerschoosetheir
communicationpartnersindependentlyanduniformly at randomfrom

�

.
Eventhoughweenvisageanapplication(suchasthelazy transmissionof updatesto distributedcopies

of a database)in which rumorsareconstantlygeneratedby differentplayers,our analysisis concerned
with the distribution of a single rumor only. We focuson the lifetime of the rumor and the numberof
transmissionsratherthanthenumberof connectionsestablishedbecausethe latter costis amortizedover
all therumorsusingthatconnection.

In round � , therumorandotherinformationcanbeexchangedin bothdirectionsalongtheedgesof - � .
Whenever a connectionis establishedbetweentwo players,eachoneof them(if holding the rumor)has
to decidewhetherto transmittherumorto theotherplayer, typically without knowing whetherthis player
hasreceivedtherumoralready. Regardingthe�o w of information,we distinguishbetweenpushandpull
transmissions.Assumeplayer � callsplayer � .

� Therumoris pushedIf � tells � therumor.

� Therumoris pulledif � tells � therumor.

We do not limit the sizeof the informationexchangedin any way. Eachinformationexchangebetween
neighboringplayersin a roundis countedasa singletransmission(We point out thatour algorithmsonly
addsmallcountervaluesto rumors,whereasour lower boundshold evenfor algorithmsin which players
exchangetheir completehistory whenever the rumor is sentin eitherdirection). Communicationinside
eachround,however, is assumedto proceedin parallel,thatis, any informationreceivedin a roundcannot
beforwardedto anotherplayerin thesameround.

Themajorissuethathasto bespeci�edby arumorspreadingalgorithmis how playersdecidewhether
the rumor shall be forwardedto a communicationpartner. An algorithmis calleddistributed if players
make thesedecisionsusingonly local knowledge. In otherwords, the decisionwhethera playersends
a messageto a communicationpartnerin round � dependsonly on the player's statein that round. The
initial stateof aplayeris de�ned by theplayer'saddress,thenumberof players,andpossiblya randombit
string.Thestateof aplayerin round � �

�

is a functionof its initial state,theaddressesof its neighborsin
thecommunicationgraphs-

�

'������ '1- � , andthe informationreceivedin rounds
�

to � �

�

. (For our lower
boundswe allow thestateto dependin additionon a globally known roundnumberandthebirth dateof
therumorconsidered.)

Finally, an algorithmis calledaddress-obliviousif a player's statein round � doesnot dependon the
addressesof theneighborsin -

� but only on thenumberof neighborsin -
� . (Thestatecanstill dependon

theaddressesof neighborsin -

�

'�������' -
��4

� .) We point out thatall rumorspreadingalgorithmsproposed
by Demersetal. [DGH 
 87] areaddress-oblivious.

6.1.3 NewResults

We prove that the numberof transmissionscanbe reducedsigni�cantly whenthe rumor is sentin both
directions,that is, when using pushand pull ratherthan only pushoperations. We introducea simple
push&pull algorithm spreadingthe rumor to all playersin

��������� 	��

roundsusingonly
����	 ����� � � � 	��

transmissionsin comparisonto �

��	 ����� 	��

asusedby thepushalgorithm.For this analysisit is necessary
to analyzetheperformanceof theplain pushalgorithmandpull algorithmstepby step. It turnsout that
thesealgorithmsneed�

� 	 ����� 	��

messageto inform all playerswith highprobability, i.e.,with probability
�

�

	

4

�

for someconstant� �

�

. Bothalgorithmsneedtime �

������� 	��

.

Theorem19 Thesimplepush&pull-schemeinformsall players in time
� � �

�

	

�

��� � � � ����� 	��

using
����	 ����� � � � 	��

messageswith highprobability.

The drawbackof the simple push&pull-algorithmis that its successheavily relies on a very exact,
globalestimationof theright terminationtime. This mechanismis verysensitive to any kind of errorsthat
in�uence theexpansionof thesetof informedplayers.

ScottShenker proposeda distributedterminationmechanismusinga counterindicatingindirectly the
spreadof the rumor. We show that this min-counteralgorithmperformsaswell asthepush&-pull algo-
rithm:
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Theorem20 Themin-counteralgorithminformsall players in time
� � �

�

	

�

��������� ����� 	��

using
����	 ����� � � � 	��

messageswith highprobability.

In order to improve the robustness,we devise a distributed terminationscheme,called the median-
counteralgorithm, that is provably robustagainstadversarialnodefailuresaswell asstochasticinaccura-
ciesin establishingtherandomconnections.

In particular, we show thattheef�ciency of thealgorithmdoesnot rely on thefactthatplayerschoose
their communicationpartnersuniformly from the set of all players. We show that the median-counter
algorithmtakes

��� � � � 	��

roundsandneedsonly
��� 	 ����� ����� 	��

transmissionsregardlessof theprobability
distributionusedfor establishingtherandomconnectionsaslongasall playersactindependentlyandeach
playerusesthesamedistribution � �

� � �

& '

���

to selectits communicationpartner. For example,this
allows samplingfrom an arbitraryaddressdirectory (possiblywith redundantaddressesandsomenon-
listedplayersasin a telephonebook). In otherwords,thealgorithmcanbeexecutedevenwithout global
knowledgeaboutthesetof players.

Theorem21 Assumingan arbitrary distribution � and up to
.

nodefailuresas describedabove, the
median-counteralgorithmsinformsall but

���/. �

players in
�����

�

	��

roundsusing
����	 ����� � � � 	��

trans-
missionswith highprobability.

In addition,we provide lower boundsassumingthat the communicationpartnersareselectedusing
theuniform probabilitydistribution. Both thesimplepush&pullalgorithmaswell asthemedian-counter
algorithmareaddress-oblivious anduseonly

��� 	 ����� � � � 	��

transmissions.We prove a corresponding
lowerboundshowing thatany address-obliviousalgorithmneedsto perform

�

� 	 � � � ����� 	��

transmissions
in orderto inform all players.We point out that this boundholdsindependentlyof thenumberof rounds
executed.

Theorem22 Anyaddress-obliviousalgorithmguaranteeingthatall but a fraction � of theplayersreceive
therumor with constantprobabilityneedsto perform

�

��	 ����� �����

�

�

�

transmissionsin expectation.

Thesituationchangessubstantiallywhenconsideringgeneral(i.e.,possiblynon-address-oblivious)al-
gorithms.Allowing �

� 	 ����� 	��

rounds,analgorithmthatexploitstheaddressesof communicationpartners
canspreadtherumorusingonly

	

�

�

transmissions.Hereis a simpleexample.Theplayerinitiating the
rumor simply waits until eachotherplayerappearsascommunicationpartnerfor the �rst time andthen
forwardsthe rumor to this player. Clearly, this is not a practicalalgorithmasit takestoo many rounds.
Nevertheless,it illustratestheadditionalpossibilitieswhentheaddressesof communicationpartnerscan
beexploited.

Theabove exampleleadsto thequestionof whethergeneralepidemicalgorithmscanspreada rumor
in a small numberof roundswhile usingonly a linear numberof transmissions.We give a lower bound
answeringthis questionnegatively. In particular, weshow thatany randomizedrumorspreadingalgorithm
runningfor

���������
	��

roundsrequires	

� 	��

transmissions.

Theorem23 Anydistributedrumor spreadingalgorithmguaranteeingthat all but a fraction �

�

�

�

of the
players receivethe rumor within

�����

�

	��

roundswith constantprobability needsto perform 	

��	��

trans-
missionsin expectation.

This lower boundholdsregardlessof the amountof informationthat canbe attachedto the rumors.
For example,playersmight alwaysexchangetheir completecommunicationhistorywhenever the rumor
is transmittedin eitherdirection. Thus,thereis a fundamentalgapbetweenrumor spreadingalgorithms
basedon randominterconnectionsanddeterministicbroadcastingschemes.

Therestof this chapteris organizedasfollows. We startin thenext sectionwith anextensiveanalysis
of thepush,pull, push&pull-algorithm.In section6.3 we presentthemin-counterandin section6.4 the
med-counteralgorithms.Then,in section6.5we provethelowerboundfor thenumberof transmissionin
thecaseof obliviouscommunication.In thelastsectionof thischapterwepresentthegenerallowerbound
for numberof transmissionsin this communicationmodel.
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Pushalgorithm for player� andrumor �

begin
for eachround � do

if � knows � andage
�

�

� �

�

� � � 	

then
age

�

�

�

�

age
�

�

�

�

�

�

�

�

call
�

� ' �

�

Sendtherumorto �

� (i.e., � pushestherumor)
�

od
end.

Figure6.1: Thepushalgorithm.

6.2 The Advantageof Push&Pull

First, let usexplain thedifferencesin thepropagationof therumorobtainedby pushtransmissionson the
onehandandpull transmissionson theotherhand.

6.2.1 The PushScheme

Considera pushschemein which every informedplayer, in every round,forwardstherumorto theplayer
it calls until all playersare informed. We identify the playersby the numbers

�

	

�

� � �

�

'�������'

	

� . Let
call

�

� ' �

�

betheplayerthat � callsin round � . Wlog. player
�

is informedat thebeginning.Weattached
to therumortheageof therumoranddenotethis by age

�

�

�

. Whentherumoremergesits ageis setto & .
Figure6.1exempli�es thepushalgorithmandFigure6.2showshow thepushschemespreadsa rumor.

Pittel [Pit87] provedthatfor � �

�

�

�

� � with probability1 all playerswill beinformed.Wewill show
thata constantchoiceof � suf�ces to ensurehigh probability, i.e., probability

�

�

	

4

�

�

for someconstant
�

+ .
Let the randomvariable � � denotethe numberof informedplayersin round � . Beforethe �rst round

we have �

�

�

�

. Formally therandomvariables�

�

' �

�

' �

�

'������ describea Markov process:thereis a �nite
setof states

�

	

�

andthetransitionprobability � push
�

� ' �

�

is thesamefor eachround. � push
�

� '�

�

denotesthe
probability that � playersareinformedin thenext roundundertheassumption� playersareinformedin
this round.We cancomputethis probability � push

�

� ' �

�

usingtheequality

� push
�

� ' �

�

�
�

�

�

� '� � � ' �

�

if �

�

�

& else �

The term �

�

� ' � '

�
�

denotesthe probability that � informedplayerhit � uninformedplayerswith
�

calls.
Thefollowing recursionfor ���

�

	

�

, � � � �

�

and
�

�

�

describesthis term.

�

�

� '1& '1&

�

�

�

' �

�

� ' � '1&

�

� &3' �

�

� '1& '

�
�

�

�

	

� �

�

� ' &�'

�

�

�

�

'

�

�

� ' � '

�
�

�

	

� � � �

�

�

	

� �

�

� ' � �

�

'

�

�

�

�

�

�

�

�

	

� �

�

� ' &�'

�

�

�

�

�

GiventhisMarkov processfor eachgiven
	

thespeedof convergencecanbecomputedaccuratelyusing
standardtechniquesasdescribedin [Sin92]. But thisapproachdoesnothaveanobviousgeneralizationfor
all

	

andin factweuseadifferentapproach.
It turnsoutthatthebehavior of �

� canratheraccuratelydescribedif wedividetheinformationspreading
processinto thefollowing phases(An overview canbefoundin Figure6.3).

1. Startup: �
�

�

!

����� 	

We want to estimatethenumberof roundsnecessaryto leave this phasewith high probability. We
will usethefollowing Lemma.



68 CHAPTER6. RANDOMIZED RUMOR SPREADING

1

2

3
4 5

6

7

8

9

a

bcd

e

f

0

1

2

3
4 5

6

7

8

9

a

bcd

f

0

e

2

3
4 5

6

7

9

a

bcd

f

0

e

8

1

3 5

6

7

a

bcd

0

e

8

1

f

2

4

9

3 5

6

7

bcd

0

e

8

1

f

2

4

9

a

3 5

6

bcd

0

e

8

1

f

2

4

9

a

7

6

cd

0

e

8

1

f

2

4

9

a

7

b

3 5

6

d

0

e

8

1

f

2

4

9

a

7

b

3 5

c

Figure6.2: A 16processornetwork spreadinga rumorusingthepushscheme.
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Figure6.3: Thegrowth of thenumberof informedplayersin thepushscheme.

Lemma 21 If all �

�

!

����� 	

informedplayersonly pushtheir informationfor � subsequentrounds,
thenthere areat least � new informedplayersafterwith probability

�

�

����	

4

�

�

�

, for � �

�




�

�




�

�
4

� .

Proof: Eachof the � playerscalls � addresses.We neglect the informationspreadingimpactof
newly informedplayersduringthese� rounds.

For eachroundweobserveoneof thefollowing possibilitiesfor eachplayer.

(a) He canaddressoneof the � originally informedplayer. Thisoccurswith probability �

�

	

.

(b) He triesto pushto thesameplayerasanotherinformedplayer. Theprobabilityof this eventis
at most �

�

	

.

(c) Hehitsaplayerthatwasinformedin aprecedinground.Sincethephaseendswith � additional
informedplayers,thisprobabilityis boundedby �

�

	

, too.

Thereforeit holds,thatin everyroundaplayersuccessfullyinformsanew onewith probabilityof at
least

�

� � �

�

	

. Theprobabilitythatat least
�

� �

�

�

� pushesfail is thereforeatmost
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�

Hence,thenumberof informedplayersdoublesafterevery � roundswith probability
�

�

����	

4

�

�

�

.
Thereforeafter �

����� ����� 	

�

�

� � �

! roundsthephaseis passedwith probability
�

�

����	

4

�

�




�

�
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2. Exponential growth: !

����� 	 �

� �

�

�

�

It turnsout thatin every roundthenumberof informedplayersincreasesnearlyby a factortwo with
highprobability. In particularwe canprovethefollowing lemma.

Lemma 22 If �	� � !

� � � 	

'������ '

	

� �

� players are informedin a roundof thepush algorithm, then
for all � � & thereareat least � new informedplayers in thenext roundwith probability

�

�

��� 	

4

�

�

if ! � ���

�

�

, where

(a) if �

� 	

�

�

�

wehave� � � �

�

�

� �

	 ���

�

�

(b) andotherwisewehave� � � �

�

�

�

�

�

�




�

�

�

� �

����� 	

� �

�

� � �

� � � 	

.

Proof: The probability that oneof the � playerswill pushto an uninformedplayerandno other
playerpushesto this playerin thesameroundis at least

�

�

�

�

�

. Hence,theprobability thata push
succeedsindependentlyfrom the behavior of all other playersis at leastthis probability

�

�

�

�

�

.
Hence,wecanuseabinomialdistributionto estimatetheprobabilitythatmorethan � � � playersfail
to inform new players.Thereforeanupperboundof this probabilityis givenby thefollowing term.

�

�

�
"

�
4 4

�

�

�

 

�

� �

	

 

�

�

�

�

� �

	

 

� 4 �

(a) If �
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, let � � �

�

�

�
�

	 ���

�

�
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(b) For ��� �

	

, let �

��� �

� �
�

�

�

�

�

�

�

�

�

�

�

�

�
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�
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. Let ��+ � � �

�
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� � �
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. Now
observefor all
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� � � � + �
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�

Notethat �

�

� � �
+

� �

�

andtherefore�

�

� � �

�

�

� �

�

�

�

�
�
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�

Until �

�

�

	 ���

�

playersareinformed,thebasisof theexponentialgrowth is two. For this notethat
for � � � �

	

:

� �
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� ���
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� �

�

� �

	

�

� � �
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� � � 	
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� � � 	

�

�

	 ��

�

�

�

����� 	

� �
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�
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� �

� �

�

� �

�

����� 	

 

Herethe �rst inequalityholdswith high probability, while the last inequalityholdsalmostevery-
where,i.e., for all

	

�

	

� for some
	

� . Now observe thatapplyingthis recursionfor
� � � 	

rounds
yields:

� �
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�
�

Of coursethis numberof informedplayersis larger thanthepreconditionallows for the inequality.
However it is guaranteedthatafter

����� 	

stepsat least �

	 ���

�

playersareinformedwith highprobabil-
ity.

In thefollowing roundswe canthesecondboundof Lemma22

�
�




�

�

�

�

� �
�

� �

����� 	

�

� �

�

�

� �
�

andaftersome
��������� ����� 	��

roundsat least �

� playersareinformedwith high probability.

3. Saturation phase: �

�

�

� �

� 	

At aboutthis time theexponentialgrowth of thesetof informedplayersstops.Let usconsiderthe
setof uninformedplayers� � � �

	

� ��� . Onceaconstantportionof theplayersareinformed,thisset
shrinksby a constantfactorin eachround. At theendof therumorspreadingprocessthis factoris
about

�

�

� �

# sincethefractionof playersthatdonot receivea call in a roundis givenby �

�

�

�

�

�

�

andthusquickly convergingto
���

# . Thus,theshrinkingof theuninformedplayerstakesat least
�

�

	

rounds.Pittel [Pit87] showedthatthis boundcanbeachievedwith probability1. But if we wantto
ensurea higherprobabilityof

�

�

	

4

�

for some� �

�

andconsiderthecasethatall but oneplayers
areinformed,thena straight-forwardcalculationshows thatwe needat least �

�

�

	

roundsfor this
simpletask.

For an upperbound,note that if �

� playersare informed every uninformedplayer is informed in
a round with probability

�

� . Hence,the probability of remaininguninformedafter �

�

�

	

rounds

is boundedby � �

�

�

�

	 ��

�

� 	

4

�

	 ���

�

�

�

�

�

. Clearly, all playersare then informedwith probability
�

�

	

4

�
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�

�

�

�

�

4
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Pull algorithm for player� andrumor �

begin
for eachround � do

if � knows � andage
�

�

� �

�

����� 	

then
age

�

�

�

�

age
�

�

�

�

�

for all � +�� called
�

�*' �

�

do
Sendtherumorto � + (i.e., � + pulls therumor)

od
�

od
end.

Figure6.4: Thepull algorithm.

6.2.2 The Pull Scheme

Now considera pull schemein which only calledplayerssendtherumortowardsthecalling players.Let
called

�

� ' �

�

bethesetof playerthatcall � in round � . Again player
�

is informedat thebeginningand
we attachthe rumor's ageto the transmittedmessagestartingwith & whenthe rumor emerges. The pull
algorithmis shown in Figure6.4andin Figure6.5a rumoris spreadby this algorithm.

Againwedenoteby �
� thenumberof informedplayersin round � . Againwedescribethecorresponding

Markov processwith its transitionprobability � pull
�

� '�

�

, i.e., theprobabilitythatif � playersareinformed
in round �

�

�

underthecondition � wereinformedin round � . We have

� pull
�

� '�

�

�
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� � �
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�

4
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�
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�

� 4

�

if �

�

�

& else �

We canderive thefollowing Lemmasdirectly from thisequation.

Lemma 23 If � playersareinformedandall � � �

	

� � uninformedplayersonly pull their informationin
a round,thenfor all � � � � , � � & there areat least �

�

�

�

�

���

�

� � new informedplayers in thenext round

with probability
�

�

�

�

4

�
���

�

.

Proof: An uninformedplayercallsaninformedplayerwith probability �

�

	

. Thenumberof new informed
playerscanbe describedby a binomial distribution �

�

� ' �

�

	��

. Thereforethe probability that at most �

playerswill beinformedis exactly

4

�
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. Thenit holds

�

���

�

�

�

�

��� �

�

�

�

� �

� �

�

���

�

�

�



6.2. THE ADVANTAGEOF PUSH&PULL 73

1

2

3
4 5

6

7

8

9

a

bcd

e

f

0

1

2

3
4 5

8

9

a

bcd

f

0

6

7

e

2

3
4 5

9

a

bc

0

1

e

f

6

7

d

8

3

a

bc

0 8

f 9

e

4

1

2

7

6

5

d

3

b

0

e

8

f

2

9

d c

7

6

54

a

1

b

0

e

8

1

f

2

4

9

7

d c

a

3 5

6

Figure6.5: A 16processornetwork spreadinga rumorusingthepull scheme.
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Let
� �

� � �

�

�

�

�

�

���

�

�

�

. Thenit follows

�

���

�

�

�
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��� �

�

�

�

� �

�

�
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� �
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�
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�

�
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� � � �

�

�
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� �

� �

�

�

�

� �

�

�

	

� �

�

�

� �

�

�

�

�

���

�

�

�

�

�

�

�

�

���

�

�

�

���

Therefore�

�

� � �

� � �

�

� �

�

� andwe get:

4�4

�

�

� "

�

�

��� � �

�

�

� �

�

�

�

�

Lemma 24 For ! � & , if all �

� 	

4

�

uninformedplayers only pull their informationfor some� rounds,
thenall playersare informedwith probability

�

�

	

4

�
�

4

�

�

�

.

Proof: Theprobabilitythatanuninformedplayermakes � continuouscallsto uninformedplayersis
	

4

�
�

.
Sotheoverallprobabilitythatany playerremainsuninformedafter � roundsis atmost

	

�

	

4

�
�

�

Againweobservethattherumorspreadingprocesscanbeaccuratelydescribedby threephases.

1. Startup: � �

� �����

�

	

.

Note that thereis a constantprobabilityof
�

�

�

�

�

�

�

�

�

�

thata playerreceivesno call by another
player in a round. Therefore,we needsome �

������� 	��

roundsto guaranteethat a secondplayer
receivestherumor. Furthernotethatthestandarddeviation is at least �

������� 	��

, too. TheChebyshev
inequalityimpliesthatthestartupphasemustlastat leastsome�

����� 	

rounds.

Now weprovethat
���������
	��

roundssuf�ce to leave thisphasewith highprobability.

If �

� �����

�

	

playersareinformed,thentheprobabilitythatanuninformedplayercallsthisplayeris
�

�

	

. This happensindependentlyfrom thecalling patternsof theotherinformedplayers.Therefore
theprobability thatat most � playersfail to call this set

�

of � informedplayerswithin some 0 �

�

�

	

�

�

���

roundsis givenby thefollowing term.
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Thelastinequalityfollowssince�

�

� �

�

�

�

�
�

�

�

� � �*�

�

�

	

�

�

�

�

	

�

�

�

� 0

�

�

�

�

	

and��0 � � �

�

�

	

.

Thereasonwhy
���������
	��

roundssuf�ce to leave this phaseis thefollowing. To inform two players
weneed�

�

�

	

roundswith highprobability. Thenext four playersareinformedwithin
�

	

�

�

� rounds,
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theneightplayerswithin
�

	

�

�

� rounds,andso forth. Hencetheoverall numberof roundsis � �

�

�

	

with probability
�

�

	

4

�

�

�




�

.

2. Exponential growth:
�����

�

	 �

� �

�

�

�

	

Until some
	

�

� � � 	

playersare informedthe growth is exponentialto the basis2. Thenit slows
down a little bit. From Lemma23 it follows that in every roundadditional ���

�

� 4 �

�

�

�

�

�

� �

�

� �

playersareinformedwith probability
�

�

�

�

4

� � �

�

. Wechoose� �
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�

and � � �

� � �
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yielding the
probability
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With this probabilitythenumber� � of informedplayersincreasesasfollows.
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�

From thesameargumentasin theexponentialgrowth phaseof thepushalgorithmit follows
thatthis sub-phaselastsat most

� � � 	

�
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�

�

rounds.
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Hence,thissub-phaserequiresat most
��������� ����� 	��

rounds.

3. Quadratic shrinking: �
�

�
�

�

	

From this time on, the pull algorithmhasan advantageagainstthe pushalgorithmasthe fraction
of uninformedplayersroughly squaresfrom round to round. This is becausein a roundstarting
with � � �

	

� � � uninformedplayers,eachindividual playerhasprobability
�

� �,�

�

	

to receive
therumor. Heretheprobabilityof stayinguninformedis �,�

�

	

, resultingin anexpectednumberof
�

� �

�

	�� � 	

uninformedplayersat theendof theround.Thus,we canexpectthat theshrinkingphase
only takes �

������� ����� 	��

roundssothatonly �

��	 ����� ����� 	��

messagesaresentduringthis phase.

We canprovethis estimationin two steps:
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:
We applyLemma23andchoose� �
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�

and � � � �
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andgetwith probability

�

�

�

�

���

�

�

�

�

�

�

�

	

�

�

�

�

�

	

 

�

�

�

	 ���

�

�

�

�

	

4

�

�

	

�

�




,

�

thefollowing inequality
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Notethat
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� ,
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�

�

�

�

�

�

�

. Hence,after
� � � ����� 	

roundsthenumberof uninformedplayersis
smallerthan �

	 �����

�

	

.
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Figure6.6: Thegrowth of thenumberof informedplayersin thepull scheme

Push&Pull algorithm for player� andrumor �

begin
for eachround � do

if � knows � andage
�

�

� �

�

����� then
age

�

�

�

�

age
�

�

�

�

�

for all � + � called
�

�*' �

� �

� call
�

� ' �

�

� do
Sendtherumorto �

+ (i.e., �

+ pushesandpulls therumor)
od

�
od

end.

Figure6.7: Thepush&pullalgorithm.

�

�
�

�

�

	 �����

�

	

:
Lemma24showsthatheresomeconstantroundssuf�ce to inform all playerswith highproba-
bility.

Informing all playersdoesnot necessarilymeanthat thepull algorithmstops.Recallthatbecauseof
theuncertainstartupthe exponentialgrowth startswithin a time range � �

������� 	��

. If we want to ensure
thatall playersareinformedafter thethird phasewe have to leave with a fourth phaseof length �

������� 	��

wherepossiblyall playersareinformedandrumorsarestill beingtold.

6.2.3 Pushand Pull

In orderto combinethepredictabilityof thepushschemewith thequadratic-shrinkingpropertyof thepull
scheme,we simply sendtherumorin bothdirectionswheneverpossible.In detail,our push&pull scheme
worksasfollows.Thecreatorof therumorinitiatesatime-counterwith & representingtheageof therumor.
Theageis incrementedin eachroundanddistributedwith therumor. In everyroundeveryinformedplayer
pushesandpullsunlesstheageof therumoris higherthan �

�����

�

� � �

�

	

�

���������
� � � 	��

. Figure6.7shows
thealgorithm.

To proveTheorem19we needthefollowing Lemma.
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Lemma 25 If � informedplayers push and pull their informationin a round, thenfor all ��� & with
probability

�

�

����	

4

�

�

there are at most �

�

�

�

�

�

�

� � � 	

new informedplayerswhoare informedvia push
andpull, if � wasthenumberof uninformedplayersgettinginformationfroma pull.

Proof: Theprobability thatan informedplayerpushesto oneof the � playersis �

�

. Theprobabilitythat
�

playersout of the � playersgeta call from the � informedplayersis smallerthantheprobability that �

informedplayerscancall
�

addressesof � , sincesomecallscanproducethesameaddress.Theprobability
thatmore � of the � playersgetapushis smallerthan

�

�

� " 4

�

�

�

 

�

�

	

�

�

�

�

�

�

	

�

� 4 �

�

Let �

��� �

� � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� 4 �

and
�

��� � � �

� �

�

�

�

. Thenit holds

�

���

�

�

�

�

��� �

�

�

� �

�

�

�

�

�

���

�

�

� ��	

� �

�

�

�

� � � �

�

�

�

�

�

�

�

� ��	

� �

�

�

�

� � �

� �

�

�

�

�

� �

�

��	

� �

�

�

	

�	� �

�

��	

� �

�

�

�

�

�

Therefore�

�

�

�

�

� �

�

4 � andthus
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�
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Now weproveTheorem19whichstates:

Theorem19Thesimplepush&pull-schemeinformsall playersin time
�����

�

	

�

���������
� � � 	��

using
��� 	 � � � ����� 	��

messageswith high probability.

Proof: We combinethe argumentsusedfor the push-algorithmandthe pull-algorithm. Let
�

� be the
setof informedplayersand �

� thesetof uninformedplayersat theendof round � . De�ne �
�

� 

�

�
 and

�
�

�  �
�

 . We distinguishthefollowing phases.

1. The startupphasestartsin the roundin which the rumor is createdandendswith the �rst round
after the executionof which thereare at least

�����

�

	

informed playersfor the �rst time. At the
beginningof the�rst roundonly oneplayerholdstherumor. Alonethepush-communicationensures
thatwe needat mostsome

��� � � � ����� 	��

roundsto inform
� � �

�

	

playerswith high probability. This
followsdirectly from theanalysisof thestartupphaseandtheexponentialgrowth phaseof thepush
algorithm.

