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ABSTRACT
We investigate distributed algorithms for mobile ad hoc networks
for moving radio stations with adjustable transmission power in a
worst case scenario. We consider two models to find a reasonable
restriction on the worst-case mobility. In the pedestrian model we
assume a maximum speed vmax of the radio stations, while in the
vehicular model we assume a maximum acceleration amax of the
points.

Our goal is to maintain persistent routes with nice communi-
cation network properties like hop-distance, energy-consumption,
congestion and number of interferences. A route is persistent, if
we can guarantee that all edges of this route can be uphold for a
given time span ∆, which is a parameter denoting the minimum
time the mobile network needs to adopt changes, i.e. update rout-
ing tables, change directory entries, etc. This ∆ can be used as the
length of an update interval for a proactive routing scheme.

We extend some known notions such as transmission range, in-
terferences, spanner, power spanner and congestion to both mobil-
ity models and introduce a new parameter called crowdedness that
states a lower bound on the number of radio interferences. Then we
prove that a mobile spanner hosts a path system that polylogarith-
mically approximates the optimal congestion.

We present distributed algorithms based on a grid clustering tech-
nique and a high-dimensional representation of the dynamical start
situation which construct mobile spanners with low congestion,
low interference number, low energy-consumption, and low de-
gree. We measure the optimality of the output of our algorithm
by comparing it with the optimal choice of persistent routes un-
der the same circumstances with respect to pedestrian or vehicular
worst-case movements. Finally, we present solutions for dynamic
position information management under our mobility models.
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1. INTRODUCTION
We investigate the problem of constructing a wireless ad hoc net-

work under a worst-case assumption for mobility. For the mobility
we consider two different models for the movement of some n mo-
bile stations in the plane, the velocity bounded and the accelera-
tion bounded model.

For the first model we picture to ourselves a large number of
pedestrians using mobile, wireless communication devices in a
rather small area. Clearly, the maximum speed is bounded by a
small constant. The standard approach in a static ad hoc network
scenario is to build up connections between nearest neighbors. If
the mobility is very high, like on a crowded sidewalk, this leads
to short communication links, that survive for only short time peri-
ods. Although it is possible to build up these connections and trans-
mit some data, it is nearly impossible to maintain packet routes or
maintain directories for efficient localization of users. Therefore,
we need communication links to sustain for some time span ∆ to
enable the routing layer to keep up with the dynamical changes.
We can guarantee that a communication link between two moving
stations sustains for this period if we adjust the transmission range
to a value, which covers all possible distances the communication
partners can reach in time ∆. Since, we know the maximum speed,
this implies that the transmission power must be chosen such that
the transmission range is at least an additive term 2vmax∆ larger
than the distance at the beginning of the time interval. The task is
now to appropriately build up the basic communication links such
that the routing algorithm can choose routes with low energy or
low congestion, while the number of edges and interfering edges is
small.

A motivating example for the acceleration bounded model is
given by vehicles of high speed, like cars, trains, or aircrafts. E.g.,
consider trains where each wagon carries a mobile radio station.
Now consider a scenario, where two such trains pass each other in
opposite directions, as shown in Figure 1. If we take a snapshot in
this moment and build a static ad hoc network using the temporary
positions, then this static approach may lead to a ladder-like net-



Figure 1: Two trains passing each other in opposite directions.

Figure 2: Horizontal speed and directions in the train example.
Each point represents a wagon.

work as shown in the figure. But the communication links forming
the rungs of the ladder can be upheld only for a short time period
since the trains move with high speed. After a short period all rung
links need to be replaced by new ones. Therefore this static network
design is not a good choice.

To generalize from linear movements to some worst-case set-
tings we allow all nodes to accelerate by some maximum amount
of amax. Let si(t) be the coordinates of a mobile station si at time
t, s′i(t) the velocity vector and s′′i (t) the vector describing the ac-
celeration, then |s′′i (t)|2 ≤ amax. Now, if we try to adjust the trans-
mission range r of a connection such that the moving communica-
tion partners si and sj of known relative speed v = s′i(t) − s′j(t)
and distance vector d = si(t) − sj(t) sustain for a time span ∆,
we need a transmission distance that covers at least the distance d
at the beginning and the distance at the end stretched by a possi-
ble acceleration, i.e. r = max{|d|, |d + v∆|2 + amax∆

2}. In the
train example this implies that the communication links between
the passing trains are more expensive than one expects looking only
at a snapshot. If we add to the two position coordinates the verti-
cal and horizontal speed coordinates, we map the dynamical aspect
of the scenario into four dimensions, as shown in Figure 2 (verti-
cal speed and location coordinates are left out). In this setting the
speed difference separates the trains. Hence, rung links between
the trains add radio interferences with other edges. It is straightfor-
ward that a small number of rung connections between the trains
improve the mobile network, while the edges inside should follow
a static ad hoc network policy.

Our goal is to build up a mobile ad hoc network that is stable and
prefers short links. In a high-speed scenario one cannot provide
both features at the same time. We will try to present a reasonable
compromise. We allow any movement of the mobile stations within
these restrictions and will compare the performance of our network
solutions with the best offline solution for this dynamical scenario.

We extend results on congestion, dilation, and energy in radio
networks [15] to mobile ad hoc networks under two worst-case
mobility models. The remainder of this paper is organized as fol-
lows. In Section 2, we first present some basic known mobility
models. We review models used in simulations as well as models
considered in theoretical analyzes like kinetic data structures. In

Section 3, we introduce our network model. Assuming that a fixed
time interval of length ∆ is given, we describe how we construct
the mobile ad hoc network for a set of stations to solve routing
problems. Further, we innovate the pedestrian and the vehicular
mobility as two worst-case mobility models. In Section 4, we de-
fine some network parameters which partly extend measures and
definitions like transmission range, interferences, spanner, power
spanner, and congestion to mobile networks. Further, we introduce
a measure called crowdedness that states a lower bound on the num-
ber of radio interferences. We concentrate on the distributed com-
putation of the network at MAC and physical layer and show the
main result that a mobile spanner hosts a path system that polylog-
arithmically approximates the optimal congestion. In Section 5, we
give techniques how to construct such mobile spanners with small
congestion, small interference number, small energy-consumption,
and small degree. We present a Hierarchical Grid based on a grid-
cluster technique and prove that its interference number can be up-
per bounded by a logarithmic term if we assume the crowdedness
to be logarithmic. One assumption in our approach is that all posi-
tioning information is available to all nodes. We discuss this prob-
lem in Section 6 and present two solutions: the first is based on a
positioning system and the second uses distances as location infor-
mation. This yields to a very dynamic data structure, the so-called
Mobile Hierarchical Layer graph that fulfills all our requirements.
We conclude our work with an overview about the results and give
some open questions and further research directions in Section 7.

