
Online Multi-Robot Exploration of Grid Graphs with
Rectangular Obstacles

Christian Ortolf
University of Freiburg

Department of Computer Science
Georges-Koehler-Allee 51
79110 Freiburg, Germany

ortolf@informatik.uni-freiburg.de

Christian Schindelhauer
University of Freiburg

Department of Computer Science
Georges-Koehler-Allee 51
79110 Freiburg, Germany

schindel@informatik.uni-freiburg.de

ABSTRACT
We consider the multi-robot exploration problem of an unknown
n× n grid graph with oriented disjoint rectangular obstacles. All
robots start at a given node and have to visit all nodes of the graph.
The robots are unrestricted in their computational power and storage.
In the local communication model the robots can exchange any infor-
mation if they meet at the same node. In the global communication
model all robots share the same knowledge.

In this paper we present the first nontrivial upper and lower bounds.
We show that k robots can explore the graph using only local com-
munication in time O(n log2(n) + (f logn)/k), where f is the
number of free nodes in the graph. This establishes a competitive
upper bound of O(log2 n).

For the lower bound we show a competitive factor of Ω
(

log k
log log k

)
for deterministic exploration and Ω

( √
log k

log log k

)
for randomized ex-

ploration strategies using global communication.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: DISCRETE MATHEMATIC-
SGraph Theory[Graph algorithms, Trees]; F.2.2 [Theory of Compu-
tation ]: ANALYSIS OF ALGORITHMS AND PROBLEM COM-
PLEXITY Nonnumerical Algorithms and Problems

General Terms
Algorithms,Theory

Keywords
competitive analysis, mobile agent, robot, collective graph explo-
ration

1. INTRODUCTION
Recent advancements allow the usage of robots in everyday use.

Today’s consumers are buying robotic vacuum cleaners and in the
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future one might expect the use of larger quantities of such robots.
This alone is ample motivation for the investigation of exploration
strategies of unknown terrains. Instead of an euclidean plain with
scattered objects, we concentrate on the two-dimensional grid graph
with oriented disjoint rectangular obstacles as a discrete model for
this. The task is to explore all nodes of the graph. For this, each
robot can only identify the current node and its neighboring nodes
of the graph. In each step a robot can move to an adjacent node.
Robots have unlimited memory, computational power and know
their positions. In the local communication model they are able to
exchange their findings with all the other robots if they meet in the
same node. In the global communication model they can exchange
their findings immediately.

We measure the efficiency of the robot exploration strategy by
the competitive ratio, i.e. the number of steps needed by the robots
in parallel following an exploration strategy on an unknown graph
divided by the number of steps the robots need using an optimal
exploration strategy (with the knowledge of the graph). For the
deterministic lower bound we consider an adversary who chooses
the graph knowing the exploration algorithm. To lower bound ran-
domized strategies the adversary chooses a graph without knowing
the random guesses of the randomized strategy.

Related Work.
For the exploration problem many different variants exist differing

in reliability of sensor data, the number of robots, computational
power, memory, range of communication, different kinds of graphs
and computational or energy limitations (for a survey we refer to
[15]). Most work on exploration of undirected graphs only handles
the single robot case.

Competitive analysis of the exploration problem has been done
by Dessmark et al. in [8] with a single robot. Dessmark also distin-
guishes between anchored and unanchored maps reducing the maps’
effectiveness.

The hardness of the multi-robot exploration problem for trees is
shown in [11]. They prove a lower bound for deterministic strategies
with a competitive factor of 2 + 1

k
. Later this bound was improved

in [9], where a special graph, called Jellyfish-Tree has led to a lower
bound of Ω( log k

log log k
) for the competitive factor of a deterministic

online exploration algorithm. Our work is based on this approach.
As a side result we can generalize this result for randomized algo-
rithms in this paper. Fraigniaud et al. prove in [11] the best positive
result for competitive exploration of a tree with a competitive factor
of O

(
k

log k

)
.
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The grid model with oriented disjoint rectangular obstacles has
been investigated for the online-shortest path problem [14] by Pa-
padimitriou et al. Such graphs have been considered for a variant
of the shortest path problem, where a robot tries to reach a line.
They prove a tight upper and lower bound of a competitive factor
of O(

√
n) [14]. For randomized strategies this bound can be im-

proved to O(n4/9 logn) [6]. It is shown in [3] that a robot can
move to a given point in time O(n logn) if the point is within a
n× n-grid with such obstacles. We will use this result to give the
first polylogarithmic upper bound for multi-robot exploration.

Practical work has been done by Franchi et al. [12] using simu-
lations to validate their algorithms. There is also a vast number of
results for multi-robot exploration using real robots, e.g. a frontier
based exploration by Yamauchi [16].