2. The exponential-growth phaseendswhenat least �

	 ���

�

�

playersare informed,using the effect of
pushingand pulling. From Lemma23 it follows that in eachround additional �

�

�

�

�

�

�

� �

�

� �

playersareinformedwith probability
�

�

�

�

4

�
� �

�

from a pull only. We choose� � �

�

	 ���

�

and � � �

�

�

�

�

� � � �

�

	

. So,thenumberof informedplayersby apull is at least �

�

�

�

�

�

�

� �

�

� � � � �

�

�

� �

	 ���

�

�

.
Let ��� bethenumberof playersinformedby pulls. If � � � � � � thenthenumberof playershastripled
andtheperformanceof thisphasefollowseasily. We will now assume� �

�

� � � :

(a) �

�

�

� 	

Lemma22 predictsthat thenumberof playersinformedby pull -operationsis at least ���

�

�

�

�

	 ���

�

�

with suf�ciently high probability. From Lemma25 it follows that the number ���




� of
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Figure6.8: Thegrowth of thenumberof informedplayersin thepush&pullscheme

playersinformed by a pushand a pull-operationcan be boundedby is �

�

�

�

�

�
�

�

����� 	 �

�

�

�

�

�

�

�

�

�

	 ���

�

�

�

�

�

�

�

�

�
�

�

�

�

	 ���

�

�

. Hence,theoverall numberof informedplayersin thenext round
canbeestimatedby

� �




�

� � �

�

� �

�

�

�

�

����� 	
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� �
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� � � �
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�

�

�

����� 	

 

�

(b) �

�

�

�

	

FromLemma23 it follows that thenumberof playersinformedby pull -operationsis at least

� �

�

�

�

�

�

�

�




�

�

�

�

� �

����� 	

with suf�cient highprobability. FromLemma25thefollowingbound

holdsfor thenumbernodesinformedby pushand pull: �

�

�

�

�

�

�

�

����� 	 �

�

�

�

�

�

�

�

����� 	

and
therefore

� �
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� �
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� �
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�
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� � �
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� �
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�

�

� � � 	

� � �

�

� �

�

����� 	

 

�

For terminationmechanismbasedon thecounterit is importantto ensurethat this growth phaseis
not fasterthan

� � �

�

	

� �

������� ����� 	��

. Clearly, in every roundat most �
� additionalplayerscanbe

informedby push-communication.Now we estimatethe number �
� of playerscalling a player in

�

� . Theprobabilityis independentlygivenby �
�

�

	

, describinga binomialdistribution �

�

�
�

' �
�

�

	��

.
ThereforewecanusetheChernoff boundto estimatethefollowing probabilityfor �

�
�

� � �

�

	

:

P

�

� � �

�

�

�

�

����� 	

 

� ���

�

�

4 �

�

�
� ���

�

�

�

, �

,

�

� ���

�

�

�

�

4

,

�

	 ��

�

�

� 	

4

�

�

Theupperboundof
� � �

�

	

�

���������
� � � 	��

on thenumberof roundsfollows immediately.

3. Betweentheexponentialgrowth andthequadraticshrinkagephasewe introducea shortintermedi-
atephasewhichendswhenat least �

�

	

areinformed.We consideronly thein�uence of pulls. Since
thepull algorithmis still in its exponentialgrowth phasethis phaselastssome

��� � � � ����� 	��

rounds
with highprobability.
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4. The quadratic-shrinkingphaseendswith the roundafter the executionof which thereareat least
�

	 �����

�

	

uninformedplayersfor thelasttime. Evenif weonly take into accountpull transmissions
weobtain(by following theargumentsexplainingthegeneralpropertiesof pull algorithms)that

E
�

� �

	

� �

�

� ��4

�

	

�

�

�

Now from theanalysisof thequadratic-shrinkingphaseof thepull algorithmwe alreadyknow that
we need

���������
� � � 	��

roundsuntil thenumberof uninformedplayersdropsfrom
�

�

	

to �

	 �����

�

	

with highprobability.

5. In the�nal phase, we inform thefew remaininguninformedplayers.Sincethenumberof informed
playersin this phaseis guaranteedto be larger than

	

�

�

	 �����

�

	

, eachuninformedplayerhasat
leastprobability

	

� �

	 �����

�

	

	

�

�

�

�����

�

	

�

	

to receive a rumor dueto a pull transmissionin eachroundof this phase.Consequently, we need
only a constantnumberof roundsuntil all playersareinformedwith highprobability.

For around� asimpleupperboundfor thenumberof messagescausedby push-communicationis � � , while
a straight-forwardupperboundfor thenumbercausedby pull-communicationis �

�




� . Notethatin phases
2 and3 thenumberof informedplayers�

� increasesexponentially, boundingthenumberof messagesby
����	��

. The quadraticshrinkingphasestartsin round
� � �

�

� �

������� ����� 	��

. In this phaseand in the �nal
phasethemaximumnumberof messagesof �

� 	��

perroundneedsto besent.Becausewe canaccurately
pin down thestartingpoint of thesephaseswe canensurewith high probabilitythat theselast two phases
needat most

��� � � � ����� 	��

roundsand therefore
��� 	 � � � ����� 	��

messages.This completesthe proof of
Theorem19. �

6.3 The Min-Counter Algorithm

Thepush&pullalgorithmreliesheavily on a veryexactestimationof theexpansionof thesetof informed
players. The algorithm hasto be executedfor exactly

� � �

�

	

�

�

������� ����� 	��

rounds. For example,a
constantfractionof playersremainsuninformedif thealgorithmterminatesafter

�

�

� �

� �����

�

	

rounds,and
thealgorithmuses�

��	 �

�

	��

transmissionswhenterminatingafter
�

�

�

�

� � � �

�

	

rounds,for any constant
� � & . A robust algorithmrequiresa more �e xible, distributedterminationmechanismthat recognizes
whenall playershavebeeninformed.

Shenkerproposedadistributedterminationmechanismwhich is notbasedon theageof therumor. Let
� denotetherumorbeingconsidered.Eachplayerholdsacounterctr

�

�*' �

�

startingat & if theplayerdoes
not know therumorandwehavectr

�

� '��

�

�

�

if therumor � emergesat player� . In Figure6.9we show
themin-counteralgorithm.

We will know prove

Theorem 20: The min-counteralgorithminforms all playersin time
�����

�

	

�

���������
� � � 	��

using
��� 	 � � � ����� 	��

messageswith high probability.

Proof: The informationspreadingprocessis thesameasin thepush&pullalgorithm,seeTable6.1. We
show thatthereis achoiceof � suchthatnocounterexceeds�

����� ����� 	

beforeall playersareinformedand
that after having informedall playersall counterswill be larger than �

����� ����� 	

after some �

� � � � ����� 	��

rounds.
For this we prove that until at most �

	 ���

�

�

playersare informedno playerhasa counterlarger than
����� ����� 	

with probability
�

�

	

4

�

.
Let

�

�

� '��

�

denotethenumberof playerswhohaveacounterof at least� for � roundsat theendof this
phase.It follows from thestrict exponentialgrowth that

�

�

��'

�

��

	

�

�

�����

�

	



80 CHAPTER6. RANDOMIZED RUMOR SPREADING

Min-counter algorithm for player� andrumor �

begin
for eachround � do

if � knows � andctr
�

� ' �

� �

�

����� ����� 	

then
�

� called
�

� ' �

� �

� call
�

�*' �

�

�

for all � + �

�

do
Sendtherumorto � + (i.e., � + pushesandpulls therumor)

od
if � learnstherumor � then

ctr
�

� '��

�

�

�

�
if � knows � andctr

�

� ' �

� �

�

����� ����� 	

then
if � � + �

�

with ctr
�

� + '��

�

� �

����� ����� 	

then
ctr

�

�*' �

�

� �

����� � � � 	

elseif � � + �

�

with ctr
�

� +/' �

�

� ctr
�

�*' �

�

then
ctr

�

�*' �

�

�

ctr
�

�*' �

�

�

�

�
�

od
end.

Figure6.9: Themin-counteralgorithm.

Phase Informedplayers Time Messages Growth Method

Start-up
�

�

'

�����

�

	

�

���������
� � � 	�� ���������

�

	��

� �




�

� � � � push

Exponential
Growth

�

�����

�

	

'

�

	 ��

�

�

�����

�

	 ���

�

	 ��

�

�

���




�

� �

�

�

� �

	 ���

�

�

� � push&
pull

Intermediate
Phase

�

�

	 ���

�

' �

�

	

�

���������
� � � 	�� ����	��

� �




�

� �

�

�

�

�

�

	 ���

�

�

� � pull

Quadratic
Shrinking

��� �����	��
� �������������

���������
� � � 	�� ��� 	 �����
� � � 	��

�

�

�

�

�

��

�

���

�

�

�

�

pull

FinalPhase
� ��
�� �����������������

���

�

� ����	��

— pull

Table6.1: Thephasesof thepush&pullandmin-counteralgorithm.
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for somebasis�

�

��� �

	 ��

�

. Further, thefollowing theargumentsusedfor theanalysisof thepush&pull
algorithmholdsfor this recurrency with high probability.

�

�  �




�

	

�

�

�

�

�

����� 	

 

�

��� �




�

�

�

�  �

	

 

�

�

A straight-forwardcalculationshowsthat
�

�



	 ����	 ��

� �

�

with high probability.
Theotherphaseslastsome

��� � � � ����� 	��

rounds,whichwill bere�ectedin theappropriatechoiceof � in
themin-counteralgorithm.It remainsto show thatafterall playershavebeeninformedall countersexceed

�

����� ����� 	

after some
���������
� � � 	��

rounds. Considerthe time point at which all playersare informed.
Clearly, all countersareat least1. Then,in every following roundeachcounteris incremented.Clearly,
after �

����� � � � 	

roundsall countersexceed�

����� ����� 	

.
Note that this algorithmusesonly

����	 ����� ����� 	��

messages,sinceit runsat mostsome
��� � � � ����� 	��

roundslongerthanthepush&pullalgorithm. �

6.4 The Median-Counter Algorithm

In orderto improvetherobustness,wedeviseadistributedterminationscheme,calledthemedian-counter
algorithm, that is provably robust againstadversarialnodefailuresaswell asstochasticinaccuraciesin
establishingtherandomconnections.In particular, we show that theef�ciency of thealgorithmdoesnot
rely on thefactthatplayerschoosetheir communicationpartnersuniformly from thesetof all players.

Let � denotetherumorbeingconsidered.During thecourseof thealgorithmeachplayer � canbein
oneout of four statesA, B, C, or D (with respectto � ). StateA meansthe playerhasnot yet received
therumor. In all otherstates,theplayerknows therumor. Whena playeris in oneof thestatesB or C it
pushesandpulls therumor � alongeveryestablishedconnection.In stateD theplayerdoesnot propagate
therumoranymore.Eachplayerin stateB holdsa counterctr

�

� '��

�

. We saya player � is in stateB- � if
ctr

�

� ' �

�

� � . Thesecountersareirrelevantin otherstates.Thetransitionsbetweendifferentstatesare
de�ned asfollows.

We �rst giveaninformaldescriptionof themedian-counteralgorithmshown in Figure6.10.

� StateA: Theplayer � doesnot know � . (For thepurposeof analysis,we assumethatctr
�

� '��

�

� &

in this state.)If a player � in stateA receives � only from playersin stateB thenit switchesto state
B-1. If aplayerin stateA receives � from aplayerin stateC thenit switchesto stateC.

� StateB-m: Theplayer � knows � andctr
�

� ' �

�

� � . (Theplayerinjectingtherumorstartsin state
B-1.)

Medianrule: If duringa rounda player � in stateB- � receives � from moreplayersin stateB- � +

with � + � � thanfrom playersin stateA andB- ��+ + with � + + � � thenit switchesto stateB-
�

�

�

�

�

, i.e., increasesits counter. Thereis oneexceptionto this rule. If ctr
�

� '��

�

is increasedto ctr ��� �

(wherectr ��� �

�

���������
� � � 	��

is a suitableinteger) then � switchesto stateC. Furthermore,if a
playerin stateB receivestherumorfrom aplayerin stateC thenit switchesto stateC, too.

� StateC: Everyplayerstaysin this phasefor at most
��� � � � ����� 	��

rounds,andthenswitchesto state
� , i.e. it terminatestherumorspreading.

Roughlyspeaking,the countersin stateB areusedin order to determinethe point in time whenthe
algorithmswitchesfrom theexponential-growthphaseinto thequadratic-shrinkingphase.A countervalue
of ctr ����� indicatesthat

	

�

!

����� � � � ��	��

playersareinformedsothatit is suf�cient to continuethepropaga-
tion for only

��� � � � ����� 	��

rounds(which is donein stateC). In orderto makesurethatthemedian-counter
algorithmterminateseven in thevery unlikely event that thecountermechanismfails, we determinethat
every player stopspropagatingthe rumor after some�x ed numberof

��� �

�

	��

rounds,regardlessof its
currentstate.

We investigatethe robustnessof themedian-counteralgorithmagainstdifferentsourcesof errorsand
inaccuracies.
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Median-counter algorithm for player� andrumor �

begin
for eachround � do

if � is in state� � '�� � then
�

� called
�

�*' �

� �

� call
�

�*' �

�

�

for all � + �

�

do
Sendtherumorto � + (i.e., � + pushesandpulls therumor)

od
�
if � learnstherumorthen

state
�

�

�

� �

ctr
�

�

�

�

�

�
if � is in state� � '�� � then

if state
�

�

�

� � then
ctr

�

�

�

� ctr
�

�

�

�

�

if ctr
�

�

�

� ctr ��� � then
state

�

�

�

� �

�
elseif � � + �

�

with state
�

� +

�

� � then
state

�

�

�

� �

ctr
�

�

�

�

�

elseif  �

�

�

�

 ctr
��� �

� ctr
�

�

�

�� �  �

�

�

�

 ctr
��� �

� ctr
�

�

�

�� then
ctr

�

�

�

� ctr
�

�

�

�

�

if ctr
�

�

�

� ctr ��� � then
state

�

�

�

� �

ctr
�

�

�

�

�

�
�

od
end.

Figure6.10:Themedian-counteralgorithm.
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� First,we assumetherandomconnectionsin eachroundareestablishedusinganarbitrary(possibly
non-uniform)probabilitydistribution ���

� ���

&�'

���

.

� Second,we assumethatanobliviousadversarycanspecifyup to
.

nodefailuresoccurringduring
theexecutionof thealgorithm.Theadversaryspeci�esa set � of players(not containingtheplayer
startingthe rumor) who fail to exchangeinformation in someof the rounds(as speci�ed by the
adversary).We assume � 

� .

and
	

�

�

���

�

�

�

� � .

.

Clearly, we cannothopeto inform all playerswhenallowing adversarialnodefailures.Therefore,we are
satis�ed if thealgorithminformsall but

���/. �

players. (Alternatively, onemayassumestochasticrather
thanadversarialfailures,e.g.,eachrandomphonecall fails with probability

.

�

	

. In this case,stayingfor
� � �

� � � � ����� 	

�

�

�

�

�

2

. �

roundsin stageC ensuresthatall playersareinformedwithin
�����

�

	

�

�

�

roundsusing
���

�

	��

transmissionswith highprobability.)

Theorem 21 Assumingan arbitrary distribution � and up to
.

nodefailuresasdescribed
above, themedian-counteralgorithmsinformsall but

���/. �

playersin
��� �

�

	��

roundsusing
����	 ����� ����� 	��

transmissionswith highprobability.

Proof: We startwith investigatingtheerrorlesscase.Let � � betheprobabilitythata playercallsplayer
�

,
let

�

� ' � � ' ��� ' and � � bede�ned asaboveandlet � � betheweightof all informedplayers:� � � �

�

�

�

�

�

� � .
Considerthefollowing threephases.

1. Startup: We want to ensurethatat least � ���

�

���

�

	��

informedplayerswith weight � � �

	 ��

�

�

are
established.

A straightforwardanalysisshowsthat �

� � � � ����� 	��

roundsof pushcommunicationsuf�ce to achieve
this with high probability. Then, �

� � � � ����� 	��

roundsof pull-communicationestablishthe wanted
numberof informedplayerswith highprobability.

2. Exponential growth: Thisphaseendswhentheweight � � is greaterthan
�

	 ��

�

.

In this phasethe weight
�

� of the setof uninformedplayers
�

� with larger weight than
�

�

�

is of
particularinterest:

�

�
� �

�

�

���

���






�

�

�

�

�

� � �

Notethat 

�

��

�

� � andthattheprobabilityof amemberof
�

� beingcalledby aninformedplayerin
�

� is largerthantheconstant
�

�

���

� . Therefore,pushoperationscauseanincreaseof theweightof
informedplayersby theamountof

�

�

� �

� �

�

�

� �

�

�
�

� for someconstant� � & with highprobability.

In � � �

�

� the fraction of playerswhich get only onecall in this roundis at least
� �

��� � for an
arbitrarysmallconstant� � & with high probability. Theprobability thatoneof theseplayersgets
the rumor pushedfrom

�

� is �

�

�

. The expectednumberof informedplayersin the next round is
therefore

E
�

� �




�

�

� ���

�

� �

	

�

���

� � �

� � 	

� � � � 

�

��

�

� �
�

�

�

�

�

� �

� ���

�

�

�

�

� � �

	

  

�

If � �

�

�

	 ��

�

for
�

�

�

�

� thisimplies � �




�

� � �

�

�

�

�

�

� �
+

�

andin theothercase� �




�

��� �

�

�
�

�

�

�

�

� �
+

�

for somearbitrarysmall � +�� & .

Soafter some
��������� 	��

roundswe have either �
�

�

�

	 ��

�

or �
�

�

�

�

	 ���

�

. In thesecondcaseevery

playerwith weight larger than
�

	 ��

�

�

�

is informedin thenext roundwith high probability. Further-
more,theexpectedweightof all informedplayersis

E
�

� �




�

�

�

�

�

�
"

�

�

�

�

� � �
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It turnsout that this sumis minimal for theuniform probabilitydistribution. Hence,E
�

���




�

�

�

�

�

�

.
Becausetheweightsareupper-boundedwe canapplyChernoff boundsandget � �




�

�

�

�

�

�

�

�

	 ���

�

.

For the numberof messagesnotethat in all but oneround � �

�

�

�

	 ���

�

. Therefore,the numberof
messagesis boundedby

��� 	��

.

Now we discusshow oftena counterof a playerwill beincreasedduringthis phase.We considera
player

�

with weight ��� who is informedduringthisphase.

(a) � � �

�

	 ��

�

�

In eachroundat least �

� � � 	

uninformedplayerscall
�

, while
�

receivesa call only from at
most

����� 	

informedplayers( � �

�

�

�

	 ���

�

);
�

's pushcall canbe neglected.So, this playerwill
communicatewith moreuninformedthaninformedplayersin eachroundandthemedianrule
preventsanincrementof

�

'scounter.

(b) � �

�

�

	 ��

�

�

We allow thatduring the time interval � � '�������'�)� for which we have
�

	 ��

�

�

�

� � ���

�

�

� � � 	

thecounterof � � is increasedin every round � .
In every round � � or � � (but possiblynot both) grow by a factor � �

�

. Neverthelessthey
interactpairwise,sincetheexpectednumberof uninformednodesinformedby a pull is � � � � .
Thereforewe have � �




�

�

�

�

� �

�

� �2� � �

	

� �

�

�

� � +

�

for � ' � + � & with high probability. On
theotherhand,every informednodepushesin every roundsuchthat � �




�

�

�

�

�

�

	 ���

�

with high
probability. So,this time interval is boundedby

��� � � � ����� 	��

.
At any timestepafter � thenumberof uninformedplayerscalling �

� is higherthanthenumber
of informedplayerscalling � � for thesamereasonsasin 1.
In everyround� before� weconcentrateonweights�

� with �
�

�

�

�

�

	 ���

�

�

. Theprobabilitythat

aplayerwith suchaweightis calledby aninformedplayeris smallerthan
�

�

�

�

�

�

�

�

	 ��

�

�

�

�

�

�

�

	 ���

�

�

. Let � � be thenumberof theplayerswho increasetheir counterat least
�

timesbefore
round � and let �

�

� �
� . In the worst caseall playersstay in this situationfor the whole

phase. Only �
� playerscan causean increasefor a counterlarger than

�

. The probability

thatsucha playercallsanotheris
�




�

�

	 ��

�

�

. Therefore,we have E
�

�)�




�

�

�

�

�




�

�

	 ��

�

�

. It follows
�


�� ,

�

�

�

�

�

�




�

�

�

	 ���

�

�

if �
�

�

�

� � � � 	��

; andif �
�

� ��� � � � 	��

, then �
�




�

�

� & for someconstants��' ��+

with high probability. This proves �

�

�

	 ���	 ���

�

�

� & . So, thereareno playerswhosecounters
will beincreasedmorethansome�

����� �����
	

timeduringthis phase.

3. Quadratic-shrinking: This phaseends,whenall playershave left statesA or B.

Theprobability for eachuninformedplayerto remainuninformedis at most
�

� ��� , if we consider
only pull-communication.Therefore,wehaveE

�

�,�




�

�

�

� �

�

�

� � �

�

, which implies

� �




�

�

� �

�

�

� � �

�

�

�

�

����� 	

�

	

 

with highprobability �

Theexpectedweightof theuninformedplayerof thenext roundis E
�

�

� � �




�

�

�

�

�

� � �

� �

. Note
that �

� �
�

���

�

�
�

�

�

	 ���

�

�

�

. Therefore,applyingChernoff boundsit follows that

�

� �
�




�

� �

�

� �
�

�

�

�

�

�

�����

�

	

�

	

 

with high probability �

It is clearthat after some
��� � � � ����� 	��

roundswe have
�

��� �




�

�

�

	 ��

�

�

�

�

. Then,someconstant
numberof roundsof pull will suf�ciently decreasetheprobabilityof anuninformedplayerremaining
in stateA.

Sincein every roundeachcountermaybe incrementedonly once,it suf�ces to choosectr ��� �

�

�

� � � � � � 	

for someconstant� independentof � .
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It remainsto show thataftersomeadditional
���������
� � � 	��

roundsall countersreachctr ����� . Con-
sider the time point at which all playersare informed. Clearly, all countersareat least

�

. Then,
in every step

�

eachcounteris at least
�

�

�

. Therefore,the distributional algorithm endsafter
��������� ����� 	��

rounds.

Sinceeveryplayerproducesonly onerandomcall in eachroundtheoverall numberof messagesin
thisphaseis boundedby

����	 ����� ����� 	��

.

We now focus on the caseof
. �

�

�

	

nodefailureswith weight
.

�

	

. We assumethat if a node
failureoccurson � , that � terminates,i.e., switchesto stateD without learningtherumor. Theanalysisof
thestartupandexponentialphasescanbeeasilyadaptedto this case,sincethegrowth of informednodes
proceedsmoreslowly but still exponentially. We now investigatethesituationin thedoubleexponential
shrinkagephase.

Let � bethesetof nodeswhich maybedisconnectedin somerounds.Then
�

� and � � arede�ned as
thesetof informedanduninformednodes,excludingthenodesin � ; � � , � � , and � � arede�ned asbefore.
Theprobabilitythata noderemainsuninformedis at most

�

� � � perround. Therefore,we canconclude
thatwith highprobability � �




�

� �

�

� � �

�

� � . Similarly to theerror-freecase,we canconcludethat

�

� � �




�

�

.

	

�

�

�

�

�����

�

	

	

 

�

�

� � �

�

�

with highprobability.

This recursionconvergesin
��� � � � ����� 	��

roundsto
�

� �
�

�

�

���

2

�

�

. This impliesa maximumnumberof
��� . �

uninformednodeswithin thenext round.
The main problemfor the error caseis to verify that the numberof messagesdoesnot grow beyond

����	 � � � ����� 	��

. We prove this by showing thatat least
��� 	

�

� � � 	��

playershave reachedstateC or D, by
thetimethe�rst error-freeplayersreachstateD. Theremainingerror-freeplayerscanonly cause

��� � � � 	��

messageseach,where
.

faulty playersdo not addfurthermessages.We startour analysisin themoment
whenonly

.

+ �

��� . �

nodeswith weight
.

+

�

	

haveremaineduninformed.Letusassumethatall informed
playersarein thestateB-1.

Let
�

� 
� bethesetand

�

� 
� theweightof error-freenodesin round � with ctr

�

�

�

� � . Theprobabil-
ity thata nodein

�

� 
� is increasedis at least �

ctr �����

�
"

�

�

� 
� . We wantto provethatin thetriangularsection

where�

�

!�� for someconstant! ,
�

� 
� decreasesexponentiallyin � . For theanalysisweallow thatsome

of thecountersmaybedecreased.Theaimof thismodi�cation is thattheseries
�

� 

�

'�������'

�

� 
�

�

is exponen-
tially increasing,theseries

�

�

�

 � '

�

�

�




�

 � '������ is exponentiallydecreasing,andtheweight
�

� 
�

�




�

�

�

� con-
tainstherestof theweight.Moreformally,

�

� �

� � �

�

� 
�

�

�

�

� 
�




� and
�

� 
�

�




�

�

�

�

.

+

�

	

�
�

�

�

�
"

�

�

� 
�

for some� �

�

.
By decreasingsomeof thecountersit canbeensuredthatin thenext roundwehave

�

� �

� � �

�

� 
�

�

�

�

� 
�




� and
�

�




�


�

�

�




�

�

�

� 
� . This followsby thefactthat �

�

�

�
" �

�

�  � �

�

� andby reducingthenumberof
playersincreasingtheir counterto a fractionof

�

� each.After someconstantnumberof rounds� we have
�

�




�


�

�




�

� �

�

�




�


�

�

. Then,we increase� �




�

� � � �

�

�

andgettheclaimedtriangularsection.
Therefore,aftersome

���������
� � � 	��

roundsonly a fractionof
��� 	

�

����� 	��

playershasasmallercounter
than �

� � � � � � 	

. �

6.5 Lower Bound for Address-Oblivious Algorithms

Our �rst lowerboundshows thatthetwo presentedpush&pullalgorithmsachievethebestpossibleresults
for theclassof address-obliviousalgorithms.Clearly, any algorithmrequires

�

���

�

	��

roundsin orderto
inform all players. In addition, we show that any address-oblivious algorithm requires

�

��	 ����� ����� 	��

transmissions,regardlessof the numberof rounds. We assumethe randomphonecall modelusing the
uniformdistribution.

Theorem22Any address-obliviousalgorithmguaranteeingthatall but afraction � of theplay-
ersreceivetherumorwith constantprobabilityneedsto perform

�

��	 � � � �����

�

�

�

transmissions
in expectation.
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Proof: Let us �x anaddress-obliviousalgorithm � . Dependingon theexecutionof � , we will partition
the roundsinto contiguousphasessuchthat the numberof transmissionsduring the �rst

�

phasesis at
least

���

�

�

� 	

�

�

�

�

��� 	��

. (Theactuallengthof thephasesdependspossiblyon theoutcomeof random
experimentsin�uencing the executionof � . Thus, the length of the phasesmight give someevidence
about the outcomeof somerandomexperiments. The following statement,however, holds regardless
of this evidence.) Let � � denotethe numberof uninformedplayersat the end of phase

�

, and de�ne
�

��� �

�

	

# ��!

�

� �

�

�

�

�

�

. We will show by inductionthat � � � �

��� �

with high probability. Consequently,
� needs

�

������� �����

�

�

�

phasesand,hence,
�

� 	 � � � �����

�

�

transmissionsin orderto inform all but a fraction
� of theplayers.Clearlythis yieldstheTheorem.