2. PREVIOUS RESEARCH
Many mobility models have been proposed as a basis for simu-

lation of cellular and ad hoc networks. Most of them use a random
process to vary speed or direction of the moving objects, like the
random walk model and its variants. The most common model for
simulations of cellular networks is a random walk model which de-
scribes mobility as a stop-and-go motion between cells. According
to the fluid flow model every object moves with a randomly cho-
sen speed and direction for a predefined time interval. In contrast
to the random walk the motion is more predictable. The Gauss-
Markov model [13] is a bit of both the random walk and the fluid
flow model: Speed and direction are changed with an adjustable
amount of randomness, ranging from completely random to pre-
dictable, linear motion.

In the random waypoint model [12] the objects move between
randomly chosen positions where they pause for a certain time in-
terval. Their speed is uniformly distributed between zero and a
maximum. The speed chosen for the next motion period does not
depend on the speed of the previous period. Thus sharp turns and
sudden stops are possible, i.e. the acceleration is not bounded.

Besides these models, in which the movement of each object is
independent from others, there are mobility models that regard mo-
bility of a group of objects, e.g. the reference point group mobility
model [11] that defines for groups of objects a logical center that
determines direction, speed, and acceleration of each object. Other
examples are the column model, the pursue model, and the nomadic
community model. These models are less suitable to model worst
case mobility as they provide some kind of smoothed or uniform
mobility pattern. A survey of the mobility models mentioned above
can be found in [5, 4].

In the network model of Chatzigiannakis et al. [6] the nodes are
allowed to move arbitrarily while the support (a set of nodes con-
trolled by the protocol that form a virtual backbone) moves ran-
domly. The authors abstract from the geometric properties of this
movement and divide the motion space into cubes that approximate



a sphere that is given by a predefined transmission range. These
cubes are represented by the nodes of a motion graph, adjacent
cubes are connected by an edge. Then mobility of the support is
modeled by a random walk on this motion graph.

Another way to deal with mobility in ad hoc networks is to con-
sider what happens to the underlying topology when the nodes are
moving. This leads to the adversarial network model [2] in which
all communication links are under control of an adversary. A worst
case for mobility corresponds with the topological changes the ad-
versary may perform within some predefined restrictions.

An intrinsic property of mobile ad hoc networks is the mobility
of the nodes. Despite of this fact the network topology is mostly
designed for quasi-static nodes. Then, according to some events, a
new network topology is computed.

In the context of computational geometry Basch et al. introduced
the concept of kinetic data structures (KDS) [3] that describes a
framework for analyzing algorithms on mobile objects. In their
model the mobility of objects is described by pseudo-algebraic func-
tions of time and fully or partially predictable. The analysis of a
KDS is done by counting the combinatorial changes of the geomet-
ric structure that is maintained by the KDS. Therefore the worst
case mobility depends on the specific application for which the
KDS is designed. Another approach that captures unpredictable
mobility is the concept of soft kinetic data structures (SKDS) [7].
These data structures maintain an approximate geometric structure
that is updated by property testing and reorganization. SKDS are
evaluated with respect to the dynamics of the system, which is mea-
sured by the number of errors the data structure contains due to the
mobility of objects. Worst case mobility is rather described as num-
ber of changes that violate the internal structure than as a random
process. The mobility is regarded with respect to the specific pur-
pose of the SKDS. It is not characterized in terms of velocity and
direction.

The idea of kinetic data structures is also used in [8] to main-
tain a clustering of moving objects. This approach is used in [9]
to determine the head of each cluster in a mobile network. In each
cluster the nodes are directly connected to the head. The heads
and some intermediate gateway nodes are connected by a Delaunay
graph with restricted edge lengths that forms a backbone network.
In this network routing can be performed by a geometric forward-
ing scheme. To react on mobility the clustering is updated by an
event-based kinetic data structure.

3. THE MODEL
In our model we consider a fixed set S of n mobile stations

s1, . . . , sn in the Euclidean plane. We denote by si(t) the coordi-
nates of a mobile station si at time point t and by s′i(t) = dsi(t)/dt
its speed vector. Furthermore, s′′i (t) = ds′i(t)/dt denotes the ac-
celeration of si at time t, i.e. the change of the speed.

All mobile stations remain active all the time. We allow ad-
justable transmission power for each connection, which is high
enough such that all mobile stations never leave the maximum trans-
mission range of a mobile station. The mobile stations use omni-
directional radio antennae, i.e. all mobile stations inside a disk with
the sender as center and the transmission distance as radius can re-
ceive the message or will be disturbed while receiving data on a
different connection. We assume bidirectional communication on
a single frequency with time-multiplexing, i.e. using different time
slots. Data need to be acknowledged and for simplicity we assume
that the impact of acknowledgments is similar to the impact of sent
data.

3.1 The Mobile Ad Hoc Network
We try to keep all connections alive for at least a fixed time inter-

val of length ∆. This parameter is an over-all network parameter
which induces some stability into the network. It should be cho-
sen sufficiently large to set up the communication links between
neighbors, to update routing tables, and deliver some amount of
data. For a practical realization it may not be necessary to adopt a
synchronous round model as we will do now.

We assume that all nodes work synchronized in subsequent time
intervals of length ∆. Then, during each time interval of length ∆
the mobile ad hoc network performs the following operations.

1. Every mobile station determines the positions and speed vec-
tors of possible (and reasonable) communication partners.

2. Every mobile station establishes communication links to some
selected neighbors.

3. According to a routing algorithm basic routing information
is computed, e.g. by routing tables, packet flooding, or diffu-
sion algorithms.

4. The mobile network communicates data packets of the appli-
cations, i.e. telephone, e-mail, etc.

Note that this approach embodies the concept of a network pro-
tocol stack. The first phase refers to the physical layer, where phys-
ical data like transmission power and the change of the incoming
signal can be used to estimate relative distances and relative speed.
The second phase describes the task of the Medium Access Layer
(MAC). Note that the specific routing requests are not known in this
layer. Its task is to build up a general-purpose network which al-
lows efficient routing, while the network graph is pruned such that
the number of interfering edges is small.

In the third phase the routing algorithm can rely on a stable com-
munication network for some time span ∆. Then, the routing in the
mobile network is reduced to routing in a (temporary) static net-
work and standard techniques are applicable. The packet routes are
chosen to minimize latency, traffic-induced congestions and, typi-
cally for mobile devices, to reduce the transmission energy. In [15]
it is shown that even in the static case it is not possible to optimize
more than one of these parameters at the same time. However, in
the static case it is possible to build up a general-purpose-network
which enables the routing algorithm to choose its optimization pol-
icy afterwards. The fourth phase of our model describes the activity
induced by the upper-most layer of the network protocol stack, the
application layer.

In this paper we concentrate on the distributed computation of
the interconnection network by the MAC layer and the problem of
committing necessary location information in the physical layer.