For a geometrical setting Albers et al. provide in [2] a lower
bound on competitiveness. They allow one exploration robot to
have unlimited optical vision and call the single robot exploration
successful if the whole area has been seen by the robot. For directed
graphs competitive analyses of single robot exploration have been
presented by Albers et al. [1], Fleischer et al. [10] and Papadimitriou
et al. [7]. Their results indicate that this is a harder problem than the
exploration in undirected graphs. For unlabeled graphs exploration
is unsolvable with a single robot but can be solved with a single
pebble or another robot [4, 5]. Exploration of undirected graphs as
considered here, is a variant of the online k-TSP and closely related
to the exploration of a landscape.

Our Contribution.
In the next section we present the first multi-robot exploration

algorithm for oriented rectangular disjoint obstacles in a n× n-grid
with a polylogarithmic competitive ratio. In particular we prove that
k robots can explore such a grid in time O(n log2 n + f/k logn)
where f is the number of (non-obstacle) nodes in the grid. Since the
optimal strategy needs at least max{2n − 1, f/k} steps we show
a competitive bound of O(log2 n). The algorithm is a divide-and-
conquer algorithm which uses the single-robot-exploration strategy
of [3].

In Section 3 we present the first nontrivial lower bound for deter-
ministic multi-robot exploration for such grids. We show a lower
bound for the competitive factor of Ω

(
log k

log log k

)
. The construction

is based on the lower bound for multi-robot-exploration in trees
presented in [9].

Then, in Section 4 we consider lower bounds for randomized ex-
ploration strategies and show a lower bound of Ω

( √
log k

log log k

)
for grid

graphs with rectangular disjoint obstacles. To prove this result, we
first prove a new lower bound for randomized exploration strategies
in trees of Ω

(
log k

log log k

)
.

2. EFFICIENT MULTI-ROBOT
EXPLORATION

In [3] it is shown that in a n ×m-grid (n ≥ m) with unknown
oriented rectangular disjoint obstacles a robot can navigate to any
point in time O(n logm) or to the obstacle in which the point lies.
We use this result for a divide-and-conquer strategy. We use the
following notations.

Let N,E, S,W denote the directions. A δ1δ2-path is a directed
path which consists only of steps with directions δ1 and δ2. For
neighbored directions δ1, δ2 ∈ {N,E, S,W} a greedy δ1δ2-path is
a path without obstacles where from the starting point the path goes

to direction δ1. Each time an obstacle occurs, the path takes a turn
in direction δ2 and continues until the way is free again in direction
δ1, then it continues in direction δ1. From every point in the grid
every greedy δ1δ2-path exists and has a maximum length of 2n− 1.

We need the notion of surroundable regions.

Definition 1. A surroundable region is a set of connected nodes
which has a bounding path which is described by the concatenation
of a greedy NW , WS, SE, and EN -path. Note that the complete
n×m-grid is such a surroundable region.

The continuous area A(R) of a region R is the area of the region
of R where the path and the region is interpreted geometrically.

Every surroundable region has a bordering path with a length of at
most 4n− 2. For our divide-and-conquer algorithm we successively
partition such regions. We also consider a geometric version of the
grid graph in the Euclidean plane bounded to [0, n]2. Obstacles are
obviously modeled by rectangles. For the paths of the robot we
consider series of line segments connecting the middle points of the
empty squares representing the nodes of the graph.

LEMMA 2.1. There exists a point p such that

1. Q1(p) = Q3(p) and Q2(p) = Q4(p)

2. Q1(p) +Q3(p) ≥ A(R)/2 or Q2(p) +Q4(p) ≥ A(R)/2.

PROOF. Consider the function f13(x, y) = Q1(x, y)−Q3(x, y).
If x is smaller than any x-coordinate of a point in R and y is smaller
than any y-coordinate of a point in R then f13(px, py) = A(R).
If x is larger than any x-coordinate of a point in R and y is larger
than any y-coordinate of a point in R then f13(px, py) = −A(R).
Further, the function is continuous and decreases with x and y.
Therefore, for each x there exists a y such that f13(x, y) = 0 and
for all y there exists a x such that f(x, y) = 0.

For the function f24(x, y) = Q2(x, y)−Q4(x, y) we can deduce
the equivalent observations.

Given a rectangle (x1, y1), (x2, y2) where f13(x1, y1) ≤ 0,
f13(x2, y2) ≥ 0, f24(x2, y1) ≤ 0 and f24(x1, y2) ≥ 0, we can
conclude that in one of the four equal-sized sub-rectangles this con-
dition is preserved. The choice of the rectangle depends on the signs
of f13( 1

2
(x1 +x2), 1

2
(y1 + y2)) and f24( 1

2
(x1 +x2), 1

2
(y1 + y2)).

This implies the existence of a point p where f13(p) = f24(p) = 0.
Since f13(p) = f24(p) it follows Q1(p) = Q3(p) and Q2(p) =

Q4(p). If Q1(p) +Q3(p) ≥ Q2(p) +Q4(p) then

2(Q1(p)+Q3(p)) ≥ Q1(p)+Q3(p)+Q2(p)+Q4(p) = A(R) .