Phasesarede�ned asfollows. Phase1 startswith theroundin which therumoris generated.If phase
�

endsin round � thenphase
�

�

�

startsin round �

�

�

. Thus,it remainsto describewhena phaseends.
We distinguishsparseanddensephases.A sparsephasecontainsat most

	

�

� transmissions.The length
of thesephasesis maximized,that is, a sparsephaseendsin round � if addinground �

�

�

to the phase
resultedin morethan

	

�

� transmissions.A densephaseconsistsof only oneroundcontainingmorethan
	

�

� transmissions.Observethatthenumberof transmissionsduringthephases0 to
�

is at least
���

�

�

� 	

�

�

becauseany pair of consecutivephasescontainsat least
	

�

� transmissionsby construction.
Now assumeby inductionthatthenumberof uninformedplayersat thebeginningof phase

�

is at least
�

���

�

�

�

. Wehaveto show thatthenumberof uninformedplayersat theendof phase
�

is at least�

��� �

with
highprobability.

For
�

�

!

�

�

���

�

�

�

, let (

� denotea 0-1 randomvariableindicatingwhetherthe ! th of thoseplayers
whoareuninformedat thebeginningof round

�

receivesamessagecontainingtherumorduringtheround.
We claim

Pr
�

(

�

� &

�

�

�

���

�

�

�

#

	

�

Theargumentsleadingto this inequalityaredifferentfor sparseanddenserounds.
� Supposephase

�

is sparse.Then� sendsmaximum �

� messagesduringthisphase.Eachof thesemes-
sagesis initiatedwithout knowing thereceiverbecausedecisionsareplacedin anaddress-oblivious
fashion.As connectionsarechosenuniformly at random,theprobabilitythatany particularmessage
reachesplayer ! is

�

�

. Consequently, Pr
�

(

�

�

���

�

�

�
�

�

�

�

�

� sothatPr
�

(

�

� &

�

�

�

�
�

� �

�
4

�

�

�

�

.

� Now supposephase
�

is dense.Thenthephaseconsistsof onlyoneround.In thiscase,theprobability
�

� thatplayer ! doesnot call aninformedplayeris at least
� �

�
4

�

�

�

. Furthermore,theprobability �

�

thatplayer ! is notcalledby any otherplayeris atleast
�

� . As thesetwo probabilitiesareindependent,

Pr
�

(

�

� &

�

� �

�

�

�

�

� �

�
4

�

�

�

�

.

Since �

��� �

�
�

� �

�
4

�

�

�

"

�

�

�

� (

�

�

, weobtain

E
�

�

��� �

�

�

� �

�
4

�

�

�

�

"

�

Pr
�

(

�

� &

�

�

�

���

�

�

� �

#

	

�

��	

# ��!

�

� �

�
4

�

�

�
�

� � �

#

	

�

	

#���!

�

� �

�

�

�

�

�

�

# �

��� �

�

In particular, �

��� � � �

�

�

�

�

�

E
�

�

��� �

�

. Observe that therandomvariables(

� areslightly dependentsince
the randominterconnectionsusedfor transmissionsin phase

�

form partial permutationson the caller
sites. This dependence,however, is negative so thatwe canapplya Chernoff bound[DR98]. Assuming

�

��� �

�

� �

�

	�� �

, weobtain

Pr
�

�
�

� �

��� �

�

�

Pr
�

�
�

�

�

�

�

�

�

�

E
�

�

��� �

�

�

�

# ��!

�

�

�

� � E
�

�

��� �

�

�

�

# ��!

�

�

�

�

�
�

��� � �

�

��� 	

4

�
�

'

for any positiveconstant� . Thiscompletestheproofof Theorem22. �
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6.6 Lower Bound for GeneralAlgorithms

The above lower boundfor address-obliviousalgorithmsdoesnot hold for thoserumor spreadingalgo-
rithms which canbasetheir decisionson the addressesof communicationpartners.In the introduction,
we give anexampleshowing how all playerscanbeinformedusingonly

��� 	��

transmissions.This unre-
alistic algorithm,however, requires�

� 	 �

�

	��

rounds.Now we investigatewhetherthereis analgorithm
that is both time-optimal(i.e., usingonly

��� � � � 	��

rounds)andcommunication-optimal(i.e., usingonly
����	��

transmissions).Thefollowing lower boundanswersthis questionnegatively. Again,we assumethe
randomphonecall modelusingtheuniformdistribution.

Theorem 23 Any distributedrumor spreadingalgorithmguaranteeingthat all but a fraction
�

�

�

�

of theplayersreceivetherumorwithin
��� �

�

	��

roundswith constantprobabilityneedsto
perform 	

��	��

transmissionsin expectation.

Proof: Thedif�culty in analyzingarbitrarydistributedrumorspreadingalgorithmsis thatthedistribution
of the rumor can be a highly dependentprocessalthoughthe underlyingrandomcalling mechanismis
generatedby

	

independentexperimentsin eachround. For example,if player
�

is theonly playerwith
an odd addresssendingthe rumor to playerswith even addresses,then the successof the algorithm is
highly dependenton the event that player1 receivesthe rumor. This small example(not even involving
any additionalcommunication)shows that the analysisneedsmorethansimply applyingmartingalesor
Chernoff bounds.

Ourbasictrick in thefollowing analysisis thatwe choosea randomsampleof theplayerswho canbe
guaranteedto act independently. This independence,however, canbe guaranteedonly for about

�

�

� � � 	

rounds.Of course,this numberof roundsis not enoughto inform all playersabouta rumor initiatedby a
singleplayer. Therefore,let usassumefor thetimebeingthattherumorhasalreadybeenspreadto at least
half of theplayersandwe considerthenext � ���

�

�

����� 	��

rounds.
Consideran arbitraryrumor spreadingalgorithm � . Let �

�

� 	

�

� denotethe numberof initially
uninformedplayers.(In orderto beableto extendour resultto morethan � roundslater, we assumethat
the initially uninformedplayersare known by all playersin the system,e.g., assumethat �

�

'�������' �

�

�

is the setof initially uninformedplayers.) Let �

� denotea randomvariabledescribingthe numberof
messagessentduringthe � rounds.Furthermore,let �3+

� denotea randomvariabledescribingthenumber
of uninformedplayersafter round � (Theserandomnessof thevariablerefersto therandomphonecalls
andany kind of otherrandomdecisionsmadeby � .)

Let
�

denotea setof � ���

	

�

�

�

�

playerschosenrandomlyfrom
�

. The set
�

will be our random
sample. Let �

� denotethe randomvariabledescribingthe numberof initially uninformedplayersin
�

(with respectto the randomchoiceof
�

). Let �

� denotea randomvariabledescribingthe numberof
messagesreceivedby the playersin

�

, andlet �3+

� denotethe randomvariabledescribingthe numberof
uninformedplayersin theset

�

after the last round. (Theserandomvariablesarewith respectto random
decisionsof � andtherandomchoiceof

�

.)
Recallthat thecommunicationgraph - � in round � is obtainedby a distributedrandomprocess,i.e.,

eachplayer � choosesa player � from
�

at randomand � calls � . This randomprocessgeneratesa
probabilitydistribution � on theset � of possiblecommunicationgraphs.Repeatingthis randomprocess
for � roundsextendstheprobabilitydistribution � to thesamplespace�

!

.
In many partsof thefollowing analysiswe will assumea slightly differentprobabilitydistribution �

+

on � which is easierto handlethan � . Insteadof lettingeachplayercall a randomotherplayer, weassume
thattheconnectionsareestablishedasfollows. In eachround � ,

� wechooseuniformly at randomacollectionof � disjointsubsets� �

�

�

�

( � �

�

), eachcontaining�

playersfrom
�

�

�

(oncethesesetsarechosen,theplayersin
�

canactfully independently);

� eachplayer � �

�

randomlychoosesan integer 0

�

�

�

� & with Pr
�

0

�

�

�

�

�

�

�

�

#

��� (in the very

unlikely casethat 0

�

�

�

� � , set 0

�

�

�

� � �

�

);

� eachplayer � �

�

independentlyanduniformly randomlychoosesasetof 0

�

�

�

�

�

differentplayers
�

�

�

�

�

'������ ' �

� �

�

�

�

�

�

from � �

�

�

�

.
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Wedeterminethateveryplayer � �

�

callsplayer �

�

�

�

�

, andtheplayers�

�

�

�

�

'������ ' �

� �

�

�

�

�

�

call � . Every
playerfor whom we have not yet speci�ed whom to call simply choosesa communicationpartnerfrom

�

�

�

independentlyanduniformly at random.Clearly, � and � + aredifferentdistributions.Thefollowing
lemma,however, showsthatthesedistributionsarecloselyrelated.

Lemma 26 Thetotal variationdistancebetween� and � + on �

!

is
��� 	

4

�

� �

�

.

Proof:
We show thatthetotal variationdistancebetween� and � + on � (that is, for oneround)is

��� 	

4

�

�

�

�

for eachround.Consequently, thetotalvariationdistancebetween� and � + on �

!

(thatis,overall rounds)
is � �

��� 	

4

�

�

�

�

�

����	

4

�

���

�

.
Fix around � . Westartouranalysisonthevariationdistancewith proving someusefulpropertiesabout

distribution � . Let 	 denotethesetof personsbeingcalledby thepersonsin � , andlet 	 � denotetheset
of personscallingtheperson� ��� . Eachof thefollowing propertiesholdswith probability

�

�

����	

4

�

�

� �

.

P1)  	 �� �

P2)  	

�

�

�

 � � , � � �

P3) 	

�

� ���

P4) 	

�

	

�

�

�

��� , � � �

PropertyP1 follows becausethe personsbeing called by the personsin � are selectedindependently,
uniformly at randomfrom

�

so that the probability that two personsfrom � call the samepersonis
�

�

� �

�

�

�

�

�

	��

�

����	

4

�

�

� �

. P2follows by applyingChernoff bounds.In particular, E
�

 	

�

�

�



�

�

�

so
that

Pr
�

 	

�

�

�

 � �

�

�

Pr
�

 	

�

�

�

 � � � E
�

 	

�

�

�



� �

� # ��!

�

�

� �
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P3follows from thefactthat 	 and � arerandomlyselectedsetsof sizeat most � sothattheprobability
for a joint elementis atmost �
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. P4followsanalogouslyto P3replacing� with 	
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and
assumingP2.All of thepropertiestogether, for every � � � , aresatis�edwith probability
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Let � & � � ��

�

�

� �

�

�

�

denotethe distribution obtainedby enforcingthe propertiesP1 , P3,
andP4, i.e., restrictingthe statespace� of � to communicationgraphssatisfyingthesepropertiesand
rescalingall probabilities.Let � �
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denotetheprobabilityfor violating oneof theseproperties.
Thentherescalingfactoris
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. Consequently, thevariationdistancebetween� and � &
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The distribution � & can be generatedby the following process.W.l.o.g., assume� � �

�

'������)� � .
For

�

�

�

�

� , let �

�

�

�

denotethe setof personsconnectedto � in the consideredround, that is, if
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denotesthe personcalledby � , then �
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� �
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� . The propertiesP1, P3, andP4 state
that the sets �
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� �

��� �

�

aredisjoint from eachotheranddisjoint from � . Therefore,we canselect
thesesetsasfollows. First, we selectat randomthe setof nodescalledby the personsin � , that is, we
choose	 � � �

�

�

�

 � � ��� from
�

� � . Second,we determinethedisjoint 	
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setsoneby one. This
we do by simulatingthecorrespondingprobabilities.De�ne 0
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to bea randomvariablecorresponding
to the numberof personscalling � , i.e., 0
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 . We choosethesevariablesusingthe following
probabilities:
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. Finally, it
remainsonly to choosethepersonsbeingcalledby thepersonsin
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. For eachperson� in
this setwechoosei.u.r. a personin � from
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� � .
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Comparing� & with � + , we observe that thesedistributionsdeviateonly in thefollowing two aspects.
The�rst differenceis thatweusedifferentprobabilitiesfor therandomvariables0

�

�

�

. Assuming
� �
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,
we canestimatethedifferencein theseprobabilitiesby
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As a consequence,replacingthe probabilitiesPr
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The seconddifferencebetween�

& and �
+ is that we mapall probabilitiesfor the events 0
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to the event 0
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. This changein thedistribution makesit possibleto choose�rst thedisjoint
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setsatrandomandthento select�
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at randomfrom � �
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. Theremappingof theprobabilitiesfor
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applying propertyP2. (Observe that we have statedthis
propertyoriginally for � but it holdsfor � & with probability

�
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becauseof our boundon the
variationdistancebetweenthesetwo distributions.)

Puttingit all together, thevariationdistancebetween� and � + is boundedaboveby
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in each
roundand
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overall rounds.This completestheproofof Lemma26. �

Basedon this bound,we areableto give thefollowing lemmacomparingthebehavior of thecomplete
system

�

 � with thatof thesmallsystem
�

 � + .
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Proof: Resulta) is seeneasilyasfollows. Theset � is chosenat random.As a consequence,E
�

��$

�

�

E
�

�

�

�

� �

�

	

, sothatE
�

�

�

 �

�

�

�

	

impliesE
�

� $  �

�

�

� � . Now we apply�rst Lemma26andthen
theMarkov inequalitywhichyields

Pr

�

� $ �

� �

�

�

�

�

�

�

+

�
� Pr

�

� $��

� �

�

�

�

�

�

�
�

�

����	

4

�

���

�

� �

�

����	

4

�

���

�

�



90 CHAPTER6. RANDOMIZED RUMOR SPREADING

Hence,resulta) is shown. Theresultsb) andc) follow from thefollowing lemma.

Lemma 28 Suppose
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uninformedpersons.Let
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ThisLemmais astraightforwardconsequenceof Chernoff bounds.Applying thelemmawith 0 � � yields
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The�rst of theseresultscorrespondsdirectly to resultb), andthesecondresultcombinedwith Lemma26
yieldsc). Thiscompletestheproofof Lemma27. �

Informally, this lemmastatesthat it is suf�cient to analyze
�

 �

+ in order to estimate
�

 � . In fact,
restrictingto thesmallerandsimplersystem

�

 � + will enableusto dealwith thecomplex dependenciesin
theoriginal system
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 � . Thefollowing lemmasummarizesouranalysisfor
�

 � + .
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CombiningLemma27 and 29, we obtain the following result for
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, this probabilityis lower-boundedby
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For the time being, let us assume� and � to be constants.Thenequation6.1 canbe interpretedas

follows. Startingwith
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� uninformedplayers(possiblyknown by all players),performing � �
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transmissionsin
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� roundsreducesthe numberof uninformedplayersonly by someconstant
factorwith probability at least
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denotesthenaturallogarithmiteratedfor ( times.)Hence,Theorem23 is shown. �



Chapter 7

Online Prediction with Partial
Feedback

7.1 Intr oduction

Bandwidthallocationin theInternetis managedby theTransportControl Protocol(TCP). Accordingto this
protocolit is thetaskof thetraf�c inducingpartyto regulatethetransmissionrateof its packets.Theonly
informationavailableto this party is the �o w of acknowledgmentpacketsshowing whetherthe message
wascorrectlydelivered.If thetraf�c in thenetwork is largerthanthecapacitythentheseacknowledgments
will nolongerreturnto thesenderof themessageandthesenderhasto cutbackonthetransmissionrate(if
hebehavesaccordingto TCPrequirements).BasedonthissimplemodelKarpetal. [KKPS00] investigate
protocolsoptimizingthetime neededto �nd theoptimal transmissionrate. We follow their approachand
considerthefollowing simplegame.

On the link thereis theproblemof the rateof unicast�o w from hostA to hostB. The bandwidth
�

�

available�uctuatesaccordingto varying requirementsfor bandwidthsof othercompeting�o ws. HostA
determinesits packet rate � � , alsocalledallocatedbandwidth,for someunit time periodandreceivesonly
limited feedback.TCP usesonly the fact that somepacket dropshave occurred.We assumethat sucha
packetdropindicatesthatin aperiod � theacquiredpacket rate � � is toohigh, i.e. � � �

�

� . Furthermorewe
assumethatthis knowledgeis availablebeforechoosingthepacket rate �

�




� of thenext round.We model
this feedbackby �

���

'��

�

, where�

���

'��

�

�

�

if �

���

and �

���

'��

�

� & else(seeFigure7.1).
A costfunction �

���

'��

�

is givenandre�ects two majorcomponents:opportunitycostsdueto sending
lessthan the availablebandwidthwhen ���

�

, andretransmissiondelayand overheaddueto dropped
packetswhen ���

�

. The goal of the hostA is to minimize the total cost incurredover all periods. In
[KKPS00] thefollowing costmodelsareconsidered:

1. Thegentlecostfunction, �

�

���

'��

�

�

�

� � when �

� �

and �

�

���

'��

�

� �

�

� �

� �

when � �

�

, see
Figure7.2.

This functionmodelsthecasewheretheprotocoldoesnot needto wait for lost packetsto time out
(e.g.,theso-calledfast-retransmitin TCP)so � packetsgetthroughto thereceiver, but still thereis
anoverheadfor detectingandretransmittingsomeextrapacketsthataredropped.

2. Thesevere costfunction,
� ���

'��

�

�

�

� � when �

���

and
� ���

'��

�

�

�

when � �

�

, seeFigure7.3.

This functionmodelsthecasewheretheprotocolmustwait for the �rst droppedpacket to timeout
beforeresumingtransmission.If in a periodthe �rst packet is lost thenessentiallyno packetsare
transmittedduringthatperiodandthelost bandwidthcanbeapproximatedas

�

.

In [KKPS00] the static casehasbeenconsideredwhen
�

� �

�

�

�

is constantin time. The authors
show anupperboundof

���

�

� � � �����

�

�

of thetotal lossfor theseverecostfunctionanda lowerboundof
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Figure7.1: Thefeedbackusedby TCP.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

available bandwidth y=4

available bandwidth y=7

allocated bandwidth/packet rate  g

cost

av
ail

ab
le 

ba
nd

widt
h 

y=
1

Figure7.2: Thegentlecostfunctionfor � �

�

.



7.1. INTRODUCTION 93

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

allocated bandwidth/packet rate  g

available bandwidth y=4

available bandwidth y=7

available bandwidth y=1

cost

Figure7.3: Theseverecostfunction.
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. For thegentlecostfunction they show analgorithmwith expectedcost
�

�

�

�
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���������
	��

andworstcasecost � �
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��������� 	��

.
Furthermorethey investigatethedynamiccasewherethechangeof

�

� is restricted.There,theabsolute
change

�

�




�

�

�

�  , the relative change�

�����

+

�

� ,

+

�

'

+

�

+

�

� ,

� , or the rangeof
�

���

�

� '�

�

is bounded.For all
thesecasestherearealgorithmsboundingtheabsolutecost. In all thesedynamicscenariostheanalysisis
competitive, i.e. thequality of analgorithmis comparedto thecostof thebestoff-line strategy, while the
bandwidthmaybechosenby anadversaryfollowing thegeneralframework of [BEY98]. In [KKPS00] the
following resultsareshown:

� If 

�

�




�

�

�

� 

�

� thenthereis analgorithmwith competitive ratio
�

�

� , while a lower boundof
�

�

� canbeshown;

� if �

�����

+

�

� ,

+

�

'

+

�

+

�

� ,

�

� #

, thentherea variantof TCPwith competitive ratio
�

#

� � andthereexists
a lowerboundof

#

;

� if
�

� �

�

� '�

�

, then thereis an optimal deterministicalgorithmwith competitive ratio �

�

� andthe
optimalrandomizedcompetitiveratioagainstanobliviousadversaryis

�

�

�

�

�

�

�

�

�

.

In this chapterwe will discussthe generaldynamiccasewith
�

�
� �

�

'�������'�� � for a randomized
algorithm andno restrictionon the adversary. For the competitive ratio thereis no hopeto prove any
reasonableresult: For thesecostfunctionsthebestoff-line strategy is to choose

�

� , causingtotal cost & .
Now if theadversarychooses� and

�

with equalprobability, thentheexpectedcostof any algorithmin
theseverecostmodelis at least

�

4

�

� , giving thecompetitivedifference(thecompetitiveratio is notde�ned
sincethedenominatoris & ).

Following anideaof Karpthatif theadversarialchoiceis toogoodto competewith, oneshouldat least
try to competewith thebestconstantstrategy. Theinterpretationis that thealgorithmshall try to perform
aswell asif thealgorithmhadacquiredtheconstantbandwidth�'& �

�

�

�

, which performsbestwith the
availablebandwidth. Although the situationdoesnot seemmuchbetterit is now possibleto show that
in the long run thedifferencebetweenthecostof thealgorithmandthecostof thebestconstantchoice,
calledrelativecostor regret, is substantiallysmallerthanthe � � , i.e. wewill show thattheaverageregret
per roundconvergesagainst& . During the investigationof this problemit turnedout that our approach
generalizesto anarbitrarycostfunction �

���

'��

�

andany function �

���

'��

�

giving suf�cient feedback.
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An algorithmchoosingthebandwidthis frontingatrade-off similarto theonethatis themostdistinctive
trait of the multi-armedbanditproblem: on onehand,trying to matchthe maximumbandwidthat any
time step;on the other, choosingthe bandwidthin orderto collect moreinformationaboutthe available
bandwidth.

Another, even simpler, instanceof this generalsettingarisesfrom a simplequality control problem
alsoknown astheappletastingproblem. In a manufacturingoperation,the itemsproducedcanbeeither
working or defective. Unfortunately, to assessthe quality of an item it is necessaryto destroy it. Both
deliveringa defective item anddestroying a working oneareundesirableevents. Supposethat customer
feedbackis unavailable, late or unreliable. The only informationavailableaboutthe sequenceof items
producedso far is the onethe destructive testingprocedureprovides,but we want to apply it aslittle as
possible.Whentheplantis workingproperly, defectiveitemsareextremelyraresothatlittle testingseems
optimal,but a failurewouldbedetectedwith a worrisomedelay.

Thegoalwe setfor ourselveswasto make thesetwo examples,togetherwith themulti-armedbandit
problemandothers,�t a generalframework thatencompassesdifferentsequencepredictiongameswhere
thepredictionis basedonly on some“clues” aboutthepastroundsof thegameandgoodpredictionsare
rewardedaccordingto someweightingscheme.We model the availablefeedbackon the sequenceasa
function of two arguments.One is the currentsequencevalue itself, as it is commonin systemtheory
and the other is the predictionitself. In systemtheory the classicproblemis that of observability: Is
the feedbacksuf�cient to �nd out the initial stateof the systemwhosetransitionfunction is assumedto
be known? More closely relatedto our problemis that of learningfrom noisy observations,wherethe
sequenceis obfuscatedby somenoiseprocessasopposedto a deterministictransformation.Thepresence
of the secondargument,the prediction,makesour approachconsistentwith a large body of work in the
sequencepredictionliterature,wherethe feedbackis the reward. Decouplingthe feedbackand reward
functionsis themostnotablefeatureof ourapproach.

Following a relatively recenttrendin sequencepredictionresearch(e.g. see[LW94, HKW95, Vov98,
Sch99, Sch01, CBFH
 97, CBFHW94,HKW98, CBL99, FS99, ACBFS95, Vov99]) we makeno assump-
tionswhatsoeverconcerningthesequenceto bepredicted,meaningthatwe do not require,for instance,a
statisticalmodelof thesequence.For lack of a model,we needto assumethat thesequenceis arbitrary
andthereforegeneratedby anall-powerful deviceor adversary, which,amongotherthings,is awareof the
strategy a predictionalgorithmis using. It might seemthat competingwith sucha powerful opponentis
hopeless.This is why, insteadof the absoluteperformanceof a predictionalgorithm,it is customaryto
considertheregretw.r.t. thebestpredictorin someclass.In this paperwe make thechoiceof comparing
our algorithmagainstthebestconstantpredictor. Evenif it seemsa very restrictive setting,let us remind
thereaderthatthebestconstantpredictionis pickedafterthewholesequenceis known, thatis with amuch
betterknowledgethanany predictionalgorithmhasavailableandevenmoresoin theincompletefeedback
setting.Moreover, a constantpredictorcanoutputa mixedstrategy, that is, not a constantoutcomebut a
constantdistribution on all possibleoutcomes.Finally, constantpredictorsarethe focusof an important
line of researchon iteratedgames[Han57, FS99, ACBFS95].

Our researchis closelyrelatedto theonepresentedin [FS99] wherethesubjectis, indeed,theproblem
of learninga repeatedgamefrom the point of view of one of the players—which can be thoughtof,
indeed,asapredictor, onceweacceptthatpredictioncanberewardedin generalwaysandnotaccordingto
a metric. In thatwork theauthorsdesignedtheMultiplicative Weightingalgorithmandprovedthat it has
regret

���

�

�

�

whencomparedagainsttheoptimalconstantstrategy. Thisalgorithmis usedasasubroutine
of ours.In theirsettingthepredictorreceivesasinputnot thesequenceatpastroundsbut therewardsevery
alternateprediction(not only the onemade)would have received. Sincethis is all that mattersto their
algorithm,this settingis calledfull informationgamein [ACBFS95], evenif, accordingto our de�nitions,
thesequenceandnot therewardis theprimaryinformation.In thelatterpaper, apartial informationgame
correspondsto themulti-armedbanditproblem,in which only the rewardrelative to thepredictionmade
is known to the predictor. What would have happenedpicking any of the otherchoicesremainstotally
unknown. Thebestboundon theregretfor thisproblemhasbeenrecentlyimprovedto

���

�

�

�

� �

[Aue00].

Theappletastingproblemasthesimplestspecialcaseof our predictionproblemandthemulti-armed
banditproblemhasbeenverywell investigatedby Helmbold,LittlestoneandLong[HLL92, HLL00]. They
analyzethe samepredictionstrategiesandshow that thereis a predictionalgorithmwithin an expected
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regretof at most
���

!

,

	

�

	 ���

�

�

. Furthermorethey show a matchingasymptoticlowerbound.
In this chapterwe extendthis result to our moregeneralsetting,provided that the feedbackandloss

functionsjointly satisfya simplebut non-trivial condition. This caseincludesrelevantspecialcasessuch
asthebandwidthallocationandqualitycontrolproblemsmentionedat thebeginningof thepresentsection,
aswell astheclassicmulti-armedbanditproblemandothers.In thiscaseit is possibleto proveaboundof

���

�

�

���

�

on theregret. Theaforementionedconditionis not speci�c to our algorithm: Indeedwe proved
that,whenit is notsatis�ed,any algorithmincurreda regret

�

�

�

�

, just asapredictionwith no feedbackat
all.

Also closelyrelatedis thework presentedin [WM01] wherethesameworstcaseapproachto sequence
predictionis assumed,but thesequenceis availableto a predictionalgorithmonly throughnoisyobserva-
tions. Albeit very general,their resultsmake someassumptionson the noiseprocess,suchasstatistical
independencebetweenthenoisecomponentsaffectingobservationsat differenttime steps.Our feedback
modelencompassesalsothesituationof noisyobservations,but givesupany statisticalassumptionson the
noiseprocess,too,in analogywith thenotionof “maliciouserrors”in thecontext of PAC learning[KL93].
Thatis weclaimourwork canbeseenalsoasaworstcaseapproachto thepredictionof anoisysequences.

Thechapteris structuredasfollows. In Section7.2we formally describetheproblem.In Section7.3
we describethe basicalgorithmandprove boundson its performance.In Section7.4 we review some
examplesandhighlight someshortcomingsof the basicalgorithmandshow how to overcomethem. In
Section7.5we presenta generalalgorithmandprovethatthealgorithmis essentiallythemostgeneral.In
Section7.6we discussour results.

7.2 The Model

We describetheproblemasa gamebetweena playerchoosinganaction �
� andanadversarychoosingthe

action
�

� at time � . Thereare � possibleactionsavailableto theplayer, without lossof generalityfrom the
set

�

�

�

� �

�

'�������' � � , and � actionsin theset
�

�

�

from which theadversarycanpick from. At every time
steptheplayersuffersa lossequalto �

���

� '�� �

�

�

�

& '

���

.
Thegameis playedin a sequenceof trials � �

�

'���'�������'�� . Theadversaryhasfull informationabout
thehistoryof thegame,whereastheplayeronly getsa feedbackaccordingto thefunction �

���

'��

�

. Hence
the � ��� -matrices� and

.

, with ���
�

���

���

'��

�

and
.

�
�

���

���

'��

�

completelydescribeaninstanceof the
problem.At eachround � thefollowing eventstake place.

1. Theadversaryselectsaninteger
�

� �

�

�

�

.