3.2 Pedestrian Mobility
The pedestrian mobility model is a worst case approach relying

on all mobile stations obeying a speed limit of vmax. In this veloc-
ity bounded model the starting position si := si(0) is known and
for the speed vector s′i(t) = dsi(t)/dt it holds |s′i(t)|2 ≤ vmax.
This implies for the relevant time interval ∆ that all mobile stations
remain in a disk with radius vmax · ∆ around the starting position
si, i.e.

for t ∈ [0, ∆] : |si(t) − si|2 ≤ vmax ∆.

3.3 Vehicular Mobility
The vehicular mobility model describes the movement of n sta-

tions with bounded acceleration amax. It refers to transporta-
tion vehicles which can operate at high speeds, where the limita-
tion by the change of speed has a higher impact on the movement



than the maximum possible speed, e.g. cars, trains, aircrafts. Let
s′′i (t) = ds′i(t)/dt denote the acceleration vector of a mobile sta-
tion si, then we claim that for all mobile stations |s′′i (t)|2 ≤ amax.
Now, the starting speed vector s′i := s′i(0) at the beginning of
the time interval ∆ can be arbitrarily large. Yet, we assume that
at the beginning of the time interval [0, ∆] we know all locations
s1, . . . , sn and all speed vectors s′1, . . . , s

′
n. Then, we can estimate

the position of station i at time point t ∈ [0, ∆] by

|si(t) − ts′i − si|2 ≤ 1

2
amaxt

2 ≤ 1

2
amax∆

2 .

As a technical condition we require a polynomial bound on the
maximum distances and relative speed differences for both models,
i.e. for some constant k we claim |si − sj | ≤ O((vmax∆)k) in the
pedestrian model and |si − sj |+ |s′i − s′j | ≤ O((amax∆)k) in the
vehicular model.

4. MOBILITY AND NETWORK PARAME-
TERS

In our worst-case approach scenarios may appear where even
optimal networks have bad performance. To identify such scenarios
we introduce a network independent measure, called crowdedness.
We will see that it states a lower bound on the number of radio
interferences and the maximum degree of reasonable connection
networks.

In the velocity bounded model we define Crowdv(u) of a node
u by the set of all other nodes in distance 2vmax∆. Its cardinality
defines crowdv(u), the crowdedness of u.

In the acceleration bounded model we define the crowd of a
node u by

Crowda(u) := {w ∈ S \ {u} : |u − w|2 ≤ 1

2
amax∆

2

and |u′ − w′|2 ≤ 1

2
amax∆} ,

where u, w denote the starting positions, and u′, w′ the starting
vector of mobile stations for the time interval [0, ∆]. The crowded-
ness crowda(u) is defined by its cardinality. It can be interpreted as
the number of nodes that can approach u with maximum accelera-
tion amax in time ∆ such that si(∆) = sj(∆) and s′i(∆) = s′j(∆).

The overall crowdedness of a set of stations S is given by the
maximum crowdedness (α ∈ {a, v}):

crowdα(S) := max
u∈S

{crowdα(u)} .

Transmission Range One crucial property of our mobile net-
work approach is to build up persistent links for the time interval
[0, ∆]. The only method to ensure this property for a communica-
tion link is to increase the transmission radius such that the maxi-
mum distance that two stations can reach is covered. In the velocity
bounded pedestrian model we therefore redefine the transmission
distance of two stations u, w ∈ S by

|u, w|v := 2vmax∆ + |u − w|2 .

In the vehicular model the following term describes the neces-
sary transmission range.

|(u, u′), (w, w′)|a := max{|u − w|2,

|u − w + (u′ − w′)∆|2 + amax∆
2} .

Note that both definitions are symmetric and fulfill the triangle in-
equality, i.e. |a, b| + |b, c| ≥ |a, c| (For a shorter notation we de-
note for the quadruple (ux, uy, u′

x, u′
y) simply u). Proofs for the

correctness of these statements can be found in the Appendix.
The union of all (bi-directional) communication links E describes

the mobile ad hoc network. The diameter diam(G) of this undi-
rected graph G is described by the maximum hop-distance between
a pair of nodes. The degree deg(v) of a node v is the number of
established communication links at v.

Interferences Modern communication networks use many fre-
quencies and sophisticated spread spectrum techniques, that allow
many senders to share the same medium. However, in most sys-
tems the bandwidth of the medium can be outnumbered by the
communication load of the participants. For a theoretical approach
we assume that such spread spectrum systems behave like a one-
frequency network with a probabilistic time schedule.

In our one-frequency model with adjustable transmission dis-
tances edges interfere if a mobile station is inside the transmission
area of an edge and messages are sent simultaneously [15]. Be-
cause of our little knowledge about the movement of the mobile
stations, we cannot exactly predict interferences. For an accurate
analysis one has to take into account the sending time of a mes-
sage, the movements of senders and receivers, their transmission
radii, the impact of control data induced by distance measurements
and acknowledgments.

For a theoretical approach we need a simple definition that al-
lows us to classify mobile networks. Radio interferences result
from a combination of bad timing, bad locations and large trans-
mission radii. We want to concentrate on the geographical cause
of interferences and count all interferences of communication links
that could interfere at some time. In the static wireless network sce-
nario this can be described by deciding, whether a node resides in
the transmission area of a communication link. In our worst-case
mobility scenario the situation is more difficult.

We do not know in advance whether the mobile station could
move into the transmission area of a link. If we consider the worst
case motion for radio interferences we encounter numerous such
interdependencies. This approach would lead to a definition where
small local changes of positions can influence the radio interfer-
ences of all other mobile stations. We would like to use a practica-
ble local definition for radio interferences, which only uses knowl-
edge from the mobile stations of the interfering and interfered links.
Furthermore, we want to exclude the timing of the movement from
the definition of radio interferences.

We took several alternative models for interferences into con-
sideration. One of the possible approaches is to count every radio
interference that could happen for some time under every allowed
movement. But this turns out being too pessimistic. We also con-
sidered a too optimistic model where we only count interferences
that must happen under every possible movement. For a reasonable
compromise between these two extreme models assuming a certain
adversarial or friendly behavior of the mobile stations, we consider
a compromise assuming that we only count the radio interferences
of mobile stations using the average route. In the pedestrian model
the average route is to remain on the starting position, while in
the vehicular model it describes the unaccelerated floating with the
original speed.

So, we define interferences as if the distance between two in-
terfering stations is not stretched by the additional constant that is
given by the velocity bound in the pedestrian model and the ac-
celeration bound in the vehicular model. Thus, in our pedestrian
model we count interferences as if the radio stations are not mov-
ing at all. For the vehicular model we count only interferences as



if the interfering mobile stations are not accelerating (yet using a
oversize transmission radius to compensate for worst-case move-
ments). Furthermore, we count only interfering links if they inter-
fere for the complete time span ∆.