2. Without knowledgeof theadversary'schoice,theplayerchoosesanactionby picking ��� �

�

�

�

and
suffersa loss (��

�

�

�

�

���

���

� '�� �

�

.

3. Theplayerobserves ��� ���

���

� '�� �

�

.

Note thatdueto the introductionof the feedbackfunction this is a generalizationof thepartial infor-
mationgameof [ACBFS95].

Let �

�

�

�

� �
��!

��"

�

(#�

�

�

�

�

�
��!

��"

�

�

���

�1'�� �

�

be the total lossof player � choosing�

�

'�������'��

!

. We
measuretheperformanceof theplayerby theexpectedregret �%$ , which is thedifferencebetweenthetotal
lossof � andthetotal lossof thebestconstantchoice�'& , thatis �

!

��"

�

(
�

(

�

�

�

.

�*$ � �

�

���

+
,

/././. 

+
0

E

1

!

�

��"

�

�

���

�1'�� �

�

�

�

���

�

!

�

��"

�

�

���

� '2�

�
3

whereeach
�

� is a functionof �

�

'������ '�� ��4

� . In someworksthecorrespondingmin-maxproblemis investi-
gated,transformingthelossinto a reward.Thetwo settingsareequivalent,asit is easyto check.
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Figure7.4: Themultiplicativeweightingalgorithm.

7.3 The BasicAlgorithm

For the full informationcasethe following Multiplicative WeightingAlgorithm(seeFigure7.4) hasbeen
usedin different settingsand hasrecentlybeenanalyzedin [ACBFS95]. Figure 7.5 shows the Hedge
Algorithmwhich is their setting.Thefollowing Lemmashowstheequivalenceof bothalgorithms.

Lemma 30 HedgeandMWare equivalentalgorithms.

Proof: By induction,we prove that in eachroundtheprobability �
�

�

�

�

computedby MW is identicalto
theprobability
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�
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of theHedgealgorithm.
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Theanalysisof [FS99] leadsto a tight resultfor thefull knowledgemodel. We will baseour analysis

onanadaptionof theirmaintheorem.Let usde�ne
�

�

(
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� � �
�

�
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� ( �

Lemma 31 For all � �

�

�

�

'

� �

:
�

�

�

�

�

�

�

� � �

� � �

�

�

�

�

Proof: This Lemmafollows by applyingelementarymethodsof analysis.By consideringthe �rst and
secondderivative it turnsout that for the function �
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proving theleft inequality. �
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Figure7.5: Thehedgealgorithm.
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Thefollowing theoremestablishesaboundon theperformanceof MW thatholdsfor any lossfunction � .
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We usetheKullback-Leiblerdivergence, alsocalledrelativeentropy, which is de�ned for probability
distributionsover �
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For instance,if
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doesnotexist thebasicalgorithmfails, i.e. it cannotcomputeastrategy at all.
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Figure7.6: Thefeedbackexponentialexplorationandexploitationalgorithm.

The algorithmcanbe describedasfollows. First, it estimatesthe lossvectorusingthe matrix G and
the feedback.This estimateis fed into theMW algorithmwhich returnsa probabilitydistribution on the
player's actions.MW tendsto choosean actionwith very low probability if theassociatedlossover the
pasthistory of the gameis high. This is not acceptablein the partial informationcase,becauseactions
areusefulalsofrom thepoint of view of the feedback.Therefore,andagainin analogywith [FS99], the
algorithmadjuststhedistribution �

�

�
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, outputby theMW algorithm,to a new distribution
�

�

�

�

�

suchthat
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later on. What is new to this algorithmandwhat makesit muchmoregeneral,is the way the quantities
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areestimated.More in detail,given
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- � � , ourbasic
algorithmworksasshown in Figure7.6.

Thefollowing lemmashowsthat
�

(

�

�

�

is anunbiasedestimatorof thelossvector (

�

�

�

.

Lemma 34 For all
�

' � wehave

E
�

�

(
�

�

�

�

 �

�

'�������'�� ��4

�

�

� (
�

�

�

�

and E
�

�

(
�

�

�

�

�

� E
�

(
�

�

�

�

�

�

Proof: Notethat

E
�

�

(
�

�

�

�

 �

�

'�������'�� ��4

�

�

�

�

�

� "

�

�

���

�

(

�

.

+

�

 �

�

�
�

�

(

�

-�� 
�

�

�

�

� "

�

.

+

�

 � -��1
�

� �

+

�


�

� (
�

�

�

�

�

This impliesE
�

�

( �

�

�

�

�

� E
�

E
�

�

( �

�

�

�

 �

�

'������ '��
��4

�

� �

� E
�

( �

�

�

�

�

. �

Let
�

+


�

�

�

�

� �

.

+

 � - � 
� , for all

�

'

�

'�� � �

�

'������ '�� � ,
�


 � �

�

���

+

 � 
�

�

�

+


�

�

�

�

� ,
�

4

� �

�

� �

+

 � 
�

�

�

+


�

�

�

�

� , � � �

�

��� &�' �

�

4 and � � �

�


 �

�

4 .

Lemma 35 For anysequence
�

�

'������ '

�

!

thesequence
�

�

�

�

�

'�������'

�

�

�

�

�

producedbyFeedExp3satis�esfor
all � :

!

�

��"

�

�

�

�
"

�

�

( �

�

�

�
�

� �

�

�

� �

!

�

��"

�

�

(
�

�

�

�

�

�

�

�

�

�

� � �

� �

�

� �

�

� �

� �

�

�

�

!

�

��"

�

�

�

�
"

�

�

( �

�

�

�

�



100 CHAPTER7. ONLINE PREDICTIONWITH PARTIAL FEEDBACK

Proof: Considera gamewhere �

�

�

�

denotesthe probability distribution andthe estimatedloss
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is
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Proof: We useamartingaleargumentin closeanalogyto theproofof Lemma5.1 in [ACBFS95].

(7.1): Let usde�ne therandomvariable
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Thesecondinequalityfollowsfrom Lemma34andthefollowing chainof inequalities:
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(7.2): We de�ne therandomvariable
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Again themainclaimof theproof is thatE
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. Wehaveby Markov's inequalitywith �
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� , which,by somealgebra,is equivalentto (7.2). Therestof this proof is analogousto
the�rst part.
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We singleoutaspecialcaseof Lemma36for furtherreference.
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(7.3)

We thenapply Lemma36(7.2)andchoose� �
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At lastwe will useCorollary4. Then,we havewith probability
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For theexpectationweadderrorterm � 0 � for thecombinederrorprobabilities� 0 andcombine(7.3),(7.4),
(7.5),(7.6),and(7.7).
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7.4 Applications, Limits, and Extensions

Wearenow equippedtoshow how thebandwidthallocationproblemwhichinitially promptedthisresearch,
aswell asotherimportantexamples,canbesolvedusingthisalgorithm,but wewill alsoseethatonly some
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tweakingallowsto solveevenmorepredictionproblems.Wewill seein thenext sectionthatthese“tricks”
leadto a generalalgorithm,that,aftersomepreprocessing,usesthebasicalgorithmto achieve sub-linear
regretwhenever this is feasible.

7.4.1 Bandwidth Allocation

In thebandwidthallocationproblemthefeedbackfunctionis de�ned asfollows(thr esholdfeedback):
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leadsto thefollowing corollary:

Corollary 5 For thetresholdfeedback functionandtheseverecostfunctiontheFeedExp3algorithmsuffers
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in its rescaledsetting � +
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�

'�������' � � theallocated
bandwidthandavailablebandwidtharerealnumbersin therange

�

&�'

� �

. This modelsappliesif � is very
large, i.e. � � �

�

. Sincethe regret dependson the numberof constantexperts,i.e. possiblediscrete
choicesof � , the boundon the regret of FeedExp3becomestoo large. For a solutionwe considerthe

�

�

�

discretechoicesfor allocatingthe bandwidth �
�

� � &�'

�

�

'

�

�

'�������'

�

� . Of coursethe available
bandwidth

�

� is still continuous.Becauseof thediscretethresholdfeedback,ouralgorithmunderestimates
�

� : if �

���

'��

�

� & thenthealgorithminterpretes� �

�

asby
�

+ � ���

+ ���

�

.
Now notethattherealcostsandthecostsreferingto

�

+ differ not toomuchfor theseverecostfunction
� ���

'��

�

.

Lemma 37 For thecontinuoussevere costfunction
� ���

'��

�

with � '

�

�

�

&�'

� �

and � + � � &�'

�

�

'

�

�

'�������'

�

�

wehave

� ���

'��

+

�

�

�

�

�

�

�

�

�

'��

+

 

�

�

& '

�

�
 

'

�

�

�

'

� � �

�

�
 

� � ���

'��

�

�

�

�

�

Proof: followsstraight-forwardfrom thede�nition of
�

. �

ThisLemmahastwo implications.

1. If we considera gameusing
�

+

�

� �
�

+ ���

�

insteadof
�

� in eachround,thenwe getadditionallossof
atmost

�

�

perround.

2. The bestconstantchoice �
& reducesthe total lossby at most

!

�

over all roundscomparedto the

choice �

�

(

���

�

.

Theseconsiderationsimmediatelyimply thefollowing Theorem.

Theorem26 In thecontinuouscaseof �
�

'

�

�
�

�

& '

���

, for thebandwidthallocationproblemwith threshold
feedback andsevere costfunctionthere existsanalgorithm � with expectedregretof at most

E
�

�
$

�

�

�

�

�

���

�

�

�

�

���

� �

�

�

���

�

with respectto thebestconstantchoiceof bandwidth�'&��

�

&�'

� �

.

Proof: UsetheFeedExp3algorithmin thediscretizedworld � +

�

'

�

+

�

� � & '

�

�

'

�

�

'������ '

�

� where
�

+

�

� ���

+ ���

�

for � � � �

�

�

�

� �

� �

�

4

�

���

. Theorem25 shows that in this discretizedworld this algorithm suffers an
expectedregretof

E
�

� FeedExp3
�

�

�

�

�

���

�
�

�

�

���

� �

�

�

���

�

�
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Lemma37 shows that thebestdiscreteconstantchoiceperformsover all � roundsat most
!

�

worsethan
theoptimal continuouschoice. Furthermore,Lemma37 shows thata continuouschoiceof theavailable
bandwidthalsoincreasesthecostby at most

!

�

.

Hence,the regret of the algorithm FeedExp3increasesin the continuoussettingby at most
!

�

�

�

�

�

�

���

� �

�

�

���

�

For thegentlecostfunction �

�

���

'��

�

for � �

�

in thecontinuoussettingthesameobservationsapply.

Lemma 38 For thecontinuousgentlecostfunction �

�

���

'��

�

with � '

�

�

�

& '

���

and � �

�

wehave

�

�

�

�

� ���

'��

�

�

�

�

�

�

�

�

�

'

� � �

�

�  

�

�

�

�

�

�

�

�

Proof: followsstraight-forwardfrom thede�nition of �

� . �

Theorem27 In thecontinuouscaseof � � '

�

� �

�

& '

���

, for thebandwidthallocationproblemwith threshold
feedback andgentlecostfunction �

� for � �

�

thereexistsanalgorithm � with expectedregretof at most

E
�

� $

�

�

�

�

�

���

� � �

�

�

� �

� �

�

�

���

�

with respectto thebestconstantchoiceof bandwidth�'&��

�

&�'

� �

.

Proof: For the choice � � � �

4

�

� �

���

� �

�

4

�

���

the proof is analogousto the proof of Theorem26 and
follows from Lemma38andTheorem25. �

7.4.2 LossFeedbackand Full Inf ormation

Themulti-armedbanditproblemwith partial informationof Freundet al. [ACBFS95]correspondsto the
case

.

� � . Underthis condition, - �

�

is a suitablechoice. A somehow dual situationariseswhen
.

�

�

, that is whenthefeedbackis a binary“hit or miss” information. Then - � � is a suitablechoice
for - .

A moretroublesomesituationis the full feedbackcase.Evenif in this casethemachinerypresented
in this paperis not necessary, sincean expectedregret of

���

�

�

�

� � � �

�

�

canbe achieved by the MW
algorithm[FS99], it is clearthata generalalgorithmfor this classof problemsmustbeableto solve this
specialcase,too. A naturalchoicefor

.

is
.

�
� �

�

, which implies ���	�

�

� . Unfortunately, sucha matrix
hasrank1 andthereforethecondition

.

- � � canbesatis�edonly whenL hasaveryspecial,andrather
trivial, form. But morethanthespeci�c valuesof theentriesof

.

, whatde�nes“full feedback”is thefact
thatnotwo entriesin everycolumnof

.

havethesamevalue,thatis thereis abijectionbetweenthevalues
in

.

� andthe rangeof
�

� . If
.

satis�es this property, it is possibleto compute
�

� from ��� andhencewe
cansaywe arestill in thefull informationcase.Therefore,we areinterestedin �nding a full rankmatrix
within thesetof matricesjust described,whichall representthefull feedbackcase.

Onepossiblesolutionis to replaceevery diagonalentrywith a numberlargeenoughto satisfyHada-
mard's theorem,thatis:



.

� �
��

�

�

� "

�

 �

�

"
�



.

�
�� �

implies that ��#�	

� . �

�� & . But this solutionis speci�c to the full feedbackcase,whereasthe problemof
singularor low rank

.

arisesin many contexts.
For instance,considerthe thresholdfeedbackandmodify slightly thede�nition to be �

���

'��

�

� & , if
� �

� and
�

otherwise.Then
.

becomessingular, but it is enoughto reversethearbitraryrolesof 0 and1
to getanequivalentproblem,wherethis time

.

is invertible.
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7.4.3 Extensions

An acceptabletransformationof
.

canbe detailedasa setof functionsfor eachcolumnof
.

, from the
rangeof the elementsof

.

into someother range. The goal is to obtaina new matrix
.

+ , whereeach
columnis obtainedapplyingoneof the functionsto the elementsof a columnof

.

, for which thereis a
- suchthat

.

+�- � � + . It is clearthat
.

+ canhave morecolumnsthan
.

, becauseeachcolumncanbe
transformedin differentways,but no fewer, sinceevery actionhasto be represented.This corresponds
to introducingnew actionsthat areessentiallyreplicas,but for eachof which the feedbackundergoesa
differenttransformation.Fromthepoint of view of theloss,theseadditionalactionsaretotally equivalent
andthereforewe needto extend � into a largermatrix � + by duplicatingtheappropriatecolumns.What
we seekis a generalway to expand

.

+ soasto keepthenumberof columnsreasonablysmallbut making
thelinearspanof

.

+ all-inclusive,thatis suchthatit cannotbeenlargedby addingmorecolumnsobtained
in a feasibleway. This canbeaccomplishedasfollows. For everycolumn

.

� containing�)� distinctvalues
(w.l.o.g. from the set

�

� �

�

) we de�ne � � columns
.

+

�







�

�����

.

+

�







�


 , where � � � �

� 4

�

� "

�

� � , as follows:
.

+

�







� 

�

�

�

� �

.

� 

�

�

, for
�

�

�

�

� � , where
�

�

�

�

�

if � is true and0 otherwise.As to � + , we set
� +

�

� � � if andonly if � � � �

�

� �

�

� � . It is straightforwardto checkthatthematrix
.

+ obtainedthisway
hasthelargestpossiblelinearspanamongall theonesthatcanbeobtainedfrom

.

via thetransformations
detailedabove. Also, since

.

is � � � ,
.

+ is atmost � � � � . Thesearemorecolumnsthanweneedand
would impactnegatively theboundson theregret: Thereforewe will pick thesmallestsubsetof columns

�

which is still goodfor ourpurposes,thatis, it satis�esthefollowing conditions:

� All thecolumnsof � arerepresentedin � + or, equivalently, all theactionsin theoriginal instanceare
represented,thatis for every

�

�

�

�

�

thereis a � �

�

suchthat �
�

�	�

�

�
�

�

�
� ;

���

�

�

.

+

�

�

�

�

�

�

�

� � � �

�

#

� .

+

�

.

The�nal feedbackanddistancematricescanbeobtainedby droppingall thecolumnsnot in
�

from
.

+ and
� + , andwe will continueto usethesamesymbolsfor thesubmatricesde�ned this way. In thenext section
we will presenta greedyalgorithmwhichsolvesthisproblem.

Let us seehow this helpsin the full feedbackcase. Recall that a naturalchoicefor
.

is
.

�
�

�

�

.
Therefore,thecorresponding

.

+ hasmaximumrank(somecolumnsof
.

+ form an � � � identitymatrix),
.

+�- � � canbesolvedfor - andthegeneralalgorithmcanbeappliedsuccessfully.
A furthercomplicationarisesfrom non-exploitableactions.Theseareactionswhichfor any adversarial

strategy donot turnoutto beoptimal.Theproblemhereis thatthecondition
.

- � � mightbeimpossible
to besatis�edbecauseof somecolumnsrelatedto non-exploitableactions.Consider, for instance,

.

�

�

�

� � �

� � �

&

� �

�

�

� �

�

�

� �

&

�

�

&

�

&

�

�

�

�

Herecolumn1 of � is not in the linearspanof
.

, but it is easyto seethatactions2 and3 canbealways
preferredto the�rst. Therefore,it might seemreasonableto simplydropthe�rst columnasit is relatedto
a non-exploitableaction. It turnsout, though,it is just action1 which providesthenecessaryfeedbackto
estimatetheloss.It is clearthatsimplyomittingnon-exploitableactionsis nota goodstrategy.

As with thefeedbackmatrix
.

, thesolutionfor theseproblemsis to transformthelossmatrix � into a
new � + in a way thatdoesnot lower theregret.

If weaddthesamevector( to everycolumnof � , wearenotchangingtheprobleminstancein any sub-
stantialway, sincetheregret,our performancemeasure,is invariantw.r.t. this transformation.Therefore,
we areinterestedin thosetransformationsthathelp ful�lling thecondition

.

- � � . This time, it makes
senseto try to obtaina matrix � + from � of minimumrank. Rankminimizationis a dif�cult problemin
general,but this specialcaseturnsout to berathertrivial.

Lemma 39 Giventhreematrices� , � + and � + + such that for every
�

� +

�

� �
�

� � � and � + +

�

� �
�

� ( , we
havethat, for anyvector ( andindex � , �

�

� +

�

�

�

�

� + +

�

.

Proof: Since�
�

� � � � �
�

� ( �

�

� � � (

�

, thelemmafollows. �
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Therefore,choosing( equaltooneof thecolumnsof � minimizesthelinearspanof � + . In thefollowing
we will assume�

�

�

�

&�'�������'1&

�

w.l.o.g.
As to non-exploitableactions,we �rst needto formally de�ne them. Let usde�ne a partition1 of the

setof mixedstrategies(for theadversary)asfollows. Every elementof thepartition is centeredarounda
columnof � + andis de�ned as:

 �

� �

�

� � � � � 

�

� � � � �� � � � ��� �

�

��� � �

wheretheset �	� � � � �

�

&�'

� �

�

 �

�

��� �

�

� denotesall possiblemixedstrategiesof theadversary.
Thatis, anelementof this partitionis thesetof mixedadversarialstrategiessuchthata certainpredic-

tion is preferredto any other. If
 �

� �

�

is empty, then
�

is a non-exploitableaction. Therationalebehind
thisde�nition is thatnosensiblealgorithmwill ever try thisactionfor exploitationpurposes(thatis often),
sincethereareotheractionswhichbearasmallerloss.Theinteriorof

 �

� �

�

is de�ned asfollows:

� �

� �

�

� � � � � 

�

� � � � �� � � � ��� � �
��� � �

Thefollowing lemmashows thatwe canreplaceevery mixedadversarialstrategy on thesurfaceof some
elementof thepartitionby anotherstrategy noton thesurface,with nopenaltyin performance.

Lemma 40 For all mixedadversarial strategies �	� � there existsa column � � with
� �

� �

�

���� such that
� �

 �

�
�

�

.

Proof: We concentrateonelementsin theset � � � �

�

 �

�
�

�

�

� �

�
�

�

. Notethatwe have

�

�

	

�
 �

� � � �  �

�

�
�

� � �

�

� & � �

Therefore,� is a subsetof a union of at most �

�

subspacesof dimension� � � . Since � is a � �

�

dimensionalpolytope,any � -ball centeredon a point � �

 �

�
�

�

containselementsnot in � . Suchan
element��+�� � � is containedin aset �

�

� with
� �

�
�

�

�

�� � . Sincethis is truefor any � � � �   , then � belongs
to thesurfaceof

 �

�
�

�

�

too, thatis ���
�

� ���
�

� . �

Hence,we canextendthede�nition of non-exploitableactionsto columnswith
� �

�
�

�

� � , sincetheir
choicegivesno improvementoveractionswith

� �

�
�

�

�� � .
In orderto extendthe applicability of the basicalgorithm,we set in � all the entriesin the columns

correspondingto non-exploitableactionsequalto the sizeof the maximumelementin its column. This
canonly increasetheregretw.r.t. thebestconstantstrategy, becausenoneof theactionsassociatedto these
columnscanbepartof any optimalstrategy. Furthermore,it is easyto checkthatthecolumnsobtainedthis
wayarein thelinearspanof

.

+ for every
.

.

7.5 The GeneralAlgorithm

In Figure7.7we show how to implementtheconstructionof
.

+ and �
+ . Let

�

.

�
 �

� �

�

�
"

�

/././. 

� denotethe
vectorobtainedreplacing,in the � th columnof

.

, every entry equalto � by
�

andall othersby & . The
algorithmconstructs

.

+ and � + by appendingcolumnsderivedfrom
.

and � to their right sides.
Augmentedwith this kind of preprocessingfor the lossandfeedbackmatrices,our algorithmcovers

all the exampleswe considered.A naturalquestionis thereforewhetherthe condition
.

+�- � � + is not
only necessaryfor our algorithmto apply, but in generalfor any usefulalgorithm.Theansweris positive,
meaningthatif theconditioncannotbeful�lled, thenany algorithmwill undergoa loss

�

�

�

�

.

Theorem28 For anypredictiongame
� .

' �

�

wehaveeitheroneof thefollowingsituations:

� TheGeneral Algorithmsolvesit with anexpectedregretof

E
�

� General
�

� ���

�
�

���

���

� �

�

�

�

�

�

���

�

� ' �

�

�

�

� �

�

1Strictly speaking,it is notapartition,but theideahelpstheintuition.
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The GeneralAlgorithm
input � ��� -matrices

.

, �

begin
� � � &

for � fr om
�

to � do
� � � &

for all values� in
.

� do
if

�

.

�  � � �

�

� "

�

/././. 

�

��

�

�/.

+

�

'������ '

.

+

�

�

then
� � �

�

� � � �

�

�

.

+

�

� �

�

.

�  � � �

�

� "

�

/././. 

�

� +

�

� � � �

�
�

�

�

� ���

�
od
if � � & then

� � � �

�

�

.

+

�

� �

�

& '�������' &

�

� +

�

� � �
�

�
�

�

�

� ���

�
od
b := 0
for

�

fr om
�

to � do
if � � & and

� �

� +

�

�

�� � then
� � �

�

�
od
for

�

fr om
�

to � do
� +

�

� � � +

�

� � +

�od
for

�

fr om
�

to � do
if

� �

� +

�

�

��� then
� +

�

� �

�

�

���
�

�

� � +

�

�

�

� '������ '

�

� �
�

�

� � +

�

�

�

�

�

�
od
Perform���������	��
�

� .

+ ' � +

�

andreplaceeachguess� � by
�

�

� �

�

end

Figure7.7: TheGeneralAlgorithm
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� There is an adversarial strategy which causesany algorithm � to producea regret of
�

�

�

�

with
probability

� �

� .

Proof: In the previous section,we have alreadyseenthat we can map a sequenceof actionsfor the
predictiongame

� .

+ ' � +

�

to the instance
.

' � in a way thatdoesnot essentiallyincreasethe regret. This
provesthe�rst partof thetheorem.We canrephrasethesecondpartasfollows:

Givenaninstanceof thepredictiongame
� .

' �

�

let
.

+ and � + bethematricesobtainedthrough
thetransformationsdetailedin theprevioussection.If thereis no - suchthat

.

+�- � � + , then
any predictionalgorithmwill undergoa loss

�

�

�

�

.

We associatea graph
�

�

�

�

' 	

�

to the partition �

 �

� +

�

�

'�������'

 �

� +

�

�

� by de�ning
�

� � � � �

� �

� +

�

�

�� �&� and
�

� +

�

' � +

�

�

� 	 if andonly if � +

�

� � +

�

or thesets
 �

� +

�

�

and
 �

� +

�

�

sharea facet,i.e. a
faceof dimension� � � . Notethatfor all

�

theset
 �

� +

�

�

describesa polytopeof dimension� �

�

, or its
interior

� �

� +

�

�

is empty.
Let �

�

	

�

bethe linearspanof thesetof differencesbetweenvectorsat theendpointsof eachedgein
	 . We have thefollowing

Lemma 41 �

�

	

�

�

�

�

� � +

�

��� +

�

�

�

�

�

.

Proof: For each� +

�

�

�

, let � +

�

� � +

�

� � +

�

,

�

� +

�

,

��� +

�

�

�

�����

�

� +

���

� � +

� , where
�

� +

�

' � +

�

,

'������ ' � +

���

' � +

�

�

is a pathconnecting� +

�

to � +

� , if sucha pathexists.
We needonly to prove that

�

is connected.Giventhetwo vertices� +

�

and � +

�

, we seeka pathjoining
them. Considerthe segmentjoining a point in the interior of

 �

� +

�

�

to one in the interior of
 �

� +

�

�

.
Sincethesetof mixedstrategiesis convex, every point in thesegmentis a mixedstrategy. Let uspick an
arbitraryorientationfor this segmentandconsiderthesequenceof polytopesthatsharewith thesegment
someinterior point, andspeci�cally two consecutive entriesin the sequence,

 �

� +

	

�

and
 �

� +

�

�

. If the
segmentgoesfrom the�rst to thesecondthrougha facet,thenthetwo correspondingverticesin thegraph
arejoinedby anedge.If not, thatmeansthat thetwo polytopesshareonly a faceof dimension� � � or
lower, e.g.avertex or anedge.In thatcaseweneedto pick adifferentpoint in, say,

 �

�
�

�

. This is always
possiblebecause

 �

�

�

�

hasdimension� �

�

whereasthesetof pointscollinearwith thedesignatedpoint
in

 �

�
�

�

andany point in any faceof dimension� � � or lowerhasdimensionatmost � � � . �

Now, let us assumethat thereis no - suchthat
.

+�- � � + . This implies that thereis � +

�

suchthat
� +

�

��

�

�/.

+

�

. Let us assume
� �

� +

�

�

� � . By de�nition of � + , � +

�

� �

�

�

'�������'

�

�

for some � . This
implies, by de�nition of

.

+ , � +

�

�

�

� .

+

�

, a contradiction. Therefore,
� �

� +

�

�

�� � and, by lemma41,
�

�

	

�

�

�

�

� .

+

�

. Hence,for some
�

� +

�

' � +

�

�

� 	 , we have that � +

�

� � +

�

��

�

� .

+

�

. Sincethe range
of

.

+ is the orthogonalcomplementto the null spaceof
.

+

!

we have that, for somenon-zerovector
	

�

�

#��

�/.

+

!

�

'

	 �

� +

�

� � +

�

�

���& . Let
�

be a point in the interior of the facetsharedby
 �

� +

�

�

and
 �

� +

�

�

. We havethat
�

�

�

	

and
�

� �

	

arebothmixedstrategiesfor some� . They areindistinguishable
from thepoint of view of any algorithmbecause

���

�

�

	���.

+ �

���

� �

	���.

+ �

��.

+ , but they correspond
to differentoptimalactions,andtheregretimpliedby makingthewrongchoiceis  �

	 �

�
+

�

� �
+

�

�

 . �

7.6 Conclusionand OpenProblems

Wesolvetheproblemof discretelossandfeedbackonlinepredictiongamesin its generalsetting,presenting
an algorithmwhich, on average,hassub-linearregret againstthe bestconstantchoice,whenever this is
achievable.

In thefull knowledgecase,it is well known thattheaverageperstepregret is boundedby
���

�

4

�

�

� �

.
In [ACBFS95] it is shown that, if the feedbackis identical to the loss,thereis an algorithmthe average
regretof whichis boundedby

���

�

4

�

�

�

�

(omittingpolylogarithmicterms),recentlyimprovedto
���

�

4

�

�

� �

[Aue00]. In this chapter, we show that, for every “reasonable”feedback,theaverageperstepregret is at
most

���

�

4

�

���

�

. Otherwise,noalgorithmcandobetterthan
�

�

�

�

.
If the numberof rounds � is unknown in advancethe generalalgorithmcanbe modi�ed to work in

epochs,a techniqueshown in [ACBFS95]. This modi�cation doesnot changetheasymptoticalboundson
theregret.
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We appliedtheFeedExp3algorithmto bandwidthallocationproblemsandshoweda sub-linearregret
for thesevereandthegentlecostfunctionunderthresholdfeedback.We will discussin thenext chapter
whetherthis resultscanbeactuallyappliedto theoriginal setting.

While we provedthatno algorithmcanattainsub-linearregreton a largerclassof problemsthanours
does,it is anopenproblemwhethersuchgeneralpredictiongamescanbesolvedwith aboundontheregret
asgoodastheoneobtainedfor themulti-armedbanditproblem,in themostgeneralsettingor undersome
additionalassumptions.

It is straightforward to transferthe upperboundsshown for the worst caseregret againstconstant
predictorsto the�nite pool of generalpredictors(a.k.a.“expert”) model,in analogywith theargumentof
[ACBFS95], Section7. However, the lower boundis not readilyapplicableto this caseand,therefore,it
is anopenquestionwhetherourgeneralalgorithmachievessub-linearregretwheneverit is possiblein this
context.

Anotherinterestingquestionis whetherauniformalgorithmexiststhatworksfor any feedbackandloss
functionandachievesthebestknown performancefor eachfeedback.Notethat thealgorithmspresented
in this work, evenwhengivenasaninputa feedbackfunctioncorrespondingto the“full knowledge”case,
guaranteesonly anaverageperstepregretof

���

�

4

�

���

�

, whereas
���

�

4

�

�

� �

is thebestboundknown.



Chapter 8

Bandwidth Allocation under
Adversarial Timing

8.1 Intr oduction

In this chapter, we investigatedistributedandcooperative bandwidthallocationprotocols.A well-known
examplefor sucha protocol is the TransportControl Protocol(TCP) in the Internet. This protocolwas
modi�ed whenthe Internetexperienceda severeservicedegradationor “Internet Meltdown” during the
early growth phaseof themid 1980s[Nag84]. Thedynamicsof packet forwardingwereunderestimated
which resultedin a “congestioncollapse”. The �x for the Internetmeltdown is the “back off ” behavior
of TCP [Jac88]. In simpli�ed form, when TCP suffers a packet loss, it decreasesits sendingrate (by
decreasingits window sizeby a factorof two), andwhena packet is successfullydelivered,it increases
its sendingrate (by increasingits window sizeby one). This additively increasingand multiplicatively
decreasing(AIMD) behavior implementssocialinteractionbetweentheallocationpatternsof concurring
host-to-hostconnections.

Considertwo connections� and
�

sharinga link of capacity� , seeFigure8.1.Supposethealgorithm
allocatingeachconnectionbandwidthusesAIMD behavior like in TCPandassumethat if thesumof the
chosenpacket rateof � and

�

is larger than � , thenpacketsaredropped.Let � be the �rst established
connectionandafter sometime

�

will join in. We observe thataslong � is the only active process,its
bandwidthof � oscillates: � increasesits bandwidthuntil it is larger than � , thenpacketsaredropped
andthus � decreasesits bandwidthby a constantfactor, then � 's bandwidthincreasesandsoon. Now

�

joins andsince � doesnot usethecompletebandwidth� for mostof the time, thereis somebandwidth
left for

�

suchthat
�

hasa chanceto geta constantfractionof thebandwidth.Clearly, theprocessdoes
not converge anddoesnot reach full utilization, i.e. in an averageroundonly a constantfraction of the
availablebandwidthis used.

Time

Bandwidth

P

Q

Packets dropped

Figure8.1: Allocationbehavior of pureAIMD.
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Time

Bandwidth

P

Q starts and allocates
no bandwidth

Figure8.2: Unfair allocationbehavior of anonlinepredictionalgorithm.

Now let us replacethe AIMD behavior by an online predictionalgorithmintroducedin the previous
chapter(E.g. we useFeedExp3algorithmandneglect the in�uence of the uniformly distributedtesting
patternor we usetheHedge/Multiplicative Weightingalgorithm). Figure8.2 shows thatwhen � startsit
quickly allocatesthewholebandwidth� if it minimizesthegentleor theseverecosts.Then

�

startswith
minimal bandwidth& . Now observe that � doesnot suffer any lossin thegentleandseverecostmodel,
sincetheavailablebandwidthfor � is � . Theavailablebandwidthfor

�

is & , hencethecostfor
�

is & , too.
Sinceboth allocationalgorithmssuffer no loss,the allocatedbandwidthsof both algorithmswill not be
changedanymore.We noticethatthesystemconvergesandreachesfull utilization. However, thesituation
is undesirable,sinceit is unfair.

But alsofor TCPfairnessis not guaranteed,sinceits behavior dependsheavily on thespeedat which
individual playersincreasetheir rate. It is known thatTCP is inherentlyunfair to connectionswith long-
round trip times [FJ92] and the unfairnesscansometimesbe asbadas the inversesquareof round-trip
times[LM97].

In this chapterwe concentrateon fairnessand full bandwidthutilization. For this, we consideran
asynchronousdistributednetwork in a verysimpli�ed setting.In contrastto TCPandthefeedbackmodel
in theprecedingchapter(but alongsomeconcurrentconcepts),we allow theprotocolsto seetheresidual
bandwidth,while otherinformationlike theallocatedbandwidths(or eventhenumber)of competingpro-
tocolsis not used.Following the ideasof [BEY98, KKPS00] we challengeour protocolsby anadversary
to ensurerobustnessandreliability. In [KKPS00] this is modeledin form of thechoiceof thebandwidth
by anadversarialstrategy. In ournew approachthelink bandwidthis �x edand�uctuationsin theavailable
bandwidthfor individual playersaremodeledusingan adversarywho determineswhenplayerenterand
leave thesystemand,in particular, controlsthetiming of rateupdateoperationsof individual players.Let
usdescribethis in moredetail.

Considera setof ! playerswho sharea singlebusof bandwidth� . Eachparticipatingplayer
�

holds
a ratevariable �)� describinghow muchbandwidththeplayercurrentlyoccupies.Fromtime to time new
playersarrive andclaim a fair shareof bandwidthwhile otherplayersleave the systemandreleaseallo-
catedbandwidth. Clearly, sucha dynamicenvironmentrequiresa resourcemanagementthat adaptsthe
bandwidthallocationcontinuouslyto the varying circumstances.For example,if several playerssharea
singlebusanda new playerarrivesthentheestablishedplayershave to releasepartsof their bandwidthso
that thenewly arrivedplayercanreceive a fair amountof bandwidth.Similarly, if someplayersleave the
systemthentheremainingplayerscandivideup thereleasedbandwidth.

Let us transferTCP into this model: A playerincreasesits rateby oneunit whenheobservesthat its
currentratevaluecanactuallyberealizedsince �

�

�
�

�

� . Eventually, therateswill beincreasedby such
anamountthat thesumof the individual ratesexceedstheavailablebandwidthandthesystemcollapses.
This collapseis observedby the individual playersandasa responseall playershalve their ratevalues.
Thenplayerscontinuewith thelinearincreaseandsoon.

Recently, someTCP implementationswhich usemoreaggressive congestionstrategiesandincrease
their ratesat higherspeedhave beensuggested.In fact,alreadytodaythespeedat which playersincrease
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their ratesdependson many differentaspects,especiallyon the so-calledround-trip times,which again
dependon thebandwidthutilizationand,hence,on therateschosenby theplayers.

In orderto studythein�uence of differentspeedsin our toy model,considertwo players� and
�

who
interactonabus.Supposeplayer � increaseshisbandwidth� timesasfastasplayer

�

. Then,on thelong
run, theaveragerateof player � will be � timeshigherthantheaveragerateof player

�

. (This is because
the ratio betweenthesumof rateincrementsandthesumof ratedecrementsconvergesagainstonewith
timesothattheaveragelossof player � in caseof acollapsemustbe � timeshigherthantheoneof player

�

, which in turn impliesthatalsotheaveragerateof � mustbe � timestheaveragerateof
�

.)
We summarizethat different speedsfor updatingthe bandwidthscan result in an unfair bandwidth

allocationin practiceas in our toy model (seealso [CJ89, MSM97]). In the following, we will have a
closerlook at thiskind of problemsin anadversarialmodelof time. We startwith upperandlowerbounds
for a very simplemodelin which playersinteracton a singlebus. Afterwardswe generalizeour modelto
generalnetworks.

8.1.1 Model 1: Fair bandwidth allocation on a singlebus

Considerasinglebusof bandwidth� . Weassumeanopensystemin whichplayerscanenterandleavethe
buscontinuously. Let � denotethepossiblyin�nite setof players.Whenplayersfrom � enterthebus
they requesta shareof its bandwidth,andwhenthey leavethebus they releasetheallocatedbandwidth.
Activeplayers (i.e.,playerswhoenteredbut did not leave thebus)needto agreeon theshareof bandwidth
they receive. This is doneby so-called“rateupdateoperations”thatactiveplayerscanperformin orderto
adjusttheir individualshareof bandwidth.We formalizethisasfollows.

We modeltheopensystemby anadversarythatspeci�esa sequenceof events� � �

�

�

�

�

�

����� , where
eachevent � � is a tuple

���

'1(

�

with
�

� � and ( � � enter' leave' update� . With eachplayer
�

� � , we
associatea positive ratevariable ��� the valueof which is zeroif the playeris inactive, that is, the initial
valueof �� is zeroand �)� is resetto zerowhenevertheadversarycalls

���

' leave
�

. Theadversarycallsupdate
operationsonly for active player. In particular, if theadversarycalls

���

' update
�

thenplayer
�

canset � � to
any positivevalue.In otherwords,theadversarydetermineshow oftenandwhenplayerscanrede�netheir
rate.At any giventime,we de�ne theshareof bandwidth�� player

�

receivesby

�
�

� �

�
� if �

�

���

�
�

�

� ,
& otherwise.

Thus,theshareof bandwidthof all playersis zerowhenthesystemis overloaded.(For analogousmodels
see,e.g.,[KKPS00].) A fair andef�cient allocationprotocolaimsto setthe ratesin sucha way that all
playersin the systemget almostthe sameshareof bandwidthand the unusedbandwidthis assmall as
possible.

Clearly, whentheadversaryfrequentlychangesthesetof active playersor doesnot allow to perform
a reasonablenumberof updateoperationsfor all active players,thenit is impossibleto achieve a fair and
ef�cient allocationof bandwidthsamongthe active players. Therefore,we focuson periodsof timesin
which thesystemis closed.A closedsystemperiod

���

'��

�

is de�ned by a possiblyin�nite interval of time
�

anda �nite setof players�

�

� . During
�

thereareno playersenteringandleaving thesystemand
theadversaryonly allows theplayersin � to performupdateoperations.Our goal is to rapidly approach
a fair andef�cient allocationof bandwidthin closedsystemperiods.For this purpose,we investigatethe
following simpleprotocolwhich is alsoknown asthePhantomProtocol[AMO00]. Let � �

�

denotea
globalparameter. Figure8.3showstheallocationof threeplayersusingthisprotocol.

The Virtual Player Protocol (VPP)
Supposeplayer � performsanupdateoperation.Let �� �

�

� � � � �
�

�

���
�

�
'1& � denotethe

unusedbandwidthimmediatelybeforetheupdateoperation.Thenplayer � sets

� � � �

�

�

�

�

�

� �

�

��

�

�

In orderto describethebehavior of thevirtual playerprotocol(VPP)in aclosedsystemperiod
���

'��

�

,
let uspartition

�

into contiguousphasesin suchawaythateachphasecontainsatleastoneupdateoperation
for eachplayer.
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Q Q
P

P
 enters

Q
 enters

Q
 enters

Q
 leaves

R
 enters

R
 leaves

Q
 leaves

P updates

Q updates

Bandwidth

R

Figure8.3: Allocationbehavior of theVirtual PlayerProtocol.

Theorem29 Let �

� denotea suitableabsoluteconstant.Consideranyclosedsystemperiod
���

' �

�

. De�ne
! �  �  andlet � �

�

�




�

�

. Within the �r st �

�

�

� !

� � ����� �

� !

�

�

�

phasesof the interval
�

theVPPreduces
theunusedbandwidthto at most

�

�

�

�

�

� andyields

�
�

�

�

�

�

���

�

� � �

!

'

�

�

�

�

�

� � �

!

�

for all all
�

� � , regardlessof theinitial rates.

In otherwords,theVPPutilizes theavailablebandwidthalmostcompletelyanddistributesit in a fair
wayamongtheplayersin � . In fact,onecaninterprettheunusedbandwidth �� (which is theonly feedback
usedby theVPP)astherateof anadditionalvirtual player. Suppose� �

�

. Thenanupdateoperationof
player � simply brings �

� into line with �� . This way, thebandwidthwill �nally bedividedup in a fair way
amongall playersin � andthevirtual player. By increasing� , theshareof thevirtual playercanbemade
arbitrarily small.A formalproofof thetheoremis givenin Section8.2.

Let us measurethe lengthof closedsystemperiodsin the numberof phasesthey de�ne. Then the
theoremimplies that theVPP convergesagainsta completelyfair bandwidthallocationin closedsystem
periodsof in�nite length.In otherwords,

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

'

for all players
�

'2� from � . Observe,however, thattheVPPdoesnotutilize thefull bandwidth.In fact,the
wastedbandwidthis � �

�

�




�

�

in thelimit. Thisgivesriseto thequestionwhetherit is possibleto obtain
fairnessandfull utilization simultaneously. Thefollowing theoremanswersthis questionnegatively and,
hence,givesastrongmotivationfor leaving a smallfractionof thebandwidthunused.

Theorem30 For anybandwidthallocationprotocol
�

convergingagainstfull utilization in closedsystem
periodsof in�nite length,there is an adversarial sequence� that de�nesa closedsystemperiod

���

'��

�

of
in�nite lengthwith  � 

�

� that enforcesa bandwidthassignmentof at most ��� ( � � & ) for oneof the
players in � .

This surprisingimpossibility resultfollows from a simple,elegantlower boundargument.Thecorre-
spondingproof is givenin Section8.3.

Notethattheincompatibilityof fairnessandfull utilizationalsoholdsif all playersknow thecomplete
currentstatus,e.g.for explicit ratebasedalgorithmslike in [CRL96, Rob96].
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8.1.2 Model 2: Bandwidth allocation in generalnetworks.

Wegeneralizetheaboveadversarialmodelto generalnetworks.Thenetwork is modeledby a(hyper)graph
- �

�

�

' 	

�

. Edgesrepresentbuses,routers,or othersharedresourcesof limited bandwidth.The band-
width capacityof edge� is denotedby �

�

�

�

. Eachplayercomeswith a setof edgesconstitutinga simple
path (i.e., a path in which every edgeappearsat mostonce). For player

�

��� , let � � �

� ��� �

denotethe
player'spath,andfor anedge��� 	 let �

�

�

�

�

� denotethesetof thoseplayerswhosepathscontain� .
As before,anadversarydetermineswhenplayersenterandleave thesystemandwhenthey canupdate

their rates.For thetime being,we assumethatupdateoperationsareperformedatomically, i.e.,anupdate
operationis notperformedby theadversaryuntil thepreviousonehasbecomeeffectiveonall edgesof the
respectivepath.We generalizetheVPPasfollows. Let � �

�

denotea globalparameter.

The Virtual Player Protocol for GeneralNetworks
Supposeplayer � performsan updateoperation. For every edge � , let ��

�

�

�

� �

�

�

�

�

�

�

�

�

� � � �)�

�

�

�

denotethefreebandwidthonedge� . Thenplayer � sets

� � � �

�

�

�

�

�

� �

�

�

� �

�������

�
	

�

�

�

�

��

�

�

� � �

'

where� �

�

denotesa globalparameter.

The most widely acceptedcriterion for a fair and ef�cient bandwidthallocationin networks is the
conceptof “max-min fairness”[Jaf81, KRT99]. The network is consideredto be in a stateof max-min
fairnessif it is impossibleto in�nitesimally increasethe rateof any playerwithout exceedingthe edge
capacitiesor decreasingthe rateof playerswhoserateis equalor smaller. Our impossibility resultfor a
singleedgeimpliesthatonecannotconvergeagainstmax-minfairnessin closedsystemperiods.Therefore,
we relaxtheconceptof max-minfairnessasfollows.

For every 0 � & , the network is in a stateof 0 -max-minfairnessif it is impossibleto increasethe
rate � of any playerby morethana factorof

�

�

�

0

�

without exceedingtheedgecapacitiesin ��� �

�
��� �

or
decreasingtherateof playerswhoserateis at most

�

�

�

0

�

� . We de�ne thata protocolconvergesagainst
0 -max-minfairnessif, givenany closedsystemperiod

���

' �

�

of in�nite length,theratesconvergeagainst
a statein which theabovecriterionis ful�lled amongtheplayersin � .

Theorem31 TheVPPconvergesagainst
�

�

-max-minfairness.

Theproof of thetheoremcanbefoundin Section8.4. If � �

�

thenwe candescribethestateagainst
which theprotocolconvergesasfollows. For everyedge� , we de�ne a virtual playerwhosepathcontains
only theedge� . Therateof this playeris de�ned to betheunusedbandwidthon edge� . Thenthesystem
convergesagainstastateof max-minfairnessamongall participatingplayersincludingthevirtual players.
Increasing� simplydecreasestheshareof thevirtual playerand,hence,thewastedbandwidth.

Unfortunately, theanalysisshowing theconvergencedoesnot alsoprove a fastconvergence.For this
purpose,we investigatea discretevariant of the VPP adoptingsomeideasof [AS98b], that is, the rate
valuesof active playersareof the form

�

�

�

�

�

� , for �x ed � � & and � �

�

. Fix any closedsystem
period

���

'��

�

. Let thecongestion � � �

���

' �

�

denotethemaximumnumberof paths(of participating
players)which containthesameedge,andlet thedilation � � �

���

'��

�

denotethemaximumlengthof
a path. Furthermore,let � � �

���

'��

�

denotethe ratio betweenthe bandwidththat is availablefor the
participatingplayerson thewidestandthenarrowestedge.

Theorem32 For every 0 � & , there is a discretevariant of the VPP that approachesa 0 -max-minfair
statein anyclosedsystemphase. Thisstateis reachedafter

���

� �

�

�

� �

�������

�

�

�

0

� �

phases.

Theproofof this theoremis givenin Section8.5.Observethattheperformanceof theprotocoldepends
only on local parameterssuchasthecongestionor thedilation but not on globalparameterslike thetotal
numberof playersor thesizeof thenetwork. Furthermore,theprotocoldoesnot needto beparametrized
with any other parameterthan 0 , and the only feedbacka player needsin order to perform an update
operationis theunusedbandwidthon thenarrowestedgeon its path.
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8.2 The Virtual Player Protocol

We will now provethattheVirtual PlayerProtocol(VPP)convergesagainstfairness.
Proof of Theorem 29: W.l.o.g.,assume� � �

�

'�������'�! � . We adda virtual player0 whoserateis de�ned
by �

�

� � � �� . Thisway, thesetof all participatingplayersis
�

!

�

� �

� � � &�'�������'�! � . Furthermore,weassume
thattheclosedsystemperiodstartswith �

� . Wewantto show thatthemaximumdistancebetweenany pair
of rates(includingtherateof thevirtual player)is atmost

�

� � �

�

�

�

!

�

after � �

���

� !

� ����� �

� !

� �

phases,
which impliesthetheorem.

For every
�

�

�

!

�

� �

and � �

�

, let �)�

�

�

�

denotetherateof player
�

afterstep� andlet ���

�

&

�

denotethe
initial rate.For � � & , let

	 � �

�

� �

�  �

�

�

�




�

�

�

� �

�

�

�

� � �

�

�

� �

denotethemaximumdistanceafter � . We de�ne thefollowing potentialfunction

� � � �

�

�

�  �

�

�

�

 � �

�

�

�

� � �

�

�

�



�

�

�

�

�

 � �

�

�

�

� �

�

�

�

�

 �

Observe that ! 	 �

�

�*�

�

� !

�

	 � , for every � � & . Hence,we only have to show that thevalueof the
potentialfunctiondropsbelow

�

� �	�

�

�

�

! after � �

���

� !

� ����� �

� !

� �

phases.
For �

�

, de�ne 0�� �  �
�

�

�

�

�

� �

�

�

�

�

 , i.e., the distancebetweenthe virtual playerandthe activated
player

�

� . We observe � �

�

� � � 0�� because

 �)�

�

�

�

�

� �

�

�

�

�

 �  �)�

�

�

� �

�

�

� �

�

�

� �

�

�

 � 0
�

and,for every � � � � �

�

�
� ,

�  � �

�

�

�

� �
�

�

�

�

�



�

 � �

�

�

�

� �

�

�

�

�



�

�  � �

�

� �

�

�

� �
�

�

�

� �

�

�



�

 � �

�

� �

�

�

� �

�

�

� �

�

�

 �

Thus,therateof thevirtual playerchangesby
�

�




�

0
� duringstep� . In otherwords,thepotentialdecreases

by thedistancethatthevirtual playermovestimes
�




�

�

.
Now, for � �

�

, let �

�

!

� and 	

�

!

� denotethepotentialandthemaximumdistance,resp.,at theendof
phase� , andlet �

�

�

� and 	

�

�

� denotethecorrespondinginitial values.Observe thatthedistancetraveled

by thevirtual playerin phase� is at least
�

�

0

�

,

�

�

�




� becauseits rateis averagedwith thesmallestandthe
largestratein everyphase.As a consequence,

�

�

!

�

�

�

�

!

4

�

�

�

�

�

�

�

�

	

�

!

4

�

�

�

�

�

�
� �

�

!

4

�

�

� 	

�

!

4

�

�

�

Applying 	

�

!

4

�

�

�

�

�

0

�

,

�

�

�

�

and �

�

�

�

�

� !

�

� gives

�

�

!

�

�

� !

�

�

�

�

�

�

� !

�

 

!

�

Finally, we observethat

�

�

!

�

�

���

��!

�

�

� � �

�

�

!

for � �

���

� !

������� �

� !

�

�

� �

. Thiscompletestheproofof Theorem29.

Technical remarks. On the �rst view it might seemthat thespeedof convergenceshouldbepolyloga-
rithmic ratherthanpolynomialin ! . In fact,underarandomizedsequenceof activationsof playerstherates
wouldconvergewithin

���������

!

�

phases.A simplecounterexample,however, showsthattheadversarycan
force the processto take a linear numberof phasesuntil all playerscomeclose. This counterexampleis
givenin Section8.6.

Thesystemof ratescanalsobe interpretedasa simplephysicalsystemin which we aregiven !

�

�

perfectlyisolatedroomsthatinitially havedifferenttemperatures.Therooms
�

to ! havea doorleadingto
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room0. If suchadooris openedthenthetemperaturesin bothroomsareaveraged.Clearly, if all doorsare
usedfrequentlythenthetemperaturesin all roomswill comecloserandcloser. In otherwords,theentropy
of thephysicalsystemdecreases.

This metaphorsuggeststo considertheentropy asa potentialfunction,e.g.,in form of thesumof the
squaresof theratesor in form of therelativeentropy (KullbackLeibler divergence).In fact,bothof these
potentialfunctionscanalsobe usedin orderto show the convergence.However, thesefunctionsdo not
decreaseasfastasthepotentialfunction � (e.g.on theinitial instancesof thecounterexamplegivenin the
Section8.6)and,hence,leadto slightly weakerupperboundson theperformance. �

8.3 FairnessversusFull Utilization

We will now show thatunderadversarialtiming fairnessandfull utilization cannotbebothsatis�ed.
Proof of Theorem30:

Assumethatsucha protocol
�

exists. We startwith two playersTom andTina. At thebeginningTom
allocatesall thebandwidthandTinanoneat all. TheadversaryactivatesTinaonly if thefreebandwidthis
smallerthan

�

�

�




�

�

�

, where! denotesthenumberof Tinasactiverounds.Particularlythis impliesthatTina
is activatedagainif sheallocatesmorethanthefreebandwidth(systemoverload).Sincetheprotocolhas
to resolve thisblockade,weconsideronly thelastallocationof Tina in this sequence.

If theprotocolconvergesto full utilization,Tina is activatedin�nitely often. If not,Tomwould remain
alonein a closedsystemperiodwherethe wastedbandwidthnever falls below a constantvaluewhich
contradictsourassumption.

So,Tina canallocateadditionalbandwidthof at most
�

�

�

in her ! -th active round. Hence,heroverall

bandwidthis boundedby �

�

�
"

�

�

�

�

�

�

�

�

� . �

8.4 VPP Convergesagainst
�

�

-max-min Fairness

Proof of Theorem31:
Fix a closedsystemphase

���

'��

�

. W.l.o.g.,we assume� � �

�

'������ '�!�� andall otherplayershave rate
zero. We show that the VPP convergesagainsta particularstate

�

which we describein the following
paragraph.

For everyedge� , we de�ne anadditional,virtual playerwhosepathcontainsonly edge� . Therateof
this playeris de�ned by theunusedbandwidthof edge� times � . Thesetof virtual playersis called � + .
Now let usimaginefor amomentthatvirtual playershavearateindependentfrom theunusedbandwidthof
therespectiveedge,that is we wantto treatvirtual playerslike original players,exceptthatthebandwidth
usedby a virtual playeris only

�

�

timesits rate. Supposewe incrementall ratesincludingtheratesof the
virtual playersin round-robinfashionwith in�nitesimal increments,startingwith all ratesbeingzero,until
thebandwidthcapacitiesof thenarrowestedgesarereached.At thispoint,westopto increasetheratesfor
all pathsusingoneof theseedgesandcontinuewith theremainingpathsin thesamefashionuntil all rates
aresettled.Let usdenotethe�nal stateof this processby

�

.
We observe that

�

utilizes the bandwidthof all edgesif we take into accountalso the bandwidth
occupiedby thevirtual players.Fromnow on,weconsiderthebandwidthsoccupiedby thevirtual players
againasunusedbandwidth.For player

�

, let �

��� �

denoteoneof its bottleneck edge, i.e., anedgebecause
of which it stoppedincreasingthebandwidth.By our incrementalconstruction,therateof player

�

in state
�

is equalto the�nal rateof thevirtual playerof �

��� �

. In otherwords,therateof every player
�

in
�

is �

timestheunusedbandwidthon its bottleneckedge�

��� �

. Furthermore,thevaluesof theunusedbandwidth
on all otheredgeson � � �

�
��� �

arenot smallerthanthis value. This implies that
�

is a �xed point, i.e., the
VPPdoesnot divergefrom state

�

onceit reachesthis state.Furthermore,we canobserve that
�

satis�es
�

�

-max-minfairnesssinceincreasingtherateof aplayerby morethan
�

�

�

�

wouldexceedthecapacityon
its bottleneckedge.(In fact,

�

yieldsmin-maxfairnessif we take into considerationalsotheratesof the
virtual players.)Therefore,it remainsonly to show thattheVPPconvergesagainstthe�x edpoint

�

.
For anedge� � 	 , let � &

�

�

�

�

denotethevalueof therateof thevirtual playeron � in thesteadystate
�

. De�ne �%& � � � &

�

�

�

�

 � � 	 � . De�ne � �  �%&  . (Observe thatpossibly � �  	  .) Let �

�

� �

'�������'��

�

�

�
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denotetheelementsfrom � & in increasingorder, andde�ne 	

�

�

�

� � ��� 	  � &

�

�

�

�

� �

�

�

�

� for
�

�

�

�

� .
Furthermore,let �

�

�

�

�

� denotethoseplayerswhosebottleneckedgeis in 	

�

�

�

, i.e., thesetof players
whosesteadystaterateis equalto �

�

�

�

. Wewill show by inductionon � thattheratesof theplayersin �

�

�

�

will convergeagainst�

�

�

�

.