In this interference model two edges do not interfere even if they
pass each other at a close distance with high relative speed. One
may argue that in this case the interaction between the links is so
short that it can be neglected (Of course we are aware of worst-case
scenarios of passing mobile clusters giving a counter-example). As
a physical argument, the large relative speed difference may be
large enough to cause a frequency shift, known as Doppler-effect,
which prevents radio interferences.

In the velocity bounded model an edge g = {p1, p2} interferes
with edge e = {q1, q2} if

∃pi ∈ g, ∃qj ∈ e : |pi − qj |2 ≤ |g|v .

In the acceleration bounded model we model interferences only
between edges which interfere for the complete interval [0, ∆], if
the velocity vectors of their nodes remain the same. Formally we
define that edge g = {p1, p2} interferes with edge e = {q1, q2} if

∃pi ∈ g,∃qj ∈ e : |pi − qj |2 ≤ |g|a and |p̃i − q̃j |2 ≤ |g|a ,

where ũ := u + ∆u′ denotes the position of u at time point ∆ if
the speed vector of u remained unchanged during [0, ∆].

In both mobility models (α ∈ {a, v}) we define Intα(e) as the
set of edges that interfere with edge e. The interference number
Intα(G) of a mobile network G is given by the maximum inter-
fered set of edges:

Intα(G) := max
e∈E(G)

{|Intα(e)|} .

Now, the crowdedness of the underlying set of mobile stations
states a lower bound on the number of interferences every con-
nected mobile network produces.

THEOREM 1. In both mobility models (α ∈ {a, v}) we observe
for all connected graphs G = (S, E):

Intα(G) ≥ crowdα(S) − 1 .

PROOF. Let u ∈ S be a node for which crowdα(u) is maxi-
mal in G, i.e. crowdα(u) = crowdα(S), and let e be an arbitrary
edge incident to u. Such an edge exists, because G is connected.
We define the set E(Crowdα(u)) as the set of edges incident to
a node from Crowdα(u), i.e. E(Crowdα(u)) := {g = {w, z} :

w ∈ Crowdα(u)}. Consider the Graph Ĝ which is obtained from
G by substituting each node of S \ Crowdα(u) by a new node
û. (The position of û is irrelevant.) The edges which are incident
to a node from S \ Crowdα(u) in G become incident to û in Ĝ
(multiple edges are deleted). Note, that u ∈ S \ Crowdα(u), so
S \ Crowdα(u) is not empty. Therefore the number of nodes in
Ĝ is crowdα(u) + 1. Furthermore each edge in Ĝ is incident to
a node of Crowdα(u) and so contained in E(Crowdα(u)). Since
G is connected, the graph Ĝ is also connected. Hence, the num-
ber of edges of E(Crowdα(u)) in Ĝ is at least crowdα(u). Since
each edge in Ĝ is incident to a node of Crowdα(u), it is contained
in E(Crowdα(u)). Hence |E(Crowdα(u))| ≥ crowdα(u). We
show that each of the edges in E(Crowdα(u)) \ {e} is interfer-
ing with e. This will imply that Intα(G) ≥ crowdα(u) − 1 =
crowdα(S) − 1.

In the velocity bounded model Crowdv(u) is defined as the set
{w ∈ S : |u − w|2 ≤ 2vmax∆ and w 6= u}. Then each edge
g = {w, z} ∈ G incident to a node w ∈ Crowdv(u) interferes
with e, because |u − w|2 ≤ |g|v + 2vmax∆ holds. Therefore,
E(Crowdv(u)) \ {e} ⊆ Intv(e).

In the acceleration bounded model the set Crowda(u) is de-
fined as {w ∈ S : |u − w|2 ≤ 1

2
amax∆

2 and |u′ − w′|2 ≤
1
2
amax∆ and w 6= u}. For each edge g = {w, z} ∈ G incident

to a node w ∈ Crowda(u) interferes with e, because |u − w|2 ≤
|g|a = max{|u−w|2, |u−w + (u′ −w′)∆|2 + amax∆

2} holds.
Hence E(Crowda(u)) \ {e} ⊆ Inta(e).

Mobile Spanner A graph G is called a mobile spanner accord-
ing to pedestrian or vehicular mobility (α ∈ {a, v}) if for all nodes
u, w ∈ S there is a path (u = p0, p1, . . . , pk = w) in G such that

k�
i=1

|pi−1, pi|α ≤ c · |u, w|α ,

for some constant c. For the optimization of the energy consump-
tion we use the model that transmission power for sending to a
distance d increases as a function dβ , where β ≥ 2. (For the free
space propagation model β = 2, for the so-called two ray model,
which also considers multipath fading, β = 4.) Therefore, we de-
fine the notion of mobile power spanner analogously to the mobile
spanner by replacing the last inequality with

k�
i=1

(|pi−1, pi|α)β ≤ c · (|u, w|α)β ,

LEMMA 1. For both mobility measures every mobile spanner
is also a mobile power spanner.

PROOF. Consider a mobile spanner G and a path (u = p0, p1,
. . . , pk = w) in G.

k�
i=1

(|pi−1, pi|α)β ≤ � k�
i=1

|pi−1, pi|α � β

≤ (c · |u, w|α)β = c′ · (|u, w|α)β

Congestion Following the approach in [15] we observe on each
communication link e some packet load `(e), which will be de-
livered in time interval [0, ∆]. This load is caused by packets fol-
lowing routes (also called paths) which include e. The union of all
these paths is called a path system P.

As a worst case estimation on the number of packets that cause
a congestion at link e we have to count all packets `(e) as well as
all packets being transported on interfering edges, which leads to
the following definition of congestion Cα,P(e) of an edge e with
respect to a path system P for α ∈ {a, v}:

Cα,P(e) := `(e) +
�

g∈Intα(e)

`(g) .

We describe the mobile network congestion by

Cα,P(G) := max
e∈E(G)

Cα,P(e) .

If we know the optimal path system P in advance, the defini-
tion of the underlying optimal network is given by all edges used
in the path system. However, because of the structure of the proto-
col stack we have to determine the network before knowing a path
system or even routing requests. We solve this problem by showing
that a mobile spanner hosts a path system that polylogarithmically
approximates the optimal congestion.

THEOREM 2. Given a mobile spanner G then for every optimal
path system P on a complete network C there exists a path system
P ′ on G such that for α ∈ {v, a}

Cα,P′(G) = O(Cα,P(C) · Intα(G) · log n) .



PROOF. We use techniques presented in [15] in Theorem 5. Let
Kv := 2vmax∆ and Ka := ∆2amax. Let d(v) = 2, d(a) = 4. In
this proof we denote for the vehicular measure we represent a node
u by

u = (u1, . . . , u4) = ��� si − ∆s′i
2 � , � si +

∆s′i
2 ��� .

Then |u, w|a = max{|u1,2, w1,2|2, |u3,4, w3,4|2 + Ka}, where
u1,2 := (u1, u2). We define the metric | · |am as

|u, w|am := max{|u1,2, w1,2|2, |u3,4, w3,4|2} .

The relationship between this metric and the transmission distance
is the following.

|u, w|a − Ka ≤ |u, w|am ≤ |u, w|a ,

while the relationship between L2 and the transmission distance in
the pedestrian model is

|u, w|v = |u, w|2 + Kv .

Define the interference region Dα(e) of an edge e as the set of
points, which can be interfered by an edge e, i.e.

Dv(e) := {x ∈ � d(α) | ∃p ∈ e : |x − p|2 ≤ |e|v} ,

Da(e) := {x ∈ � d(α) | ∃p ∈ e : |x − p|am ≤ |e|a } .

For the vehicular distance measure we need the following Lemma.

LEMMA 2. There are ca ≤ 72 disjoint sub-spaces A1, . . . , Akα

⊂ � 4 such that ∀i ∈ {1, . . . , kα} ∀u, p,w ∈ Ai : |u, w|am ≤
|u, p|am =⇒ |p, w|am ≤ |u, p|am .

PROOF. Without loss of generality let u = (0, 0, 0, 0). Define
for k, j ∈ {1, . . . , 36}:

A6j+k−6 := � x ∈ � 4 | � (x1, x2) ∈ � kπ

3
, (k + 1)

π

3 �
and � (x3, x4) ∈ � j π

3
, (j + 1)

π

3 �
and |x1, x2|2 ≥ |x3, x4|2 	 ,

A36+6j+k−6 := � x ∈ � 4 | � (x1, x2) ∈ � kπ

3
, (k + 1)

π

3 �
and � (x3, x4) ∈ � j π

3
, (j + 1)

π

3 �
and |x1, x2|2 < |x3, x4|2 	 .

where � (a, b) denotes the angle between vector (a, b) and (1, 0).
Let p, w ∈ A1. Then, |0, p|am = |p1, p2|2 and |0, w|am = |w1, w2|2.
Assume |w1, w2|2 ≤ |p1, p2|2. Then, by a straightforward geomet-
ric argument |(p1, p2) − (w1, w2)|2 ≤ |p1, p2|2.

Since |w3, w4| ≤ |w1, w2| ≤ |p1, p2| and |p3, p4| ≤ |p1, p2|
it follows that |(p3, p4) − (w3, w4)|2 ≤ |p1, p2|. This implies
|p, w|am = max{|(p1, p2)−(w1, w2)|2, |(p3, p4)−(w3, w4)|2} ≤
|p1, p2|. This argumentation also applies for all the other sub-
spaces.

We extend the notion of congestion to nodes by counting all traf-
fic which send out radio interferences to the location of the point:

Cα,P(u) :=
�

e∈E(P):u∈Dα(e)

`(e) .

For an edge e = (u, w) the following relationship is valid.

max{Cα,P (u), Cα,P(w)} ≤ Cα,P(e) ≤ Cα,P(u)+Cα,P(w) .

The maximum congestion of any point in � d is linearly bounded
by the congestion of the network.

LEMMA 3. For all graphs G = (V, E) with V ⊂ � d(α) , all
path systems P and all points x ∈ � d(α):

Cα(x) =
�

e∈E(G):x∈Dα(e)

`(e)

≤ kα · max
e∈E(G)

�
e′∈Int(e)

`(e′) = kαCα(P) ,

for constants kα > 1.

PROOF. For the point x we partition the space into cα disjoint
sub-spaces A1, . . . , Acα

such that for all u, v ∈ Ai |u, x|α ≤
|v, x|α implies |u, v|α ≤ |v, x|α for α ∈ {2, am}. Then, for
the pedestrian mobility model the angle between xu and xv less or
equal than π/3. Clearly, the optimal choice is cv = 6, which resem-
bles six sectors centered at x. For the vehicular model it follows by
Lemma 2 that ca ≤ 72 suffices. Now choose for each sub-space Ai

a vertex ui ∈ Ai that minimizes the distance |x, ui|α (if the sub-
space is not empty). For every edge (v, w) with x ∈ Dα({v, w})
we now show that there exists a vertex ui with ui ∈ Dα({v, w}).

Assume that x ∈ Dα({v, w}) and let Ai be in the sub-space
where v lies in. Since |ui, x|α ≤ |x, v|α we have |ui, v|α ≤
|x, v|α ≤ |v, w|α. Therefore we have�

e∈E(G):x∈Dα(e)

`(e) ≤
cα�
i=1

�
e∈E(G):ui∈Dα(e)

`(e)

≤ cα · max
u∈V (G)

�
e∈E(G):u∈Dα(e)

`(e)

≤ cα · max
e∈E(G)

�
e′∈Int(e)

`(e′) .

LEMMA 4. If all the transmission radii of a mobile network
are increased by a constant factor, then the congestion increases
by at most a factor of O(log(V )), if for all mobile stations hold
|si − sj | + |s′i − s′j | ≤ O((amax∆)k) in the vehicular model and
|si − sj | ≤ O((vmax∆)k) in the pedestrian model.

PROOF. First we consider the path system Pr which consists of
all sub-paths of P which consists only of edges with transmission
distance in the range [r, 2r) for r ≥ kα. Clearly, Cα,Pr

(u) ≤
Cα,P(u).

Let u be a node, which maximizes Cα,Pr
(u). Now we place c

points p1, . . . , pc in the surrounding of u such that for α ∈ {2, am}

∀x ∈ � d ∃i ∈ {1, . . . , c} : |pi − x|α ≤ r

and ∀i ∈ {1, . . . , c} : |pi − x|α ≤ 2cr .

Such an arrangement of a constant number c of points can be
achieved by a grid placement of pi. Now, every edge that inter-
feres with a point u with transmission radius w ≤ 2cr has had an
interference with a point pi, when the transmission radius was in
the interval [r, 2r). This implies for the congestion C ′

α,Pr
(u) of a

point for a network where the transmission range is c times higher
than necessary the following.

C′
α,Pr

(u) ≤ Cα,Pr
(u)+

c�
i=1

Cα,Pr
(pi) ≤ (c+1)kαCα,Pr

(G) .



There are O(log n) different intervals [r, 2r) that cover all avail-
able transmission distances. Each of these intervals induces con-
gestion of at most (c + 1)kαCα,Pr

(G). Summing up these terms
proves the claim.

LEMMA 5. Let C∗ be the congestion of a given (congestion-
optimal) path system P∗ for a vertex set V . Then, every mobile
spanner N can host a path system P ′ such that the induced load
`(e) in N is bounded by `(e) ≤ c′ C∗ log n for a positive constant
c′.