Claim 1 Let � � & denoteanypositivereal number. For every � � �

�

'������ ')� � , there exists � �

�

such
that,afterphase� , theratesof all players in �

�

�

�

are in theinterval
�

�

�

�

�

� � ' �

�

�

�

�

�

�

.

In the restof the remaininganalysiswe will show this claim usinginduction. Let � &

�

�

�

denotethe
unusedbandwidthon edge � if we assumethat the players �

�

� �

�

� ���

�

�

�

� �

� �

have bandwidthsas
describedby

�

andall otherplayershaveratezero.In fact,wecanassumeby inductionthattheratesof all
playersin �

�

� �

�

��� �

�

�

�

� �

���

deviateat mostby � �

�

! from their valuesin
�

for any � � & . Underthis
assumption,thebandwidthavailablefor theplayersin � & � �

�

�

�

�

�����

�

�

�

�

�

onedge� �uctuatesonly
within the interval

�

� &

�

�

�

� � ' � &

�

�

�

�

�

�

. Observe thatwe canchoose� arbitrarysmall. Nevertheless,
weneedto take into accountthese�uctuationsexplicitly becausephasescanhavearbitrarily lengthsothat
asmallchangein thebandwidthatany giventimepotentiallyhasvastconsequenceson thesystemof rates
in latertimestepsthatmight beevenin thesamephase.

In thefollowing, we consideronly theplayersin � & , that is, we ignoretheplayersfrom �

�

� �

�

��� �

�

�

�

� �

���

but we take into accountthesmall�uctuationsthey causeasfollows. We de�ne thatthemaximal
availablebandwidthon edge� is � +

�

�

�

� � &

�

�

�

�

� but, in eachstep � , playersmayobserve a slightly
disturbedbandwidth � +

�

�

�

�

�

�

�3+

�

�

�

����� ' � +

�

�

�

�

. By our construction,noneof the playersin � & uses
an edgefrom 	

�

���

�

�����

�

	

�

� �

� �

. Therefore,we canrestrictour attentionto the setof edges	
&

�

	��

�

	

�

� �

�

�����

�

	

�

� �

���

�

. Let � + + denotethesetof virtual playersof edgesin 	 & .
Now �x anedge� . Let � denotethenumberof playersonthisedge.Let � � � +

�

�

�

denotethemaximal
bandwidthof this edge,and � thenumberof playerswhosepathscontain � . If anexternalobserver only
seesthebehavior of therateson edge� without knowing any detailsabouttherestof thenetwork thenhe
canobserveabehavior which is coveredby thefollowing protocol.

Adversarial VPP
Supposeplayer � performsupdateoperation�

� . Let ��

�

� �

�

�

� � � �

�

�
"

�

�)�

�

� �

�

�

. Then
player � sets

� �

�

�

�

� �

�

�

�

�

�

� �

�

� �

�

�

�

��

�

� �

�

�

� � �

�

'

where�
�

�

�

&�' ��

�

���

�

is selectedby anadversary.

The adversarialsequence� modelsthe disturbingin�uence dueto otheredgesandbandwidth�uc-
tuationssimultaneously. Let �

�

� � �� denotethe bandwidthof the virtual player, alsocalledplayer0.
Furthermore,let

�

denotethe�x point of theprotocolundertheassumptionthat � � � & , for all � , thatis,

�

�

� �

� !

�

�
�

�

�

&

�

�

�

�

�

�

�

� !

�

�
� �

�

�

�

�

Observe that at least one player
�

�

�

�

�

���

satis�es �
�

�

�

at any given time. De�ne �

��� �

�

�

� �

�

�

�

�




�

�

�

�
�

�

&

� �

, i.e., thesmallestinitial rate.

Lemma 42 Assume�

��� �

�

�

� � , for any � � & . Thenin every time stepafter performingonephase,
�

�

� �

��� �

�

� �

4
�

4

�

.

Proof: The lemmafollows becauseof thefollowing monotonicitypropertyof theVPPon singleedges:
Givenanadversarialsequence� , increasing� � , for any � , increases�

�

�

��+

�

anddoesnot increase�
�

�

��+

�

,
for every ��+ � � ,

�

� � �

� . (This propertycanbeshown easilyby induction.Observe thatmonotonicity
againstadversarialbandwidth�uctuations holdsonly for singleedges. In networks with several edges,
reducingthebandwidthof a singleedgecandecreaseandincreaserateson otheredges.In fact,a small
localchangein bandwidthcanhavestrongin�uenceontheratesof remoteedges.For anexampleshowing
exponentialeffectsin a similar context see[AMO96]. Herewecover thesevastinter-dependenciesamong
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differentedgesby worst-caseassumptionsbasedon theadversarialsequence� .) Becauseof this mono-
tonicity property, we canassumein thefollowing that � � � & , for all � , without increasingtherateof the
virtual player.

Next we observe thateitherthe initial valueof �

� is at least
�

or thereis anotherplayerwith at least
rate

�

thatperformsanupdateduringthe�rst executedphase.Consequently, thereis a step � & in the�rst
phaseyielding

�

�

�

�

&

�

�

�

�

�

�

�

��� �

�

�

�

� � �

��� �

�

�

�

�

Oncemore,we apply monotonicityandassume,w.l.o.g., thatall updates�,� ( � � �

& ) moving thevirtual
playerupwardareskipped,i.e.,all updateswith � �

�

� �

�

�

� �

�

�

� �

�

�

. Underthisassumption,eachplayer
is calledatmostonceafter � & because� � � �

� in all timestepsafterits �rst update.Now astraightforward
inductionshows that

�

��� �

�

�

�

�




�

'

afterthe
�

th of at most � updates.Clearly, thisprovesthelemma. �

Now let us take into accountall edgesagain. We considerdoublephases, i.e., pairsof contiguous
phases.Let �

��� � denotetheminimal rateoverall playersin � &

�

� + + at thebeginningof a doublephase.
Suppose�

��� �

�

�

�

�

�

� � . ThenLemma42givesa lowerboundon theratesof thevirtual playersafterthe
�rst phase,namely� &

�

�

�

�

���

��� �

�

�)�

4 � 4

�

, for every ��� 	 & , where � denotesthemaximumnumberof
playerson thesameedge.Thus,in thesecondphase,eachplayeris averagedwith avirtual playerof value
at least�

��� �

�

�)�

4
�

4

�

sothat,aftertheexecutionof onedoublephase,theminimumrateoverall players
increasesto

� �

��� �

�

�

�

��� �

�

�)�

4
�

4

�

�	���

�

�

�

�

���

��� �

�

�)�

4
�

4

�

�

�

�

'

provided �

�

� �

4
�

4

�

. Consequently, all rateswill have valueat least �

�

�

�

� � after a �nite numberof
phases.

Finally, we observethatthis lowerboundon theminimal ratesalsoupper-boundsthemaximalratefor
edgesfrom 	

�

�

�

. For � �

�

themaximalrateis �

�

�

�

�

!

�

�

�

�

�

as �

�

�

�

denotestheaveragerateover all
players.For general� �

�

a smallcalculationshows themaximalrateis �

�

�

�

�

� with � �

���

� ! �

�

. This
provesClaim1 and,hence,completestheproofof Theorem31. �

8.5 The DiscreteVirtual Player Protocol

Proof of Theorem 32: We now introducea discreteversionof the VPP that guaranteesto reacha fair
andef�cient allocationwithin asmallnumberof stages.Here“discrete”meansthatratesof activeplayers
areof the form

�

�

�

�

�

� , for integral � andpositive, real � . We use
�

� � to indicateupwardroundingw.r.t.
this representation.Let � � & , � �

�

, and � �

�

denoteglobalparameterswhoseactualvalueswill be
determinedduringtheanalysis.

DiscreteVirtual Player Protocol
Supposeplayer � performsupdateoperation�

� . For everyedge� , let

��

�

�

�

� �

�

�

�

�

�

�

�

�

�$� �

�
�

�

�

�

denotethefreebandwidthonedge� . Set � �

�

���

�������

�
	

�

�

�

�

��

�

�

� �

.
If �

�

�

� �

�

�

��

�

� � '

�

�

�

�

�

�

� �

�

then

� �

�

�

�

�

�

�

�

�

�

�

� �

�

� �

�

�

�

�

���

�

For analyzingthediscreteVPP, weuseasimilarapproachasfor thefractionalVPP. Wede�ne avirtual
playerfor eachedge � . The rateof this player is denotedby �

� andwe de�ne �

�

�

�

�

�

�

� ��

�

�

�

� . Let us
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ignoretheroundingfor a moment.Thenwe cansummarizetheabove protocolasfollows. An updateof
player � bringstherate � � in line with theminimumvirtual rate � over all � � ��� �

� �

�

�

, unless� � is only
slightly larger than � , that is, unless� �

�

��'

�

�

�

�

�

�

�

�

. In the following, theminimal bandwidthover all
playersincludingvirtual playersis denotedby �

��� �

�

�

�

, for � � & .

Observation 1 Thesequenceof rates�

��� � is non-decreasing.

Let us partition time into super-phases.Eachof thesesuper-phasesconsistsof � � � phasesor � �

doublephases.We will usethediscreteratesin orderto show that �

��� � increasesby a factorof
�

�

� in
eachsuper-phaseuntil thesystemof ratesrunsinto abottleneck.Moreformally, for � � & let �

�

!

�

��� � denote
thevalueof �

��� � at theendof super-phase� . Wewill show by inductionthat �

�

!

�

��� �

� �

�

�

�

��� �

�

�

�

�

�

!

, where
� & denotesthe �rst super-phasein which at leastoneedge“settlesdown”. In super-phase� , an edgeis
calledsettledif theratesof all playerson theedgearewithin theinterval

�

�

�

!

4

�

�

��� �

' �

�

!

4

�

�

��� �

�

�

�

�

�

�

�

andthe
rateof thevirtual playeris exactly �

�

!

4

�

�

��� � .

Observation 2 Oncean edge settlesduring any super-phase, the ratesof theplayers crossingthis edge
are �xed forever.

Now let us�x anarbitrarysuper-phase.We assumethatthereis nosettlededgeat thebeginningof the
super-phase.W.l.o.g.,thesuper-phasestartswith update�

� andthesmallestinitial ratein thesuper-phase
is �

��� �

�

�

. We needthe following threelemmasin order to show �

��� �

�

�

�

�

�

�

at the endof the
super-phase.

Lemma 43 For everynon-virtualplayer
�

, if � �

�

�

�

�

�

�

�

�

�

then �)�

�

�

�

�

�

�

�

�

�

�

�

, for every � � & .

Proof: As all playersincluding thevirtual playershave at leastrateone,we canconcludethat ��

�

�

�

�

�

�

� �

�




�
�

, for every ��� 	 . Thus, �)�

�

�

�

�

�

�

� implies

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�




�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

���

�

�

�

�
'

sothat ��

�

�

�

�

�

is roundedup to
�

�

� . �

Lemma 44 For everynon-virtualplayer
�

, if
�

is calledin step �

�

�

with � �

�

�

�

�

�

andall virtual player
on its pathshaveat leastrate

�

�

� then ���

�

�

�

�

�

�

�

�

� , for � � & .

Proof: As all virtual playerson
�

's pathhave at leastrate
�

�

� , theunusedbandwidthon eachof these
edgesis at least

�




�
�

, for some( � & . Consequently,

�)�

�

�

�

�

�

� �

�
�

�

�

�




�
�

�

�

�

�

� �

�

�

�

� �

�

Lemma 45 For every non-settlededge � , in every phasethere is at leastoneupdate � � after or before
which thevirtual playerof � hasat leastrate

�

�

� .

Proof: Either thevirtual playerhasrate
�

�

� alreadyat thebeginningof thephaseor at leastoneof the
playersmusthave ratelarger than

�

�

�

�

�

� , otherwisetheedgewould be settled.Let usassumethat the
virtual playerhasrateone.Thentheunusedbandwidthis atmost

�

�

. Let � denoteaplayerwith at leastrate
�

�

�

�

�

� . During thephase,� updatesits rateat leastonce.Let � denotethecorrespondingtimestep.Then

��

�

�

�

�

�

� �

�
�

�

�

�

�

�

�

�

�

�

�

�

� �

�
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We set � �

�

�

�����

�




�

�

�

� � �

�

. (If we assume�

�

�

�

�

, then �

�

��� .) This is theminimal assignment
yielding �)�

�

�

�

�

� � �

�

�

�

�

� 4

�

. This way, therateof player � is decreasedby morethan � , which in turn
impliesthattheunusedbandwidthincreasesby morethan � , sothattherateof thevirtual playeris at least

�

�

�

4

�

�

� � � �

�

�

� . �

Lemma43 implies that we only needto show that eachplayerwith rateoneat the beginning of the
super-phaseis lifted up (i.e., its rateis setto

�

�

� ) onceduring thesuper-phasein orderto show thatall
playershave at leastrate

�

�

� . Now considera doublephase.Lemma45 shows thatevery virtual player
getsloaded(i.e., thevirtual rateis setto minimum

�

�

� ) at leastonceduringthe�rst phaseof thedouble
phase.Furthermore,Lemma44 shows thata playerwith rateoneis lifted up if all virtual playerson its
pathsareloaded.Weconcludethateveryplayerwith initial rateoneis lifted upathis�rst updateduringthe
secondphaseof thedoublephaseunlessthereis onevirtual playeron his paththat it not loadedanymore,
whichmeansthatthis virtual playerhaslifted upanotherplayerbefore.

Let uscall playerssharinganedgeneighbors. We concludethat, for every doublephase
!

andevery
player

�

with initial rateone,eitherplayer
�

or at leastoneof his neighborsis lifted up during
!

. This
implies thatall playersarelifted up duringa super-phaseconsistingof � � doublephasesaseachplayer
hasat most � � �

�

neighbors.
Wesummarize,theminimumrate �

��� � increasesby a factorof
�

�

� in everysuper-phaseuntil at least
oneedgesettlesdown. Now let usset ���

�

�

and � �

�

�

�

.

Lemma 46 Thesetof settlededgesandplayerssatisfy 0 -max-minfairness.

Proof: By de�nition, theplayerson settlededgeshave a ratein
�

�

'

�

�

�

�

�

�

�

andtheunusedbandwidth
is at most

���

� . Hence,onecannotincreasetherate � of oneof theplayersby a factorof
�

�

�

�

�

�

�

0

without exceedingthe unusedbandwidthor decreasingthebandwidthof a playerwith rate
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

��� �

�

�

� �

�

�

0

�

� , whichcorrespondsto thede�nition of 0 -max-minfairness. �

Now supposeoneor moreof the edgessettledown. Thenwe canexcludetheseedgesandthe rates
of thoseplayersusingoneof themfrom our considerationsasthe correspondingratesare�x ed forever.
Hence,we cantreatthesystemof remainingedgesandplayersanalogouslyto theoriginal system.This
way, we continuefollowing theallocationprocessuntil we �nd that the ratesof all playersare�x ed in a

0 -max-minfair state.
It remainsto analyzehow many super-phasesit takesuntil all playersaresettled.W.l.o.g.,let usassume

thatthecapacitiesof theedgesarefrom theinterval
�

�

' �

�

. Thenonecanshow thattheminimumrateafter
the executionof only onedoublephaseis

�

�

�

4
�

�

!

�

. (This follows analogouslyto the lower boundon
the increaseof ratesper doublephasethat we have donefor the fractionalVPP.) Furthermore,after the
lastsuper-phasetheminimumrateamongtheplayershaving surviveduntil theendof our constructionis

���

�

�

!

�

. As theminimumrateamongthesurviving playersincreasesby a factorof
�

�

� persuper-phase,
we concludethat the processsettlesdown after

���

�

�

� � � �

�

�

�

�

�

super-phases,which correspondsto
���

� �

�

�

� �

�������

�

�

�

�

�

�

���

� �

�

�

� �

�������

�

�

�

0

� �

phases.Thus,Theorem32 is shown. �

8.6 A Lower Bound for VPP

The ! players�

�

'�������'"! � startwith bandwidths&�'

�

'���'�������'�! �

�

with nowastedbandwidth,i.e. ���

�

&

�

� &

and � � !

�

! �

�

�

�

� . In round � we activateplayer � �

�

� �

�

�

�

�

� !

�

�

andupdatehis bandwidthby
�

�
�

�

�

�

�
�

�

�

�

�

. This implementstheVirtual PlayerProtocolfor � �

�

� . So,player
�

is the�rst to begin
in a phasewhichconsistsof ! rounds.Notethatfor aclosedsystemperiodtheVPPprotocolis equivalent
to a balancingcircuit. Sucha circuit canbedescribedby a directedacyclic graphswith

	

sourcesand
	

sinkswhereevery nodehasin- andout-degree2. At the inputs �

�

'������ '�� � 4

�

�

�

aregiven. Every node
balancesthe valueson the inputs � '� to the outgoingvalues

�

�

�

�

�

�

�

,
�

�

�

�

�

�

�

. The behavior of such
a circuit canbe describedas the product � of the matricesdenotingthe balancingof the inputs. If we
iteratively apply this circuit it correspondsto repeatthe activation strategy. Now we canapply standard
theoryof Markov chainsandit follows that therateof convergencedependson theeigenvaluesof � , see
[AHS94, Mih89, Fil91]. UsingsuchMarkov chainmethodsit is possibleto analyzethis examplefor �x ed

! . However, it is not clearhow theseresultscanbegeneralized.Thereforewe follow adifferentapproach.
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Notethatin [RSW98]it is shown thattheconvergencebehavior of balancingcircuitsalsoholdsif applied
to a discretedomain.Therefore,this resulttransfersto theVPPin closedsystemperiodswith periodical
adversarialbehavior.

Lemma 47 At theendof phase� wehavefor thebandwidths� � of players
�

� � �

� � �

! :

�

� � �

�

!

�

� �

���

� �

�

�

!

�

Proof: We prove this claim by induction. For the �rst roundobserve that for � � �

�

'������ '�!�� : � �

�

�

�

�

�

�

�

�

�

� � �

�

�

���

4 � .
For the inductive stepwe know that �

�

�

� !

�

� �

�����

!

�

�

�

& '�! �

� �

(From now on we useinterval
arithmeticand ( �

�

asconvenientnotationfor
�

( �

�

')(

�

�

�

). We claim thatfor
�

� & :

�

�

�




�

�

	 ��

�




�

� �

�

�

�

�

!

�

� �

�

�

� !

�

� �

� � �

!

�

� �

�

�

� � �

�

!

�

�

!

�

�

4 �

�

This followsby

�

�

�




�

�

	 ��

�




�

�

� !

�

�

�

�

�

� �

4

�

�

�




�

�

	 ���

�




�

� �

�

�

�

�

!

�

�

�

�

�

�

�

� !

�

� �

�����

!

�

� �

�

�

�

�

�

�

�

� �

�

�

�

�

!

�

� �

�

!
 

�

4
�

4

�

	 ���

�

 

�

�

�

�

�

�

�

� � �

�

!

�

�

!

�

�

4
�




�

�

�

�

� � �

�

�

!

�

4
�

�

�

!

�

�

4
�

�

! �

4
�

�

�

��!

�

4
�

 

�

4
�

� ! �

4
�

�

�

� � �

�

!

�

�

!

�

�

4
�

�

This Lemmaimplies that VPP cannotreducethe maximumbandwidthdifferenceby a factorof two
within

�

�

	 ��

� phasesand
�

�

�

	 ���

� rounds.

A similarbut morelengthyproof improvesthisboundto
�

4

�

	 ���

�

� phases.Then,wereplacetheactiva-
tion scheduleby double-phasesof sequences

�

'���'�������'�! '"! ������'���'

�

for thesamestartcon�guration.



Chapter 9

TreeNetwork Designfor the
Cost-Distance-Model

9.1 Intr oduction

Given
	

terminalpointsin theEuclideanspacewe investigatetheproblemof constructinga network with
small costandshortdistances.This researchis motivatedby a numberof practicalproblemsarisingin
network designfor traf�c in communicationnetworksaswell asreal traf�c in streetor railway networks.
If oneminimizesonly thenetwork size,i.e. thesumof all edgelengths,somedistancesbetweenterminals
hadto beconsiderablyincreased.Ontheotherhandif weminimizethedistancesbetweenall terminalswe
facea completenetwork with largecosts.

We want to investigatea measureconsideringthestaticnetwork sizeanda moredynamiccomponent
thatconsidersthepoint-to-pointdistancesaswell asthenumberof messages/vehiclesusingthis route. In
thecaseof a streetnetwork thestaticcostsaccountfor constructionandmaintenance,while thedynamic
costsdescribedby thesumof themileageof all carsaccountfor thefuel costof all cars. In thecaseof a
communicationnetwork we observe that thereis a �x edcostfor thephysicalnetwork, while highly used
connectionsneedadditionalhardware,suchasmoreparallelwiresor additionalhardware,describingthis
dynamiccomponent.

In practicenetwork designersmodelthedemandin a network by a so-calledorigin-destinationmatrix
�

�

�*' �

�

. For sites �*' � it describesthe traf�c startingat � with destination� . We modelthe costof the
network for eachedgeby a linear function �

�

  �  

�

�

�

�

� ���

 �

� �

�

� � �
�

�

� '��

�

� ���

� for �

�

' �

�

� & , where
� � �

� denotestheEuclideanlengthof theedgeand �

�

�

�

is thesetof all pairs
�

� '��

�

suchthattheshortest
pathbetween� and� contains� . By summingoverall edgeswede�ne theWeightedCost-Distance(WCD)
of a network



andaweighting � :

WCD


�� �

� �

�

�����������

�

�

�

�

  �  

�

�

�

�

�

���

 �

� �

�

�$� �

�

�

� '��

�

� ���

�

�

�

� (9.1)

Thus,for apair � '�� with largeweight �

�

�*' �

�

(frequenttraf�c) adetourbetween� and� implieshigher
coststhanbetweenpairswith smallerweight.

Thereis a trade-off betweencostandweighteddistance.If we choose�

�

� & we facethe intensively
studiedminimumnetworkproblem. If we choose�

�

� & , theoptimalsolutionis a completenetwork for
sitesin generalpositionandpositive weights. As we scalethe parameter�

�

�

�

� from & to % , we seea
gradualtransformationfrom theSteinertreeto thecompletenetwork. We areinterestedin thestructureof
theintermediatestates.

For simplicity wereplacetheabovede�nition by thefollowing. Sinceweonly consider�

�

� & , wecan
set �

�

� �

�

�

�

if we simultaneouslymodify theweightingby � +

�

�*' �

�

�

�
,

�

�

�

�

� '��

�

. This resultsin the

123
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following equivalentversionof theWeightedCost-Distance:

WCD


�  �

� �

�

�����#�����

�

�

�

�

�

�

�

 �

���#�����

�

�

� '��

�

�

�

�

�*' �

�

' (9.2)

where �

�

�

�

denotesthe costof an edgeand �

�

�

� '��

�

the lengthof the shortestpath from � to � in the
network



. We usethis notationthroughoutthis chapter. The correspondingoptimizationproblemis
de�ned asfollows.

De�nition 12 Let �

�

�

� '��

�

denotetheminimumlengthof a pathof node� to � in graph - .

� WeightedCost-DistanceNetwork problem(CDN): Givena setof sites
�

in Euclideanspaceand
a weighting � �

�

�

� �� �


 , �nd a network


�

�

�

' 	

�

that optimizesthe Cost-Distance
WCD


�� �

(according to equation(9.2)).

� WeightedCost-DistanceTreeproblem(CDT):Given
�

and � �

�

�

� �� �


 , �nd a tree� �

�

�

'�	

�

thatoptimizestheCost-DistanceWCD


�

�

�

.

In additionto thesiteswe allow theuseof anon-terminalnodeset,if notexplicitly statedotherwise.

9.1.1 PreviousWork

If theweightsaresetto zero,andnorestrictionsfor thenon-terminalsaregiventheWeightedCost-Distance
problemreducesto theEuclideanSteinerTreeproblem. It wasshown to beNP-hardby Garey, Grahamand
Johnson[GGJ76]. However, in his groundbreakingpaperArora [Aro98] showedthatthis problemadmits
a polynomialtimeapproximationscheme.

In [KRY95] theBalancedSpanningTreeproblemwasintroduced.Here,thetaskis to �nd atreewhich
optimizestheterm

�

�������

!

�

�

�

�

�

�

�

�

���

�

!

�

� '��

�

for agivenroot � undera metric � (not necessarilyEuclidean).Non-terminalsitesarenotavailable.
The authorsprove the existenceof treeswherethe dilation of all nodes'distancesfrom the root is

boundedby any � �

�

andthetreescostis at most � timesthecostof theminimumspanningtree,where
� �

�

�

�

�

4

� . This leadsto aconstantpolynomialtimeboundedapproximationalgorithm.
TheBalancedSpanningTreeproblemis a variantof theWeightedCost-DistanceNetwork problem,if

we allow generalmetricsandexcludenon-terminalnodes.The weightingis limited to �

�

��' �

�

�

�

and
�

�

�*' �

�

� & for � '�� �

�

��� �'� . For this problemin [KRY95] it is shown that a treeis alwayspart of
theoptimal solutionandapproximatingnetworkscanbe prunedto trees.Hence,herethe Cost-Distance
Network problemreducesto theCost-DistanceTreeproblem.

Meyersonet al. [MMP00] generalizethis problemby introducinga positive nodeweighting,andby
allowing two differentmetricsfor costanddistance:the lengthmetric � andthecostmetric � . TheCost-
Distancemeasureis givenby

�

�"���#�

!

�

�

�

�

�

�

�

�

���

�

�

�

�

�

!

�

� ' �

�

for a root � . They presenta polynomialtime boundedrandomizedalgorithmapproximatingtheproblem
within a factorof

���������
	��

. Furthermore,they show thattheoptimalsolutionis alwaysa tree.
A � -spanneris a connectedpartial graphof a givengraph - suchthat for all nodes� '�� �

�

�

-

�

the
correspondingshortestpathin the � -spanneris at most � timeslongerthanin - . Thereexist � -spanners
in Euclideanspace,the sizesof which areboundedlinearly by the sizeof the minimum spanningtree
[ADM 
 95]. It turnsout thatthesespanningnetworksalreadyallow usto stateconstantfactorapproxima-
tion algorithmsfor theWeightedCost-DistanceNetwork problem.

Theorem33 ([ADM 
 95]) In ! -dimensionalEuclideanspace, for any � �

�

there existsa � -spannerwith
size

���

�

�

MST
�

which canbecomputedin time
����	 � � � 	��

.
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This immediatelyimpliesthat � -spannersallow constantfactorapproximationfor theCDN-problem.

Corollary 7 For EuclideanspacetheWeightedCost-DistanceNetworkproblemcanbeapproximatedby
a constantfactorwithin time

����	 ����� 	��

.

For the two-dimensionalEuclideanspacewe canpin down theconstantvery accuratelyby usingthe
resultof [LL89].

Lemma 48 [LL89] For � � & , there existsa
�

�

�

�

�

�

�

�

���

���

� �

�

�

�

-spannerof thecompletegraph,thesizeof
which is at most � �

�

�

timesthecostsof theminimalspanningtree.

Optimizingthechoiceof � leadsto thefollowing result:

Theorem34 For the two-dimensionalEuclideanspacethere existsa polynomialtime approximationof
theWeightedCost-DistanceNetworkproblemwith non-terminalnodesbya factorof

�

�




�




�

�

�

�




�

�

�


	�

�

�

�

�

�

�/� � ����� .

For thecompleteproofwe referto [Web01].
Usingtheresultsin [Bar98] and[CCG
 98] onecantransferthe � -spannerresultof [ADM 
 95] to arbi-

trarymetrics.However thecostis increasedby a logarithmicterm.Such� -spannersgiveanapproximative
solutionfor CDN:

Corollary 8 For metriccostsanddistancestheWeightedCost-DistanceNetworkproblemcanbeapprox-
imatedin polynomialtimewithin a factorof

��� � � � 	��

.

9.1.2 The Optimal Network is not a Tree

For the minimum network problemit is known that introducingnon-terminalnodeshelpsto reducethe
network costs(i.e. size)by a constantfactor. Theoptimalchoiceof suchnodesareSteinerpoints.