PROOF. For the routing in the mobile spanner we reroute all
messages of an edge e = (u, w) of the path system P∗ to the
shortest path Pu,w in the mobile spanner N between u and w. A
direct implication of the spanner property is that for all nodes q of
Pu,w we observe |q, u|α ≤ c · |u, w|α and |q, w|α ≤ c · |u, w|α for
α ∈ {2, am} and constant c > 1.

Now we increase the transmission radius of all nodes in the op-
timal path system by a constant factor c. Then all nodes that will
be used for re-routing suffer interferences with the original paths.
And the congestion of an edge of the detour can be used as an upper
bound for the communication load induced by all detours.

We have seen in Lemma 4 that the congestion increases only by
a logarithmic factor if the the transmission radius is increased by a
constant factor (if the maximum relative distance and relative speed
is polynomial in Kα).

In the last lemma we have shown that the number of packets
transfered on detours is at most O(log n) higher than the conges-
tion in the optimal network. We denote by Intα(G) the maximum
number of interferences in the mobile spanner G. If the loads of all
interfering edges can be bounded by m, then the overall congestion
is at most m · Intα(G), which proves Theorem 2.

5. CONSTRUCTING MOBILE NETWORKS
Now we present techniques to construct mobile spanners with a

small number of interferences. We use a grid-cluster technique,
which adopts ideas of [1] for static ad hoc networks. For the pedes-
trian model we consider a grid of cell size vmax∆. For every grid
cell, where at least one mobile station resides at the beginning of
the time interval [0, ∆], we elect one of them as a cluster head uc.
All other mobile stations in this cell have a communication link
to the cluster head forming a star for each cell. The set of cluster
heads Sc will be connected by a (static) spanner.

In the vehicular model, we consider a 4-dimensional grid Gi,j,k,`,
where each cell forms a rectangle. A mobile station si with coordi-
nates (p1, . . . , p4) = ((si)x, (si)y, (s′i)x, (s′i)y) is in the grid cell
q1, . . . , q4 ∈ � 4, i.e. si ∈ Gq , if qi = bg0(p)ic, where

gk(x, y, vx, vy):= � x2−k

6amax∆2
,

y2−k

6amax∆2
,

vx2−k

2amax∆
,

vy2−k

2amax∆� .

Like in the pedestrian model we elect a cluster head for each
cell and a star-like communication network in each cell. All cluster
heads will be connected by a (static) four-dimensional spanner.

LEMMA 6. The grid-cluster-technique constructs mobile span-
ners for both mobility models.

PROOF. For a given mobile station u let h(u) denote the clus-
ter head of the cell where u is located. We choose as a path for
two given nodes u, w the shortest path between h(u) and h(w)

using only cluster heads combined with the edges (u, h(u)) and
(h(w), w).

For the velocity bounded mobility model the transmission dis-
tance between a node and its cluster head is at most (

√
2+1)vmax∆.

The number of hops h between the cluster heads is linearly bounded
by the Manhattan-distance between u and w according to the grid.

Hence, the additional impact of every hop of the path is linearly
bounded by the distance. In the case that the two nodes are very
near, i.e. |u, w|2 ≤ vmax∆, one uses that |u, w|a ≥ 2vmax∆. Be-
cause of the nearness of the cluster heads, there is only a constant
number of hops and a linear long detour with respect to 2vmax∆ ≤
|u, w|a.

For the acceleration bounded mobility model an analogous ar-
gumentation applies.

Note that the spanning property does not imply a bound on the
number of interferences. For this, we can use the Hierarchical
Layer Graph construction presented in [15, 14] as a spanner. Here,
we use a simplified approach, called Hierarchical Grid (because
of the knowledge of absolute coordinates).

We start with the grid G0 = G introduced above and the set of
all stations S0 := S, and promote for each cell one mobile station
for being cluster head. The set of these cluster heads form the set
S1. In this level only cluster heads may communicate with nodes in
their cell. Besides these links, cluster heads have communication
links with all cluster heads in neighbored cells sharing at least a
corner of the grid.

We iterate this extended grid-cluster-technique until only one
point is left. Formally, in the i-th level of the network structure,
we start with a set of stations Si and consider the grid Gi, with
grid coordinates g(sj). A cell q ∈ � 4 contains all points p with
bgi(p)`c = q`. We assign for each cell a cluster head and add it
to the set Si+1. We connect each of the cluster heads to all nodes
of rank i in its cell. Then, we connect all cluster heads to all clus-
ter heads of neighbored cells. For the pedestrian model we use an
analogous construction based on the two-dimensional grid cell size
2vmax∆.

THEOREM 3. For both mobility models the Hierarchical Grid
Graph constitutes a mobile spanner with at most O(crowdα(V )+
log n) interferences.

PROOF. We start with the proof that the Hierarchical Grid Graph
is a mobile spanner. If two nodes lie in the same grid cell of G0,
then they have hop-distance of at most 2, since both of them are
connected with the cluster head. Since |u, w|a ≥ amax∆

2 and
|u, w|v ≥ 2vmax∆ for each pair of nodes u, w and the cell size
is linear in this distance, this case is settled. (Note that |u, u|a =
amax∆

2 and |u, u|v = 2vmax∆ hold for each node u.)
We now prove that the mobile spanning property holds with re-

spective to the grid distance measure |g0(u), g0(w)|2. We recur-
sively define a path Pu,w from u to w. Let i be the lowest level of
the hierarchical grid, where the ancestor u∗ of u and the ancestor
w∗ of w are in neighboring grid cells, i.e. the cell of u∗ and the cell
of w∗ are sharing at least one corner, where the ancestor of a node is
defined recursively as its cluster-head and an ancestor of its cluster-
head. Such a level exists, since at the second highest level each pair
of cells are neighbors of each other. The nodes u∗ and w∗ are con-
nected in level i by an edge {u∗, w∗} per definition. We add the
edge {u∗, w∗} to Pu,v . Now we must construct a path Pu,u∗ and
Pw,w∗ . This paths consist of the edges from a node to its cluster-
head. Then the path Pu,w is defined as Pu,u∗ ∪{u∗, w∗}∪Pw,w∗ .

Now we give a bound on the length of Pu,w . Let x be the side
length of the cells at level i. Then |u, w|2 ≥ x/2, since the ancestor



of u and w are not in neighboring cells at level i−1, otherwise they
would be still connected by an edge at this level. The Euclidean
length of the edge {u∗, w∗} is at most two times the length of the
diagonal of a cell at level i, i.e. it is at most 2x

√
d ≤ 4x, where d

is the dimension of the grid. The length of Pu,u∗ is the sum of the
lengths of the edges in Pu,u∗ , which is at most x

√
d � i

j=0 2−j ≤
4x. Similarly, the length of Pw,w∗ is at most 4x, and therefore
the length of Pu,w is at most 12x. This implies that the Euclidean
stretch factor is at most 24.