Many propertiesareknown for theseSteinernetworks. First of all minimumnetworksaretrees.Fur-
ther, in theplaneSteinerpointshavedegreethreeandtheangleof neighborededgesis

�

� &�
 . Thenumber
of thesenon-terminalpointsis boundedby

	

� � .
A completeanalysisof evensmallgraphsshows thatnon-terminalsitesalsoallow animprovementof

a constantfactorfor the CDN-problem. Nevertheless,the anglesbetweenthe adjacentedgesmay differ
from

�

� &

 .

In contrastto theCost-DistanceProblemsinvestigatedsofar, it turnsoutthattheoptimalsolutionis not
a tree. We will prove in section9.3 thata treecandiffer by at leasta factorof

�

� � � � 	��

from theoptimal
network. Evenmoresurprisingly, non-terminal(quasi-Steinerpoints)maybeinvolvedin cyclesandthere
maybecyclesconnectingonly quasi-Steinerpoints.

Another interestingobservation is that the optimal network may include crossingedgeswherethe
placementof a quasi-Steinerpoint ontothecrossingpoint doesnot improvethesolution.This remindsof
theopenproblem[Epp00] whetheroptimaldilation treescontaincrossings.

Examplesfor crossingsandquasi-Steinerpointscanbe seenin Figures9.1, 9.2 and9.3. A detailed
discussionof theseexamplescanbe found in [Web01]. In the following sectionwe will prove that the
optimalCost-Distancenetwork canbe approximatedby a treewithin a factorof

���������
	��

. Furthermore,
thereis a polynomialtime boundedalgorithmcomputingsucha tree,giventheweightingandthesitesin
Euclidean! -dimensionalspace.In section9.3 we prove theoptimality of this approximationfactor. We
�nally concludetheseresultsandpresentsomeopenproblemsfor furtherresearch.

9.2 A Tree-Approximation by a Factor
������������

Note that for ! -dimensionalEuclideanspacethequality of theminimumnetworksdiffers from themin-
imum spanningtree only by a constantfactor. For the Cost-Distanceproblemthe situationis similar.
Thereforewe will notuseany non-terminalsin thefollowing construction.
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�
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�

�

�

,

Figure 9.1: The optimal
WCD-network contains a
quasi-Steinerpoint.
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Figure9.2: TheoptimalWCD-
network containsacycle.
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Figure9.3: An instancewhere
a crossingis partof theoptimal
solution.
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We usethe notion of a split tree [ADM 
 95]. A split tree is a tree stemmingfrom a hierarchical
decompositionof apointsetinto ! -dimensionalrectanglesof boundedaspectratio,sayin therange

�

�

�

' �

�

.
We startwith thesmallestpossiblerectangle,�

�

� �

�

�

�

, includingthepoint set
�

. Let �

� betheroot of
thesplit tree.This rectangle�

� is split into two smallerrectangles�

� and �

� . Let
�

�

�

�

bethesubsetof
nodesin rectangle� . Thesplit treeof �

� is thesplit treefor thenodes
�

�

�

�

�

, andsimilarly for �

� and
�

�

�

�

�

. Thesesub-treesareconnectedto theroot �

� , seeFigure9.4.
We will constructa fair split tree (FST) whereeachsub-treewith nodeset

�

+ hasa diameterof
���

!��

�

�

+

� �

, where �

�

�

+

�

� �

�

���

�

 �

���

�

  �*' � �

� . Let �

�

�

�

be the lengthof the longestedgeof a rect-
angle � . We will usethe following recursive constructiongiven a rectangle� , a root � �

�

�

�

�

anda
weighting � suchthatfor some� �

�

: � � � �
�

 �

�

�

� '��

�

�

��� 	

�

�

.

1. If �

�

�

��

�

� � �

�
�

, thenwe chooseanarbitrarynode�	��� andconnectall nodes
�

�

�

�

to � .

2. Otherwise,we partitiontherectangle� by a hyper-planeorthogonalto anedge� with length �

�

�

�

.
Thedistancebetweenthehyper-planeandtheendsof thelongestedgeis at least

�

�

�

�

�

�

. Theexact
positiondependson theweightingandwill bedescribedin theproofof Theorem35.

Theresultingtwo axis-paralleladjacentrectanglespartitioning � arecalled �

� and �

� .

(a) If � is in
�

�

�

�

�

let �

�

� � andtakeanarbitrarynode�

�

�

�

�

�

�

�

andviceversaif �	�

�

�

�

�

�

.
Inserttheedge� �

�

'��

�

� .

(b) Recursively, proceedwith �

�

'��

� and �

�

' �

� .

Notethat �

�

�

��

�

�

�

�

�

andobservethatafter ! roundsthelengthof thelongestedgeis reducedby at
mosta factorof

�

�

. Sothereareonly
���

!

����� 	��

roundsuntil thesizeof therectanglesis boundedby
4

�

�

�

�

�
�

.

Figure9.4: A split treeresultingform ahierarchicalrectangledecomposition.
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The lengthof every pathin the resultingtreeis boundedby ��! �

�

�

�

�

: startingfrom thenodeof thepath
closestto theroot,following thepathdownwardsin bothdirections,thelengthsof theedges�

�

' �

�

'������ and
� +

�

' � +

�

'������ areupperboundedby � � �  

�

'   � +

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

.

Lemma 49 Fair split treeshavediameter� !��

�

�

�

andweight
���

�

�

MST
�

�

� �

!

� � � 	��

.

Proof: We applytheLemmaof [Epp00, DHN93] usingtheisolationproperty. If we addnon-intersecting
cylindersto all edgeswith radius�

�

� anddistance�

�

� to theendpoints,thenthecostof thecorresponding
network is linearly boundedby the costof theMST. (The isolationpropertyalsoholdsif the cylinder is
replacedby othergeometricobjects).Notethat for theedgesof eachrecursionstep,we canattachsucha
cylinder to anedgesuchthat thecylinder is completelyin thecorrespondingrectangle.Sincethereareat
most

���

!

� � � 	��

recursionstepsthis impliestheclaim. �

We have not presentedwherewe placethe split. The following Lemmahelpsus to make a good
selection.

Lemma 50 Given rectangle�

� and a weighting � �

�

�

� �� �




� . There existspartition of
�

into
rectangles�

� and �

� with nodesets
�

� ,
�

� such that

�

���

 �

� � �
,��

�

�

�

�

�

�
�

,

�

�

�*' �

� �

� �

�

�

�

�

�

where � � � �
�

 �

���
�

�

� '��

�

� �*' � �

� .

Proof: De�ne � � �

�

4

�

�

�

�

�

��� adjacentparallel rectangles��� of thickness 	 � � �

� , where � � �

�
�

 �

���
�

�

� '��

�

. Theserectangleshavedistanceof at least�

�

�

�

�

�

� to theleft andright endof thelongest
edgeof �

� . We will partitionbetweena pair �
� and �

�




� .
Next considera pair of nodes�*' � with � � �

� and � � ��� . Then,we have � �*' � �

�

� 	 � 

�

� �  .
Measure�

� which is theweightof all connectionscrossingtheright borderbetween�
� and �

�




� :

�
�

�

�

���
�
	

�

�

� �

�

�

�

�

�

���

�

�

� '��

�

�

�

�

� ' �

�

�

Let
�

�

� �

�

�

denotetheindex of therectangle�
� with � � �

� . Notethat

�

�

�
�

�

�

�

 �

��




�




�

�

�*' �

�



� �

�

�

�

� �

�

�



�

�

�

 �

�

�

� '��

�

� �*' � �

�

	

� � �

Hence,for at leastoneof therectangles�
� we have �

�

�

�

�

�

�
�

4

�

�

�

�

. �

Of course,this split canbefoundin polynomialtime if thenumberof partitionsis not too high. If we
use � � rectangles,thenarandompartitionful�lls this propertywith probabilityof at least

�

� . However, the
numberof sites

	

is a lower boundof thenumberof differentvalues�'� . Using this observationonecan
�nd analgorithmthatalwaysdeterminessuchasplit in polynomialtime,evenif 	 is arbitrarily small.

Theorem35 Givena setof sites
�

in ! -dimensionalEuclideanspaceand a non-negativeweighting �

such that the sumof all weightsis polynomialin
	

� 

�

 ; there existsa treewith a weighteddistance
which differs fromtheoptimalWeightedCost-Distanceby at mosta factor of

���

!

����� 	��

. Such a treehas
size

���

�

�

�

�

�

�

�

� �

!

� � � 	��

andcanbecomputedin polynomialtime.

Proof: We constructa fair split treeusingthepartition introducedin Lemma50. We considerthenode
pair sets�

�

� �

�

�

� , �

�

� �

�

�

� , and
�

� �

�

�

�

�

�

�

�

�

�

�

�

.
It holds:

�

���

 �

� ���

�

�

� '��

�

�

!

�

� '��

� �

�

���

���

 �

� ���

� �

�

�

�

�

�

!

�

� '��

� �

� �

�

�

�

�

��! �

�

�

��

� ! � '
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where � � �

� �

 �

�

�

� '��

�

� � '�� �

� is a lower boundfor theweighteddistanceof theoptimalnetwork. For
thedisjointpair sets�

� and �

� weapplythis techniquerecursively for at most
���

� !

� � � 	��

rounds.As we
havealreadyobserved,thelengthof thelongestedgeof thesub-rectanglesis atmost � + � �

4

�

�

�

�

� �

. Thenwe
facepartitions �

�

'�������' � � with partialweightsums �

�

'�������'�� � ( � � � � � ���

 �

� �

�


��

�

�*' �

�

). The sum
of all weights � � ��� �

 �

�

�

�*' �

�

is boundedby apolynomial
��� 	

�

�

. Therefore,�

�

� �

�

� �

����	

�

�

.

Thecorrespondingnormalizedweighteddistances	 � � � � �

 �

�

�





 ���

 �

�

�




  �*' � �

� areboundedby � � , which
is thelengthof thelongestedgeof thepartition � � 's rectangle.Notethat

�

�

�

�




�

�

 �

�

�




�

!

�

� '��

�

�

�

� '��

� �

�

�

�

� � �

�

�*' �

� �

�

�

�

� � � �

�

� �

+

�

�

�

+

�

�

�

�

� �

�

+

�

�

MST
�

�

� �

for asuitableconstant� + . This andtherecurrency over
���

!

� � � 	��

roundsimply

�

�

 �

�

�

� '��

�

�

!

�

�*' �

� �

�

+

�

�

MST
�

�

� �

�

�

+ +

!

�������
	��

�

�

�

+ + +

!

� � � � 	��

WCD


�  �

for asuitableconstant� + + and � + + + andeverynetwork


. �

9.3 A Lower Bound for Tree-Approximations

Treescannotapproximatethe optimal WeightedCost-Distancegraphbetterthanstatedin Theorem9.2.
To show this, we constructa counter-examplewherethesitesareuniformly distributedandtheweighting
supportsonly neighboredsites.

In particular, weconsideran
	

�

	

unit squaregrid - andthefollowing weightingfunction:

�

�

� '��

�

�
�

�

��� �*' ���

�

�

�

& ��� �*' ���

�

��

�

�

Clearly, theweightedCost-Distanceof thegrid consistingof all positiveweightededgesis
��� 	 � �

andsince
theminimumspanningtreehasat leastcost

	 �

�

�

, thisnetwork is optimalupto aconstantfactor. Wewill
show thateveryspanningtree � hasweighteddistance

�

� 	 ��� � � 	��

evenif weallow � to usenon-terminal
nodes.

Let -
� bethesetof nodeswith distance

�

�

�

to theconvex hull of thegrid, i.e. -

� is theconvex hull
and -

�




� is theconvex hull of - �
�

���
�

-�� .

Lemma 51 For every spanningtree � of the grid and for all
� � 	

�

� there exist two grid neighbors
� '�� � -

� such that theconnectingpathin � hasat leastlength �

� .

Proof: Assumethecontraryandconsidertheupperrow of -
� . Note thatneighborednodes(in thegrid)

areconnectedby a pathwhich is too shortto reachtheotherhalf of thegrid. Therefore,in theupperrow
the leftmostandtherightmostnodemustbeconnectedby a path,which lies completelyin theupperhalf
of therectangle.

For symmetryreasonstheanalogouspropertyis truefor thetheleft column,thelowerrow, andtheright
column.Therefore,thereexistsacycleenclosingthecenterof thegrid, contradictingthetreeproperty. �

De�nition 13 (spanningcut) A spanningcut splitsa tree � �

�

�

' 	

�

by a straight line � into trees�

�

�

�

�

�

� �

�

' 	

�

�

and �

�

�

�

�

�

� �

�

' 	

�

�

. Thesesub-treesare entirely in theleft or right half-spacede�ned
by � . All nodesin

�

� (resp.
�

� ) are orthogonallyprojectedonto � andwill beusedasnon-terminals
�

� in
�

� (resp.
�

� in �

� ). All edgesin trees�

� and �

� arecopiedfromtheoriginal tree.

So,we copy every treeinto both half spaceswithout increasingany edgelength,for an examplesee
Figure9.5.
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�

�

Figure9.5: A spanningcutandtheresultingsub-treein thelowerhalf-space

Figure9.6: Thewhite marked �p-shapedareainduceslong pathsfor a numberof neighboredpairs.For the
lowerboundthegrid is tiled into 16sub-grids

Lemma 52 For a spanningcut of � into �

� and �

� wehavefor all �

�

' �

�

�

�

�

�

�

�

and �

�

'��

�

�

�

�

�

�

�

:

�

�

�

�

�

' �

�

�

� �

�
,

�

�

�

' �

�

�

and �

�

�

�

�

' �

�

�

� �

�

�

�

�

�

'��

�

�

Theorem36 For everyspanningtree � of the
	

�

	

-grid, where �

�

�*' �

�

�

�

if � and � are neighbored
nodesand �

�

�*' �

�

� & elsewhere, theweightedCost-Distanceis at least
�

� 	 � � � � 	��

, while theoptimal
Cost-Distancenetworkhascostandweighteddistance

����	 � �

.

Proof: We will split this grid into 16 sub-gridsof size �

�

�

�

� by 15 spanningcuts (Figure9.6). By
Lemma52 thesumof theweighteddistancesof thesub-gridsis a lower boundfor theover-all grid (We
alsosplit theweightinginto 16 localweightingfunctions).

Lemma51 implies that in every subset-
� therearepaths�

�

'�������' �

�

�

� betweenneighboringnodes
with lengthof at least

	

�

� . Furthermore,we canchoosethesepathssuchthatthespanningcut reducesthe
lengthsof all of themby at least �

� , sincethey reachtheothersideof thegrid.
This way, we canaccountthe length �

� of these �

� pathsfor this recursionlevel. This leadsto the
following recurrency for theweighteddistance�

��	��

of spanningtreesof an
	

�

	

-grid:

W
��	��

�

	
�

�

�

�

� W
��	

�

�

�

�

Resolvingthis recurrency provestheclaim. �

Applying thealgorithmof Section9.2to this instanceproducestreesstructuredsimilar to theU-Layout
shown in Figure9.7. Suchtreesoptimize the weightedCost-Distanceof an

	

�

	

grid by a factorof
�

������� 	��

.
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Figure9.7: TheU-LayoutapproximatestheCost-Distanceof this instanceby a factorof �

������� 	��

.

9.4 Conclusionsand Futur e Research

As animmediateimplicationof Theorem35wecanstatethefollowing approximationresult:

Corollary 9 For polynomialweightsthe WeightedCost-Distance-Treeproblemcan be polynomiallyap-
proximatedwithin a factorof

��������� 	��

.

Thereis somehopethat the approximationtechniquesintroducedby Arora [Aro98] may lead to a
polynomialtimeapproximationscheme.Anotherfollow-upresultmaybetheextensionto generalmetrics.
We conjecturethattheresultsof [Bar98] leadto an

��� � � �

�

	��

approximation.
An interestingopenquestionis: If � , the sumof all weights,is super-polynomial,doesthe upper

boundof Section35 also apply? Or can the lower boundfactor be increasedfor suchweights? This
mirrors thecasein theoriginal setting(Equation(9.1)) that the �x edcostsaresub-polynomialcompared
to thelinearcosts.

Anotherextensionof theseresultsmay be to considerdifferentmetricsfor costanddistanceas in-
troducedin [MMP00]. They proveda

���������
	��

-approximationfor thetwo-metricsCost-Distanceproblem
with weightsonly ontheroot-nodepairs.Wehaveshown thatfor pairwiseweighttreesdonotapproximate
betterthan �

� � � � 	��

, while for node-rootweightsMeyersonet al. [MMP00] showedthata treeis always
part of the optimal solution. It is an interestingopenquestionwhethertreesapproximatethis Weighted
Cost-Distanceproblemwith differentmetricswithin a factorof

��������� 	��

.



Chapter 10

Energy, Congestionand Dilation in
Wir elessNetworks

10.1 Intr oduction

In this chapterwe contributeto modelingwirelesscommunicationnetworks,to modelingcongestion,en-
ergy consumptionanddelayfor routingin suchnetworks,andto designingroutingpathsin orderto min-
imize thesecostmeasures.Onemajor insight is thefact that trade-offs areunavoidable:Minimizing one
measureis only possibleat thecostof enlarginganotherone.

Wirelessadhocnetworksconsistof nodesthatcancommunicatevia short-rangewirelessconnections.
Eachnodecanbe a source,a destinationanda routerfor datapackets,thusno explicit infrastructureis
requiredto setup andmaintainan ad hoc radio network. The areaof applicationfor radio networks is
broad,especiallyin nichessuchassearchandrescuemissionsor environmentalmonitoring. But ad hoc
networks canalsobe usedasa last-mile technologyto provide accessto the Internetin high-populated
environments.

In wirelessadhocnetworks,energy-intensivelong-rangeconnectionsshouldbeavoided,andtheover-
all distancebetweentwo communicatingnodesrespectively hop countshouldbe minimized to achieve
low latencies.To usetheavailablenetwork capacityef�ciently andto achievehigh bandwidths,congested
connectionsshouldalsobeavoidedby balancingthetraf�c overall reasonableconnections.

Theserequirementscanbe expressedusingthreemeasurablequantities:congestion,energy andhop
count. Traditional routing protocolssuchas AODV, DSDV and DSR [Per01] usually choosethe path
with the lowesthop count. Therealsoexist power-awarerouting protocolsusingdifferentmetrics(e.g.,
energy consumedper packet, variancein nodepower level) to choosethe bestroute in order to extend
the lifetime of individual nodesor thewholenetwork [SR98,SW98,CT00]. Thecongestionof a routeis
usuallynot regardeddirectly, but someroutingprotocolschooserouteswith theshortestroutediscovery,
assumingthat theroutewith thequickestresponseis lesscongested(e.g.,SSA[DRWT97]). However, to
our knowledge,no practicalwork or theoreticalstudiesexist thatconsiderthe interdependenciesbetween
thesethreequantities.

In radio networks it is not clearhow to choosenodesascommunicationpartnersbecauselinks can
interferewith eachother. Our maingoal in this chapteris to determinetheoptimalchoiceof this network
givena setof nodes

� �	�

�

(Randomchoicesof nodesetshave beeninvestigatedin [AS98a, GK00]).
Hence,wedisregardthemobileanddynamiccomponentsof adhoc-networkinganddeterminetheoptimal
staticwirelessnetwork. Wepresentageneralmodelfor congestion,energyanddilationfor agivensolution
of the routing problemof the radio networks. (cf packet radio network modelor morerealisticwireless
network models,for instanceasin [AS98a, UY98, GK00, ABBS01,KKKP00, CNP01]). Besidestheload
thecongestionalsomeasurestheinterferencesbetweenedges.

In Section10.2 we start our considerationswith the pathsof all packetssolving a routing problem
in a radio network. The union of all thesepaths,called path system,gives a naturalde�nition of the
communicationnetwork. Thesepathsinducea load in thecommunicationlinks which caninterferewith
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eachother. Combiningthe load andthe interferenceswe achieve an intuitive model for the congestion
of an edgeof the communicationnetwork. Our de�nition is very similar to thosein [AS98a], although
they usea slightly differentapproach.Likewisein [AS98a] we relatethecongestionandthedilation,also
known ashop-distance,to therouting time of the routingproblem.Then,we de�ne measuresfor energy
consumption,which is importantfor autonomousnodesthathaveto ”carry their energy”.

The main contributionsconcernpathselectionin wirelessnetworks: Givena setof routing requests,
�nd routingpathsothatthecongestion,delay, and/orenergy consumptionis minimized.We introducethe
notionof diversityto describelocationsof nodesetswherehigh interferencesareunavoidable.It turnsout
that if the diversity is small, i.e., all point to point distancesdiffer only by a polynomialfactor, thenthe
interferencesof communicationnetworkscanbekeptsmall.Thisis key factorfor thecongestionavoidance
analysisin thischapter.

In section10.3we presentstrategiesfor this pathselectionwhich provablyoptimizeenergy consump-
tion andgive a

���

�

�

�

� � �

-factorapproximationof congestion.In section10.4asa main insight,we can
concludethatnotany two of thesemeasurescanbeminimizedsimultaneously, but thattrade-offs between
measuresareunavoidable.Finally, section10.5concludesthis chapter.

10.2 Modeling Wir elessNetworks

We considera set
��� �

�

of
	

radio stations,featuringboth transmitterandreceivers,calledsitesor
nodes,in 2-dimensionalEuclideanspace.Let � �

�

���

�

 �

���

� � '�� �

� denotethegeometricdiameterof
�

.
As in the modelof [MBmH01] eachnode ���

�

canadjustits transmissionradiusto some � � &

for sendinga packet to a neighbor� �

�

in range� . Then,thecommunicationnetwork


�

�

�

' 	

�

has
the edge � � '�� � , where   �*' � �

�

� � . Note that for adjustingthe transmissionpower nodesexchanging
packetsmustinteractduringthetransmission.Justimaginethatoneof thenodesis moving andtherefore
the distancebetweenthesenodescontinuouslychanges. In our model we simplify this interactionby
assumingthat the sendingandacknowledgingpart of this interactionmay interferewith any othersuch
bi-directionalconnectionif thedistanceis toosmall.

In particular, this means:To acknowledgethis packet thereceiving siteadjustsits transmissionradius
to thesameradius � asthesendingradius. The transmissionneedsa unit time stepandtheareacovered
by sendingandacknowledginga packet along � �

�

�*' �

�

� 	 is �

�

�

�

� ���

�

�

���

���

�

�

�

, where ���

�

�

�

denotesadiskwith center� andradius� . Of courseedgesonly interferewhentheroutingprotocoltriesto
senda packetat thesametime andif �

�

�
+

�

contains� or � (cp. Figure10.1.We keepthetiming aspectof
interferencesin mind andexpandthenotionof interferencesto edges:Edge

�

� '��

�

interfereswith edge� +

if � or � is in thearea�

�

��+

�

.
We de�ne the setof interferingedgesby Int

�

�

�

� � � � +�� 	

�  �

 � + interfereswith � � . Note that
sendinga packet along � is successfulonly if noedgefrom Int

�

�

�

sendsconcurrently. Theseinterferences
of network



describethe directedinterferencegraph - Int
�  �

. Its nodesetareall edgesof


andits
edgesdescribeall interferences,i.e.,

�

��' �

�

� 	

�

- Int
�  � �

if f � � Int
�

�

�

. The interferencegraphcanbe
interpretedasan additionalconstraintfor routing. An edgeof the radio network can only be usedfor
sendinga packet in a time unit if all interferingedgesremainsilent. Thenumberof this interferingedges
is given by the in-degreeof an edgein the interferencegraphandis calledthe interferencenumberof a
communicationlink. Themaximuminterferencenumberof a site � is themaximuminterferencenumber
of all edgeswith receiving site � . The interferencenumberof the network is the maximuminterference
numberof all edges.

Now considera routingproblem� �

�

�

� � 	

, where �

�

� '��

�

packetshave to besentfrom � to � .
We subdivide thedesignof a routingstrategy for � into thefollowing steps:

� Path selection: Selecta system
�

of paths �

� from sourceto destinationfor the packets � in the
graphon

�

. Theunionof all edges	� of thepathsystemgivesthelinks of communicationnetwork


�

�

�

' 	 �

�

.

� Collision avoidance: As notedabove sendinga packet alongedge � is only successfulif no � +��

Int
�

�

�

sendsat thesametime.
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Therefore,thefollowingholds:Considerany routingstrategy thatroutes� in � stepsusingthepathsystem
� . Let �

�

�

�

�

�

�

'�������'���� denotethetimestepsin which � sendssuccessfully. Thenclearly

 �

�

�

�



�

�

�

�

� Int �$� �

 �

�

�

+

�



�

� �

As  �

�

�

�

 is just the load �

�

�

�

of � , i.e., thenumberof packetswhosepathgoesthrough � , theabove
quantityis �

�

�

�

�

� �

�

� Int � � � �

�

� +

�

. We denotethis quantity(which is uniquelyde�ned by thepathsystem
�

) ascongestionof theedge� �

�

�

�

. Thecongestionof the path system
�

is de�ned by

� �

�

�

�

� �

�

� �

����� �

� � �

�

�

�

� �

Wewill denoteby thedilation ���

�

�

�

thelengthof alongestpathin
�

, alsoknownasthehop-distance.
By de�nition theoptimalroutingtime � using

�

ful�lls � � � �

�

�

�

, but alsocongestiongivesa lower
boundon thetime � :

Theorem37 Considera radio network � with path system
�

, maximuminterferencenumber
�

, and a
routing problem � with dilation � and congestion � . Let � be its optimal routing time, whenthe path
system

�

is used.Thefollowingholds.

1. � �

�

��� � �

���

��' � � �

�

�

�

�

�

�

2. It existsanof�ine routingprotocolwith routingtime
���

�

�

� �

� �

, with high probability.

3. There is anonlineroutingprotocolthatneedsroutingtime
���

�

�

� �

�

�

����� 	��

, w.h.p.

Proof: 1. Let � �

�

� '��

�

beanedgewith maximumcongestion� . We partitiontheplaneinto 6 regions
�

�

'������ ' �

�

with centerat � by six half-linesstartingat � wheretheanglebetweenneighboredhalf-lines
is �

�

� . Similary we considertheanalogouspartitioning �

�

'������ ' �

�

� with � asthestartingpoint of the6
half-lines.

De�ne
	

�
� � � � �*' �'� 

�

� � �
�

�

�	���
�

� �

� � '
�'� � Int
�

�

�

� �

Note thatby a straight-forwardgeometricargumentfor two edge� +/' � + + � 	
� it holdseither ��+ � Int

�

� + +

�

or � + +�� Int
�

� +

�

. Therefore,all transmissionsover edgesin 	
�

�

� � � have to be donesequentially. Let
� � � � �

�

�

�

�

�
�

�

���

 �

�

� +

�

. Then, �

�

�

�
"

�

� � � � . Hence,

� �

�

���

�

�

�

�

�

�

� �
�

� �

�

�

�

�

�

�

�
"

�

�
�

�

�

�

�

�

Theupperboundsof 2. and3. canbeprovedusingthesameargumentsasshown in Theorem2.12and
Theorem2.13of [AS98a]. Notethatin [AS98a] thenotiondilation differsfrom our approach. �

Thevariablechoiceof the transmitterpower allows to reducetheenergy consumption,saving on the
tight resourcesof batteriesin portableradiostationsandreducinginterferences.Theoretically, theenergy
neededto sendoveradistanceof � is givenby

���

�

�
�

. It turnsout thatin practiceonecanmodeltheenergy
by

���

�

�

�

or even
���

�

�

�

. Throughoutthischapterwemodelenergy costsby
���

�

� �

. However, mostresults
in this chaptercanbeeasilytransferredfor higherexponents.