It remains to show that for each pair of nodes a and b

|g0(a), g0(b)|2 = Θ(|a, b|a) , for |g0(a), g0(b)|2 ≥ 1 (1)

(if we consider ∆, amax, resp. vmax as constants). This follows
immediately from the definition of the cell size.

For the number of interferences, it is essential that every edge e
connecting neighbored cells in Gi only interferes with an edge e′,
if for a node u of e and w of e′ it holds |gi(u), gi(w)|2 = O(1).
This follows directly from (1). Hence, most of the interferences
occur at the lowest level of the grid G0, where a mobile station
can suffer under the radio interferences of at most O(crowdα(S))
mobile stations in some constant number of near cells. In every
higher grid level this amount reduces to a constant number of radio
interferences, because only one cluster head resides in a cell and
the number of connections with cluster heads of next lower or same
level is constant. The assumption at the end of Section 3 implies
that we have at most O(log n) grid levels, which completes the
proof.

6. POSITION INFORMATION MANAGE-
MENT

In the previous sections, we have assumed that all positioning
information is available to all nodes. But distributing this informa-
tion is a non-trivial task. This process has to be done in the physical
layer, where routing is not available. But the physical layer may use
a positioning system (e.g. GPS) which enables every mobile station
to learn its position and absolute speed. Then, it can use short radio
broadcast messages, called beacons, to inform all neighbors in the
transmission range.

Another solution is to measure the distances between mobile sta-
tions by comparing the transmission power (which the sender may
write in a data packet) with the received power. On first sight this
looks similar to the position beacon model. However, using only
distance information it is impossible to compute the relative speed
of the communication partner.

We dedicate this section to present solutions for dynamic posi-
tion information management under the vehicular mobility model
(which can be easily applied to the pedestrian mobility model as
well).

6.1 Coordinating Location Beacons
If the mobile stations can determine their absolute coordinates

(and thus can compute absolute speed vectors), we suggest to broad-
cast this information in the physical layer in order to construct the
basic network of the next round (of time span ∆).

A straightforward solution is sending special beacon signals car-
rying location and identification information. One can assign spe-
cial time slots for these beacon signals, which are not propagated
by other nodes. However, if all nodes send these beacons at maxi-
mum transmission range, then n beacon signals would interfere at
each node. It turns out that a data structure as the Hierarchical Grid

helps to reduce the necessary transmission range and the size for
the beacon time slot. For this, we use the following observation.

LEMMA 7. Let si, sj be mobile stations under vehicular mo-
bility and let s̃i := si(∆), s̃j := sj(∆). Then, for k > 0

2

3
|gk(si), gk(sj)|∞ − 2−k ≤ |gk(s̃i), gk(s̃j)|∞

≤ 4

3
|gk(si), gk(sj)|∞ +

1

6
2−k .

PROOF SKETCH. The relative change of the position coordi-
nates x(si)−x(s̃i) is bounded by at most ±(∆ · |(x(s′i)−x(s′j)|+
amax∆

2), while the relative change of the velocity coordinate
x(s′i) − x(s̃′i) is bounded by ±2amax∆ and analogously for the
y-coordinates. The rest of the proof follows straightforward by a
case distinction.

This observation helps to bound the dynamic changes of the Hi-
erarchical Grid Graph. If a node u has rank i > 1 in round t, then
the number of nodes of equal rank in the same cell as u is bounded
by 9 in the pedestrian model and by 81 in the vehicular model.

Using this observation, we currently are working on an efficient
data structure based on the Hierarchical Grid where the movement
of a node in the hierarchical data structure is bounded. Our goal
is to find a selection strategy for assigning cluster heads such that
a cluster head of rank i is assigned at most rank i + 1 in the next
round. This would have implications for the necessary transmission
range of the location beacons. To get the information for coordi-
nating cluster heads in the next round each node of rank i can use a
transmission range which is only a constant factor larger than those
of adjacent edges. As a consequence, the number of time slots oc-
cupied by the beacon signals can be reduced significantly.

6.2 Distances as Location Information
There is a number of reasons why absolute coordinates in mobile

stations are not available, e.g. size and cost of GPS subsystems,
reachability, accurateness. However, we will show that little rel-
ative distance information is sufficient to maintain a good mobile
network structure. We assume, that a mobile station can measure
the distance to another station by measuring the receiving transmis-
sion power. Such measurements can be performed in the physical
layer of the protocol stack and we reduce the number of measure-
ments, while still maintaining a mobile network similar to a grid-
cluster network. Define δi,j(t) = |si(t) − sj(t)|2.

LEMMA 8. Given distances δi,j(−∆) and δi,j(0) it is possible
to approximate the transmission distance |si, sj |a by a factor of 5.

PROOF. We use

δ̃ := max{δi,j(0), |2 δi,j(0) − δi,j(−∆)|, amax∆
2}

as an approximation for |si, sj |a and show that δ̃ ≤ |si, sj |a ≤
5δ̃ . Assume si measures the distance to sj(−∆) and sj(0). Let
d := si(0)−sj(0) the distance at time 0 and v(t) := s′i(t)−s′j(t)
the relative velocity. Since both stations may accelerate we assume
that si is fixed and sj may accelerate with 2amax. First we prove
that δ̃ ≤ |si, sj |a. Because δi,j(0) = |si, sj |2 we only have to
show that |2δi,j(0)− δi,j(−∆)| ≤ |d + v∆|+ amax∆

2. The term
|δi,j(0)−δi,j(−∆)| represents the estimated average velocity dur-
ing [−∆, 0]. If si lies in the middle between sj(−∆) and sj(0),
the measured velocity is 0 and thus underestimated. Apart from this
exceptional case, the true relative velocity at time 0 may differ from
the estimated average value by an error of±amax∆ because sj may
accelerate/decelerate with 2amax. Thus |2δi,j(0) − δi,j(−∆)| =



|d+v∆±amax∆| and δ̃ ≤ |si, sj |a. Now, we show that |si, sj |a ≤
5δ̃. We can minimize δ̃ if we position si in the middle of sj(−∆)
and sj(0). |d+v∆| can be maximized if sj accelerates with 2amax

during [−∆, 0] (The acceleration in [0, ∆] is irrelevant). For the
distance estimation δi,j(0) = 1

2
(|v(−∆)|∆ + amax∆

2) =: r.
The estimation yields δ̃ = max{r, 2r − r, amax∆

2}. At time
0 the velocity v(0) = v(−∆) + 2amax∆ and thus |si, sj |a =
r + |v(−∆)|∆ + 3amax∆

2 = 3r + 2amax∆
2. If we choose

v(−∆) = amax∆ so that r = amax∆
2, then the ratio |si, sj |a/δ̃

is maximized and at most 5.