We distinguishtwo energy models. In the �rst model, called unit energy model, we assumethat
maintaininga communicationlink � is proportionalto

��� �

� ���

�

� � �

, where   �  

� denotesits Euclidean
length.Therefore,theunit energy U-Energyusedby radionetwork



is givenby

U-Energy
�

�

�

�

� �
�

�"���
�

�����

�

  �  

�

�

�

�

The�o w energy model re�ects theenergy actuallyconsumedby transmittingall packets.Here,thepower
consumptionof acommunicationlink is weightedby theactualload �

�

�

�

onanedge� :

F-Energy
�

�

�

�

� �
�

�����
�

�����

�

�

�

� �

  �  

�

�

�

�



134 CHAPTER10. ENERGY, CONGESTIONAND DILATION IN WIRELESSNETWORKS

radio station

interference

edge

Figure10.1:Radiostations,edgesandinducedinterferences

c
a

b

Figure10.2:For anedge� of aGabriel-graphnonodemaybein insideits disk

In this chapterwe focuson the question:Given somesites,which pathselectionis bestpossibleto
obtainsmall congestion,low energy consumptionandsmall dilation? Clearly, the optimal network for
hop-distanceis thecompletegraph.Hence,we investigateonly energy andcongestion.

10.3 Minimizing Energy and Congestion

10.3.1 Energy

The unit energy of a pathsystemfor a radio network is de�ned asthe energy consumptionnecessaryto
deliveronepacket on eachcommunicationlink. It turnsout that theminimal spanningtreeoptimizesunit
energy. Notethatthehardnessresultsshown in [KKKP00, CPS00] donot applybecausein our modelthe
transmissionradii areadjustedfor eachpacket.

Theorem38 Theminimalspanningtreeis an optimalpathsystemfor a radio networkwith respectto the
unit energy.

Proof: Considerthegraphde�ned by all edges	

� �

�

�

with edgeweight
�

� � �

�

�
�

. Theminimum
energy network canbeconstructedusingPrim's or Kruskal's algorithmfor minimumspanningtree.Note
that the decisionsin this algorithmarebasedon comparisonof the lengthof someedges� and � + , i.e.,

� � �

�

�

� � +  

� . Thus,the minimal network for energy is alsothe minimum spanningtreefor Euclidean
distances. �

For the �o w energy model,theminimal network is not necessarilya tree. However, onecancompute
theminimal �o w energy network in polynomialtime.

Theorem39 For a givennodeset
�

a sub-graphof theGabriel Graph [GS69, JT92] is an optimalpath
systemfor a radionetworkwith respectto the�ow energy.

Proof: If in the interior of thecircle de�ned by thediameter
�

�*' �

�

thereexistsa node � , thentheedges
�

� '��

�

'

�

� '��

�

needlessenergy thantheoriginal edge.This follows by theTheoremof Thales(otherwise
energy is not optimalbecause

�

� �*' �  

�

� �

�

�

  � ' � �

�

� �

�

�

  �*' � �

�

� � �

. Therefore,onecanaddanedge
into the communicationnetwork if f thereareno sitesin the interior of this circle, seeFigure10.2. This
matchesthede�nition of a Gabrielgraphof

�

.
For two nodes� and � thesub-graphproviding the lowestenergy for routing informationfrom � to �

is givenby theshortestpathin theGabrielgraphif thelengthof anedgeis rede�nedby
�

� � �

�

� �

. The�o w
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Figure10.3:Thehighdiversityof thenodesetincreasestheinterferencenumber, resultingin highconges-
tion

energy of theoptimalnetwork consistsof a linearcombinationof theselowest-energy-pathsbetweenpairs.
Usinganall-pair-shortest-pathalgorithmgivestheoptimalnetwork. �

Note, that there are situationswhere edgesof the Gabriel-graphcan be replacedby less energy-
consumingpaths,evenif no site lies insidethedisk describedby theedge.Then,theedgeof theGabriel
graphis notpartof any energy optimalroute.

10.3.2 Diversity of a NodeSet

Sometimesthelocationof theradiostationsdoesnot allow smallcongestedroutesfor theradionetworks
at all. Considera nodeset

�

� � �

�

'������ '��
�

� ona line, with distances � �1'����




�

 ���

� . Theedge
�

���1'����




�

�

interfereswith all edges
�

�
�

'��
�




�

�

for �

�
�

, seeFigure10.3. Therefore,the interferencenumberof the
network is

	

�

�

. Supposeonly �

� and � � wantto communicate,thenthebettersolutionfor congestionis
to disconnectall interior pointsandto realizeonly theedge

�

�

�

' � �

�

. Of coursethis is not anoptionwhen
interiornodesneedto communicate.

It turnsout that a determiningparameterfor the realizationof optimal communicationnetworks for
radionetworks,is thenumberof magnitudesof distances.Distanceshavedifferentmagnitudeif they differ
morethana factorof 2.

De�nition 14 Thediversity �

�

�

�

of a point set
�

in Euclideanspaceis de�nedby

�

�

�

�

� �  � � �� � '�� �

�

� �

� � �

� � '��  

�

�

� � �� �

Notethat in theabovescenariowe observe themaximumdiversityof
	

(anda high interferencenumber).
For pointsets

�

on theline with smalldiversitytheinterferencenumberis small,too. It is easyto seethat
theinterferencenumberfor a nodeset

�

on theline is at most
���

�

�

�

� �

.

Lemma 53 Thediversityof
	

pointsin
�

�

is at least
�

������� 	��

andat most
��� 	��

. For a pointsetrandomly
distributed in a square of

�

�

the diversity is
���������
	��

with high probability (i.e.,
�

�

	

4

�

for any �xed
constant� � & ). Furthermore,

�

�

�

��

�

�

�����

�

���

�

 �

���

  � '��  

�

�

���

�

 �

����� �

�

" �
� � '�� �

�

�

Proof:
� For a pointset

�

�

�

�

: �

�

�

�

�

� � �

�

�



�

 .

We considerthefollowing sequentialprocessstartingwith � � �

�

���

�

 �

���



�

�

" � � �

�

	 ��

�

� �

 �

�

�

�

� . We
startwith anon-markednodeset

�

� � �

�

'�������' � � � andwesequentiallyvisit everynon-markednode
�

� . Now we markeverynode��� with � �

�

and � �
�

'��)� �

�

�

�

��'�� �

�

.

After having visited all non-marked nodeswe endup with a non-marked nodeset
�

+ , wherefor
all �*' � �

�

+ we have � � '��  

�

� � � . Since � �

�

��� � '�� �

�

' �
� � � � � '�� �

� , a straight-forward
geometricargumentshows thateachnodemaycauseonly 18 othernodesto bemarked. Therfore,
wehave 

�

+  �

�

�

�



�

 . This leadsdirectly to theclaim.
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�

�

�

�

� �

�

	

�

�

& for
�

�

�

with 

�

 �

	

� � .

Let
�

� � � �

�

'������ ' � ��� denotethenodessortedfrom left to right. De�ne
�

�#� � � � ( �

�

�� � �

�

�%( � � �

�

�����

  ���)' � � �

�

�

� '

where� is auniformrandomvariable(thesamefor all
�

) of theinterval
�

& '

���

. Notethat
�

� � � and


�

� 4

�

 �

�

. We will provethat
E

�



�

� �

�

�




�



�

�

�

� (10.1)

Let � �

���

'��

�

� � � �

�

� � �

 ���)' � � 

�

and� � � � �

���

'

�

�

�

�

. Now for all � �

�

�

�

with � �

���

�

�

'��

� �

�

�

�

wehave � �

���

'2�

�

� ����'
�

�

�

'
�

�

�&� inducingthreeelementsinto thedifferenceset
�

� �

�

�




� .

For all � �

�

�

�

with � �

���

�

�

'��

�

� ��+ � �

�

� we have analogously� �

���

'2�

�

� ����+/' ��+

�

�

� . But
since  ���1'����




�



�

�

�

�

4 �




�

 ���




�

'�� �  , theprobabilitythat � +

�

�

actuallyoccursin
�

� but not in
�

�




�

canbe boundedby �

�

�

4 �




�

. Note that ��+ �

�

�




� andthat ��+

�

�

is addedto
�

� with probability
�

�

�

4 �




�

. Therefore,theexpectednumberof elementslargerthan �

�

� addedinto
�

� is at most1.

Notethat (�

�

�

� �� �

�

� �

�

�

�

'������ '��

�

� � �

�

andthereforeinequality10.1impliesthat

E
�

�

�

� �

�

�

�

'������ ' �

�

� � �

�

�

�

�

	

� � �

Hence,thereexistsa choice� �

�

&�'

� �

with

�

�

� �

�

�

�

'������ '��

�

� � �

� �

�

	

� � �

Now thedifferentroundingpointsby introducingafactor �

� mayatmostdoublethediversity, which
implies �

�

�

��

�

	

�

�

�

.

�

�

�

�

� �

� �

	

� � � for
�

�

�

�

and
	

� 

�

 .

The � -dimensionalcasecanbereducedto the
�

-dimensionalcase.Now let �

�

' �

�

�

�

�

�� �

bethe
orthogonalprojectionontotheaxes.Thenwe have

�

�
� � � �

�

�

�

�

�

�

�����

  �
�

�

�

�

' �
�

�

�

�

 

�

�

�

�

� � � �

� � '��  

�

� �����

� �
�

�

�

�

' �
�

�

�

�

 

�

�

Now �

�

� �

�

�

� � �

�

	

�

�

�

implies that �

�

�

� �

� �

�

�

�

�

�

� �

�

� �

�

�

�

�

�

� � �

� �

	

��� � . Of course
thisargumentcanbegeneralizedto

� �

for a constant! .

� Thelast inequalityfollows directly from thede�nition. It implies logarithmicdiversity for random
point setssincethe probability to choosea nodewithin a

	

4

�

4

�

-neighborhoodof anothercanbe
boundby

	

4

�

4

�

. Hence,for all nodestheprobabilitythat �

�

�

�

�

�

�

�

�

� ����� 	

canbeboundedby
atmost

	

4

�

.

�

Therearemany reasonswhy in therealworld thediversitycanalwaysbeestimatedby
���������
	��

, e.g.
the accuracy of determininglocations;andthe ratio betweenthe physicalsizeof a radio stationand its
transmittingrange.

10.3.3 Congestion

To approximatecongestion-optimalcommunicationnetworksfor radionetworkswewill usethe � -spanner
with boundeddegreeintroducedin [AS94]. A � -spanneris agraphsuchthatfor eachpair

�

�*' �

�

thereexists
a pathof at mostlength ��� � '�� �

� . Notethat � -spannersarea commonchoicefor thecommunicationlinks
in radionetworks,e.g.see[GGH
 01].

ThealgorithmAS-spanner
�

�

' � '��

�

shown in Figure10.4constructssuchaspannerfor apointset
�

in
�

�

. Thealgorithmconsidersall orderedpairs
�

�*' �

�

of sitesin increasingorderof theirdistances.Theedge
�

�*' �

�

is addedto thegraphiff thereis no edge
�

��' �

�

in thecurrentgraphsuchthat
�

� ' �

�

and
�

��' �

�

have
roughlythesamedirectionandthepoints� and � arecloseto eachother, or thepoints � and � arecloseto
eachother.
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Algorithm AS-spanner
�

�

' � '��

�

(* & � � �

�

� , &

�

�
�

�

�

��� �

� � � �)��� �

�

*)
begin

�
� � list of all pairsof
�

sortedaccordingto their distances;
		� � �

for all orderedpairs
�

� ' �

�

� � do
add � � true
for eachedge

�

��' �

�

� 	 do
if angle

�

� � �*' � � �

� �

� then
add � � add

� �

� �*' � �

�

�
�   ��' ���

�

�

�
if angle

�

� � ��' � � �

��

� then
add � � add

� �

� ��' �� 

�

�
� � ��' �� 

�

�

�
od

if add � true then 	 � � 	

�

�

�

� '
�

�

� �
od
return

�

	

�

end

Figure10.4:Thealgorithmof Arya andSmid[AS94] for theconstructionof a � -spanner

Theorem40 [AS94] ThegraphconstructedbyalgorithmAS-spanneris a � -spannerwith boundeddegree
�

�

�

for � �

� �

��� �

� � � �)��� � �	� �

�

.

Sucha � -spannercausesonly a smallnumberof interferencesif thenodeset
�

hasa smalldiversity.

Lemma 54 For a nodeset
�

with diversity �

�

�

�

theinterferencenumberof the � -spannerconstructedby
algorithmAS-spanneris boundedby

���

�

�

�

� �

.

Proof: Wechoose� �

�

�

��� �

� � � �1� � �

�

for � � �

� �

. Hencethestretch-factoris givenby � � �

�

��� �

� � �

�1� � �

�

.
We de�ne

�

� � ���

�

' �

�

'�������'
�
�

� �

�

suchthat
�

� � � � �� �*' � �

�

� �

� � �

  � '��  

�

�

� � � . We
consideran edge � �

�

� '��

�

of length ��

�

�

�




'�� � �

�



�

. We try to insertasmany edgesinterfering � as
possible.Theirnumberis boundedby

���

�

�

�




�

sincetheconstructedspannerhasboundeddegree
�

� andfor
everyedgeto a neighborednodewe canconstructat most

���

�




�

�

���

�

�

paralleledgesinterferingwith �

becauseof the restrictionthat thedistancebetweentheedgesmustbeat least � �  (see�gure 10.5). We
have �

�

�

�

� 

�

 andthereforethenumberof interferencesis boundedby
���

�

� � �

�

�




�

. Using that � and �

areconstant,this completestheproof. �

A typical featureof radio communicationis that transmittinginformationblocksa region for other
transmission.We formalizethis observation andde�ne the capacityof a region following a similar ap-
proachpresentedin [GK00]. Let �

�

�

�

denotetheareaof a geometricregion � .

De�nition 15 Thecapacity
!��

�

�

of a geometricregion � is de�nedasfollows:

1. If in everypointof � thesamesetof edges 	 interfere, then
! �

�

�

� �

�
�"���

�

�

�

�

� �

�

�

�

where �

�

�

�

denotestheareaof � . Such a region is calledelementary.

2. Otherwisepartition � into elementaryregions �

�

'������ '��
� andde�ne

! �

�

�

� � �

�

�
"

�

! �

�
�

�

�

Thisde�nition impliesthefollowing relationshipbetweencapacity, areaandcongestion.

Lemma 55 Let � be a region and � the congestionsof a path system
�

. Then,the capacityof � is
boundedby

! �

�

� �

�

�

�

�

� � .
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Figure10.5:For anedge� to aneighborednode
thereexistatmost ���

�




paralleledgesinterfering
with �

e
u v

p

Figure10.6: The edge � interfereswith otheredges
(at least)within the centraldisk. Its information is
reroutedon � , lying completelywithin theouter-disk
with radius

�

�

��  �  

�

Every edge � with load �

�

�

�

hasa certainimpacton the capacityof the areacoveredby the radio-
network.

Lemma 56 Anedge � with load �

�

�

�

occupiesthecapacity� �

�

�

� �

� ���

�

� �

for a constant� � & .

Theproof follows from thede�nition of theinterferencearea.

Lemma 57 Let � & be thecongestionof thecongestion-optimalpathsystem
�

& for a nodeset
�

. Then,
every � -spanner



canhosta pathsystem
�

+ such that the inducedload �

�

�

�

in


is boundedby �

�

�

� �

� + �

�

�

�

�%& for a positiveconstant��+ .

Proof: Given a path � of the pathsystem
�

& , we replaceevery edge � �

�

� '��

�

that doesnot exist
in the � -spanner



with the shortestpath � from � to � in


(which by de�nition haslengthof at most
 � 

�

��  �*' � �

� ). Therefore,the new route lies completelyinsidea disk � �

�

�

�

of radius
�

� ��  � '��  

� and
center

�

�

�

�

�

�

�

.
For thepathsystem

�

& theremayhavebeeninterferencesbetween� andotheredges.For simplicity we
underestimatetheareawhere� caninterfereothercommunicationby thedisk �

�

�

�

�

with center
�

�

�

�

�

�

�

andradius
�

� � �*' � �

� (seeFigure10.6).
We want to describethe impactof reroutingall edgesin 	

��

&

�

to a speci�c edge�

�

� 	

�  �

in the
� -spanner



. If this edge�

�

�

�

�

�

'��

�

�

� 	

�� �

transmitsthetraf�c of a detourof anedge� �

�

�*' �

�

�

	

��

&

�

, thenthedistancebetweenthecentralpoints �

�

� �

�

�

�

�

�

�

�

�

�

of �

� and � �

�

�

�

�

�

�

�

is bounded
by   �

�

'�� �

�

�

�

�
��� ���

� .
Now considertheedgeset 	

�


�

�

�

	

��

&

�

of edges� with length � � �

�

�

�

�

�

'��

�




�

�

for
�

�

�

which
reroutetheir traf�c to �

� . Their centerpointsarelocatedinsidea disk with radius �

�

� andcenter�

� . The
interferenceareaof every edge � is describedby �

�

�

�

�

. It occupiesan areaof at least � �

�

� , which lies
completelyinsideadisk � with radius�

�

�

�

�

�

�

andcenter�

� . Theareaof � is � �

�

�

�

�

�

�

� �

.
Lemma 56 shows that every edge � reducesthe capacity in � by at least � �

�

�

�

�

�

� . Becauseof
Lemma55, the over-all capacityof � is at most �

�

�

�

� � �

�

�

�

�

�

�

� �

�%& . Therefore,we have for
the sumof the loads �

�

�

�

for � � 	 �


�

� that �
�"���




 �

�

�

�

�

� �

�

�

�

�

�

� �

�%&

�

� � By de�nition thereare
at most �

�

�

�

non-emptysets 	
�



�

�
. This implies for the sum of loads �

�

�

�

of the set 	

�

�

�

	

� 

&

�

:
�

�����
�

�

�

�

�

��

�

�

�

� �

�

�

�

� �

� �%&

�

� � � + �%& �

�

�

�

, where� + � �

�

�

�

�

� �

�

�

� . �

Combiningthe last two lemmaswe canshow thatthe � -spannerapproximatestheoptimalnetwork by
a factorof

���

�

�

�

� � �

. Sincein practicethediversitycanbeseenasa logarithmicterm,sucha � -spanner
providesa

��� � � � � 	�� � �

-approximationfor thecongestion.

Theorem41 The� -spannerof [AS94] containsa pathsystem
�

with congestion
���

�

�

�

� �

� �

(

�

�

� �

, where
�

& denotesthecongestionoptimalpathsystemfor thenodeset
�

.
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Proof: FromLemma57 it follows thatthereexistsa routingon a � -spannersuchthattheloadof anedge
� is boundedby �

�

�

� �

��+ �

�

�

�

� �

(

�

�

�

. Lemma54 shows thatthe interferencenumberof thenetwork is
boundedby

���

�

�

�

� �

. This implies � �

�

�

�

�

���

�

�

�

� �

� �

(

�

�

� �

. �

10.4 Trade-Offs

As we have seenthereareef�cient waysfor selectingpathsto optimizeenergy andto approximatecon-
gestion.Onemightwonderwhetheranalgorithmcancomputea pathsystemfor a radionetwork suchthat
energy, congestionanddilationcanbeoptimizedat thesametime. It turnsout thatthis is not thecase.

10.4.1 CongestionversusDilation

For a nodeset - � placedon thecrossingsof a
�

	

� �

	

-grid thebestchoiceto minimizecongestionis
to connectgrid pointsonly to their neighborsgiven the demand�

�

� '��

�

� �

�

	 �

for all nodes(Figure
10.7). Thenthecongestionis

���

�

�

�

	��

andthedilation is givenby
���

�

	��

. In [GK00] it is shown that
sucha congestionis bestpossiblein a radionetwork. A fastrealizationis givenby a treefeaturinga hop-
distanceof

���������
	��

andcongestion
���

�

� � � 	��

(Sucha tree-constructionfor theCost-distanceproblem
is presentedin [SW01]). In bothcaseswe observe � �

�

- �

�

� �

�

- �

�

�

�

�

�

�

. This is alsotrue for any
otherpathselection:

Theorem42 Giventhe grid nodeset -3� , thenfor every path system
�

the following trade-off between
delay � �

�

- �

�

andcongestion� �

�

- �

�

exists: � �

�

- �

�

� � �

�

- �

�

�

�

�

�

�

.

Proof: For
	

� ���

�

partitionthegrid into three� ����� rectangleshapednodesets
�

�

'

�

�

'

�

�

, suchthat
�

�

containsall left nodes,
�

�

all right nodesand
�

� thenodesin themiddle.
We consideronly an

�

�

th of the demandstartingat
�

� headingfor nodesin
�

�

. Let �

�

��� be the
delayof thenetwork and�

�
 � denotetheroutefrom node�

� to node��� . Let �

�

�
�

 �

�

� �

�

�
�

' � �

�

denotethe
information�o w onpath�

�
 � .

Considertwo nodes�
�

�

�

� and �)���

�

�

. Thenthepath�
�

 � hasat most ���

�

- �

�

edges.Theinduced
capacity

! �

�
�

 �

�

of the path �
�
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10.4.2 Dilation versusEnergy

Thesimplestlocationof sitesis the line nodeset � � asinvestigatedin [KKKP00], seeFigure10.8. Here
all nodes� � � � �
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'������ ' � � � areplacedona line with equaldistances  �
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�

�

�

'�� �

�

with hop-distance
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(and�o w
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). Therearepathsystemsthat cangive a compromisebetweentheseextremes.However, it
turnsout thattheproductof delayandenergy cannotbedecreased:
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Proof: Let � be the numberof edgesof the longestpathof the radio network (wlog. we assumethat
thereareonly edgeswith non-zeroinformation�o w �

�

�

�

� & ). For theunit energy modelwe canassume
thatthereis only a path � from �

� to � � (becauseintroducingmoreedgesneedsadditionalenergy without
decreasingthedelay). We have to minimizeU-Energy
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Theboundfor the�o w energy followsanalogously. �

10.4.3 The Incompatibility of Congestionand Energy

We will show thatfor somenodesetscongestionandenergy areincompatible.This is worsethana trade-
off-situationsincethereis nocompromisepossiblefor energy andcongestion.
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consistsof two vertical parallel line graphs� �
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betweenthehorizontalpairsof opposing
nodesof theline graphs.Therestof the

	

�

	

4
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nodesareequidistantlyplacedbetweenthenodesof each
line graphandthelowesthorizontalpair of nodes,seeFigure10.9.
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Proof: Theminimumunit energy network is givenby theMST which is a U-shapedpath. Notethatno
shortcutwithin theleft andright verticalbarsof this pathcanreduceenergy or congestion.Therefore,the
only reasonablechoicefor anedgeis to connectsome( ( ) of thehorizontalnodes(andpossiblyto discon-
nectarouteto averticalneighbors).Adding thehorizontalchannelimpliesadditionalenergy consumption
of

�

�

�
�

� . For (

�

�

horizontalroutes(including theoriginal low energy route)thebestchoiceis to fairly
distributethetraf�c.

For the�o w energy theargumentis analogous. �
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Hence,thereis nohopethatcommunicationnetworkscanoptimizemorethanoneparameterata time.
Thenetwork designerhasto decidewhetherto go for smallcongestionor low energy consumption.
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Figure10.7:Thegrid - � Figure10.8:Theline � � Figure10.9:Nodeset �

�

10.5 Conclusionsand Further Work

The main differencebetweenwired networks and radio networks is that the choiceof communication
links in wirelessnetworks in�uences the quality of the edges. We model the type of in�uences by the
interferencegraph,which givesa very generaldescriptionhow links can interfere. If the sendingand
receiving characteristicsof the radio stationsareknown, this interferencegraphcanbe describedby the
geometricpropertieslike thelocationof sitesandtransmitterpower.

However, the main differenceis still that choosinga certaincommunicationlink for sometime de-
creasestheability of transmittinginformationin someotherpartsof theradionetwork. Sincetheanalysis
of point-to-pointcommunication(or permutationnetworks) in wirelessnetworks is relatively young(see
[AS98a]), we startour investigationwith astaticsimpli�ed model:Thepoint-to-pointcommunicationand
the locationof the sitesis �x ed (unlike in mobile ad hoc networks). You canalsoseethis modelasa
snapshotof a moredynamicmodel(whereresearchhasjust begun[ABBS01]).

We investigatethequestionof what is theoptimalchoiceof communicationlinks to achieve thebest
possiblenetwork. We measurethequality by congestion,energy anddelay. Givena pathsystemfor the
packetswe presenta soundde�nition of congestion,which takesinto accounttheactualinformation�o w,
i.e., load,overa link andtheinterferencesof otherlinks.

Therealreadyexists a probabilisticsolution for solving interferencesif the network parametersare
known [AS98a]. We show how this algorithmcanbeappliedto our setting.Further, we relatetherouting
to our notionof congestionanddilation,which is themaximumlengthof apath.

We prove thatfor our notionof energy (dependingon thepacket �o w) theoptimalpathsystemcanbe
computedin polynomialtime. Furthermore,weprovethata � -spannerconstructionfor thecommunication
networksallowspathsystemswith smallcongestion.Concretely, weshow anapproximationof a factorof

���

�

�

�

�
�

�

of theminimal congestion,where�

�

�

�

denotesthediversityof thenodeset.We introducethis
measureto characterizemalformednodelocations.For practicalapplicationswehave �

�

�

�

� �

������� �

, e.g.
if thenodesetis random,or if theratioof maximumandminimumdistanceof nodesis atmostpolynomial.
An overview of theseresultsis shown in Table10.1.

However therearesituationswhereit is not possibleto optimizetwo of thesemeasuresat the same
time(seeTable10.2).We provetrade-off resultsfor congestionversusdilationandenergy versusdilation.
For congestionandenergy we show thatevery pathsystemtrying to approximatethecongestionwithin a
smallerfactorthan �

� 	

�

�

�

�

of theoptimal congestion,suffersunderan increasedenergy consumptionof
at leasta factorof

�

� 	

�

�

�

�

, andviceversa.Hence,energy andcongestionminimizationin radionetworks
areincompatibletasks.

Besidesthestandardmodelof omni-directionalcommunicationwe arecurrentlyinvestigatinga sector
modelwheresenderandreceivercanfocussignals(e.g. infrared).Suchsectorcommunicationis aspecial
caseof so-calledspacemultiplexing techniquesto increasethenetwork capacity(e.g.by usingdirectional
antennas[KSV00]). All resultsshown in this chaptercanbeeasilytransferredto suchamodel.

Another possibility to decreaseinterferencesis to use multiple frequencies(as done in Bluetooth
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Congestion Dilation Unit Energy Flow Energy
Structure AS-spanner CompleteNetwork MST GabrielSub-Graph

Approx.-factor
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log
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	��

optimal optimal optimal

Table10.1:Approximationresultsfor logarithmicdiversity

Delay Congestion
Congestion � �

�

�

�

��� �

�

�

�

�

�

�

�

�

—

Unit Energy � �

�

�

�

� UE�

�

�

�

�

�

�

�

� �

� �

�

�

�

�

�

� 	

�

�

�

�%&

�

�

�

� �

or
UE�

�

�

�

�

�

� 	

�

�

�

UE &

�

�

�

� �

Flow Energy � �

�

�

�

� FE�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

� 	

�

�

�

�%&

�

�

�

� �

or
FE�

�

�

�

�

�

� 	

�

�

�

FE&

�

�

�

� �

Table10.2:Trade-Offs andIncompatibilitiesonnetwork parameters

[Miy00] or IEEE 802.11[IEE97]). As long asnumber � of frequenciesis small (which is the casein
practice,becauseof governments'regulationof theentirefrequency spectrae)this may improve thecon-
gestionby � . However, usingfrequency hoppingcannotcompletelyresolve theshown the trade-off and
incompatibilityproblemsshown here.

This work is partof a projectwherea prototypecommunicationsystemis beingdevelopedbasedon
infrareddirectedcommunication.Theprototypewill beableto communicatein eightsectorsindependently
with adjustabletransmissionpowers. Furthermore,it canbeusedasanextensionmodulefor themobile
mini robotKhepera([MFG99, KTe00]). Thus,realisticscenariosfor adhocnetworkscanbereproduced
by performingexperimentswith thesemini robots.Thus,besidecomputersimulations,ourcommunication
strategieswill alsobevalidatedunderpracticalconditions.Suchanetwork is technicallymorecomplicated,
but ourgoalis to show thatit is possibleto setupageometricspannergraphasacommunicationnetwork.
Notably, this chaptershows that suchgeometricspannersalwaysprovide goodsolutionsfor congestion
minimizationin radionetworks.
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