Based on the physical restriction on the movements of mobile
stations, we have found a dynamic data structure, called Mobile
Hierarchical Layer graph (MHL-graph). Essentially, it uses the
same ideas as the Hierarchical Grid graph, if one replaces the grid
distance measure with the Euclidean L2-norm. Again, one can
show that this distance measure can be approximated by two dis-
tance measurements at different time points. The notion of cells
will be replaced by a disk around nodes of certain rank. These
MHL-graphs are mobile spanners and approximate the minimum
number of mobile interferences by a constant factor.

Currently, we are working on a distributed algorithm that up-
dates the Hierarchical Grid using only O(crowda(V )+ log n) dis-
tance measurements per node at time 0 and −∆. This means that
the Hierarchical Grid of the current round initiates distance mea-
surements between dedicated nodes, that provide the necessary in-
formation to construct the Hierarchical Grid structure of the next
round.

7. CONCLUSION AND OPEN PROBLEMS
We have discussed two worst case models for mobility. In the

first pedestrian motivated model we bound the speed by a speed
limit of vmax. In the other model designed for the special mobility
induced by high-speed vehicles we assume that the acceleration of
all nodes is bounded by a constant amax. To ensure some elemen-
tary stability in a wireless ad hoc network we adjust the transmis-
sion range of senders such that we can guarantee the persistence of
all communication links for at least a time period of length ∆.

For the network construction we concentrate on the medium ac-
cess layer, which builds up communication links without known
routing tasks. We have presented a distributed algorithm to build
up such an elementary mobile network, which allows small con-
gestion, few interferences, low energy data routes, small degree
and small diameter as summarized in the following corollary.

COROLLARY 1. There exist distributed algorithms that con-
struct mobile networks for the velocity bounded and the accelera-
tion bounded mobility model with the following properties:

1. The mobile networks allows data routes on this mobile net-
work inducing a congestion of at most O(log2 n) times the
congestion of the optimal routing.

2. The interference number of the mobile network approximates
the optimal interference number by a factor of O(log n).

3. Energy-optimal routes can be approximated by a constant
factor.

4. The degree is bounded by O(crowdα(V ) + log n) and the
diameter is at most O(log n).

Figure 3: Vehicles on a highway with different speed vectors

For the routing problem this does not imply that small conges-
tion, low energy and short routes can be optimized by the same
routing policy. Already for the static case of wireless networks
one experiences trade-offs between any two of these measures [15].
However, the algorithms presented here, build up a general-purpose
communication network, which performs well for all kinds of rout-
ing requests and has reasonable approximation ratios for any rout-
ing policy concerning congestion, energy or dilation.

As a side effect of our network construction for the vehicular
mobility model we achieve a data structure, where clustering takes
locality of positions and movement into account. E.g. consider a
highway of two lanes in each direction, see Figure 3. All algorithms
and data structures, neglecting the impact of relative speed, build up
too many communication links between the opposing lanes. How-
ever, these links are very unstable and hence expensive. In our
model communication links along each direction are much more
frequent and, if there is a choice, then the communication link
across the middle of the highway will be established between slower
moving vehicles (e.g. trucks) instead faster ones (and this is even
the case if the fast vehicles are nearer to each other).

There is a number of open questions left by this first approach
to velocity and acceleration bounded mobility. First the modeling
of interferences of moving edges, presented here, is only a rough
estimation. It is not clear how a mobile network design may look
for a more accurate model.

The movements of the communication partners also affects the
routing algorithms. We have neglected the problem of long routes,
that need more time than the update time ∆. Possibly, communi-
cation can be improved if for the communication paths those nodes
are preferred that also move towards the receiver’s direction.

The distributed measurement and computation of the relative
locations and relative speed vectors states a problem. We have
seen that a rough approximation can be deduced from the receiving
transmission energy and its change in time. However, for the con-
struction of a reasonable basic network, a direct implementation of
previous approaches needs some interaction between location bea-
cons and distance measurements. We are currently working on an
efficient update strategy for mobile spanners such that the number
of these interactions is minimized. We are also working on com-
puter simulations [17, 16] and on the implementation of a prototype
mobile ad hoc network based on infrared directed communication
[10]. Both enables us to validate our communication strategies un-
der practical conditions. In a next step we will evaluate our mo-
bility models by implementing the presented mobile hierarchical
structures in our simulation environment SAHNE. For this purpose
it might be possible that we need some practical modifications but
even for this reason we are curious about intensive simulations.
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[16] S. Rührup, C. Schindelhauer, K. Volbert, and M. Grünewald.
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APPENDIX

A. PROPERTIES OF THE DISTANCE MEA-
SURES

The distance measures |u, w|v and |u, w|a are symmetric and ful-
fill the triangle inequality.

PROOF. For the velocity bounded model the symmetry and the
triangle inequality of the distance measure follows from the sym-
metry and triangle inequality of the Euclidean norm. For the ac-
celeration bounded model the symmetry of the distance measure
also follows from the symmetry of Euclidean norm. We prove the
triangle inequality:

First, we define | · |∗
a

and proof the triangle inequality:

|u − w|∗
a

:= |u − w + (u′ − w′)∆|2 + amax∆
2

= |u − v + v − w + (u′ − v′ + v′ − w′)∆|2
+amax∆

2

≤ |u − v + (u′ − v′)∆|2 + |v − w + (v′ − w′)∆|2
+amax∆

2

≤ |u − v + (u′ − v′)∆|2 + amax∆
2

+|v − w + (v′ − w′)∆|2 + amax∆
2

= |u − v|∗
a

+ |v − w|∗
a

Then, we prove the triangle inequality for the the distance mea-
sure |u, w|a.

|u, w|a = max{|u − w|2, |u − w|∗
a
}

= max{|u − v + v − w|2, |u − v + v − w|∗
a
}

≤† max{|u − v|2 + |v − w|2, |u − v|∗
a

+ |v − w|∗
a
}

=‡ 1

2

��� |u − v|2 + |v − w|2 + |u − v|∗
a

+ |v − w|∗
a

���
2

+
1

2

��� |u − v|2 + |v − w|2 − |u − v|∗
a
− |v − w|∗

a

���
2

≤ 1

2

��� |u − v|2 + |u − v|∗
a

���
2

+
1

2

��� |v − w|2 + |v − w|∗
a

���
2

+
1

2

��� |u − v|2 − |u − v|∗
a

���
2
+

1

2

��� |v − w|2 − |v − w|∗
a

���
2

= max{|u − v|2, |u − v|∗
a
} + max{|v − w|2, |v − w|∗

a
}

= |u, v|a + |v, w|a
† follows from the triangle inequality for | · |2 and | · |∗

a
.

‡ max{a, b} = 1
2
|a + b| + 1

2
|a − b| ∀a, b ∈ � 0