Otherwise we haveQ1(p)+Q3(p) < Q2(p)+Q4(p) and therefore

2(Q2(p)+Q4(p)) > Q1(p)+Q3(p)+Q2(p)+Q4(p) = A(R) .

LEMMA 2.2. Each surroundable region R can be partitioned
into two surroundable regions R1, R2 such that R1 ∪ R2 = R
and A(Ri) ≤ 3

4
A(R) for i ∈ {1, 2}. This can be done in time

O(n logn) with a single robot.

PROOF. For a fixed region R consider a point p = (px, py)
in this Euclidean space. Then we define Q1(p) as the area of R
in the NE-quadrant (including obstacles). Similarly, we define
Q2, Q3, Q4 as the areas of R in the NW , SW and SE-quadrant.
Clearly, the sum of all Qi(R) equals the area A(R) of R. As
visualisation we refer to Fig. 6 in the appendix.

This point p can be efficiently computed, since the region R is
defined by horizontal boundaries. Now we navigate a robot to this
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point p using the algorithm of [3]. If it lies within an obstacle, the
algorithm will circle the obstacle, otherwise it will reach the node
which is nearest to the point.

Assume thatQ1(p)+Q3(p) ≥ A(R)/2. Then, we will construct
a path within the second and forth quadrant which divides R into
R1 and R2. For this, we simply follow a greedy NW -path until
we reach the boundary of R. Then, we follow a greedy SE-path
starting from p until we reach the boundary of R. This path will not
leave the second and forth quadrant and the sub-regions are again
surroundable.

If p lies within an obstacle, we take the obstacle corner points in
the second and forth quadrant with respect of p. Then, we construct
NW -paths and SE-paths from these two points and combine them
with two surrounding paths of the rectangular obstacles around p.

In both cases we have A(R1) ≥ Q1(p) ≥ 1
4
A(R) and also

A(R2) ≥ 1
4
A(R).

If Q1(p) + Q3(p) < A(R)/2 then we have Q2(p) + Q4(p) ≥
A(R)/2 and we make the symmetric construction within the first
and third quadrant of p using greedy NE and SW -paths. Again,
we get A(R1) ≥ 1

4
A(R) and A(R2) ≥ 1

4
A(R). Since A(R1) +

A(R2) = A(R) the claim follows.

Algorithm 1 uses this partitioning to explore the square.

Algorithm 1 O(log2 n)-competitive multi-robot exploration of the
n× n grid with k robots
1: Start with the full square as a single surroundable region
2: All robots start in the upper left corner
3: for i← 1, 2, . . . , log k do
4: Partition all 2i−1 regions in parallel using one robot per re-

gion
5: end for
6: while Unexplored regions exist do
7: Explore all k regions with one robot each using depth-first-

search
8: If a robot finishes the DFS it returns to the upper left corner
9: if at least k/2 robots have returned to the upper left corner

then
10: Stop the entire exploration
11: Partition all k/2 unexplored regions
12: end if
13: end while

THEOREM 2.3. Algorithm 1 can explore the n× n grid with k
robots in timeO(n log2 n+n logn log k+(f logn)/k) where f is
the number of nodes in the grid (without obstacles) using the global
communication model.

PROOF. First note that a single robot can explore a connected
area with f (non-obstacle) nodes using depth-first-search in time
2f , but such an area cannot be explored with less than f steps by a
single robot.

It takes at most 2 log4/3 n rounds of re-partitioning until all sur-
roundable regions have size of at most 1, since the size of a re-
gion is reduced by at least a factor of 3/4. Each partitioning takes
O(n logn) steps for one robot. Moving to the left upper corner
takes 2n−1 steps using a greedyNE-path. So, the time of the lines
3–5 can be estimated by O(n logn log k) steps. The while-loop
(line 6) is executed at most O(logn) times. All partitioning steps in
line 11 take therefore O(n log2 n) steps.

For the exploration time we consider the rounds of the while-loop
(lines 6–13). Let fj denote the number of unexplored (free) cells at
the beginning of the j-th round. There are two cases.

In the first case the loop finishes in round j since less than k/2
robots have returned and all regions are explored. So, more than
k/2 robots have explored fj free cells in parallel. This has taken at
most 4fj/k steps, since k/2 robots have explored at most fj cells
in parallel with DFS. So, the time for this round can be estimated by
4f/k.

In the second case the k/2 robots have returned in the j-th round,
but k/2 unexplored regions will be again completely revisited in the
round j + 1. Let R be an explored region with the largest number
of free cells (given by F ). All explored regions have been explored
in at most 2F (R) steps. However, all k/2 unexplored regions must
have had at least 1

2
F (R) free cells since otherwise they would have

been explored in this round by the DFS. Summarizing over the k/2
unexplored regions we have 1

4
kF (R) ≤ f and therefore F (R) ≤

4f/k which results in an upper time bound for the exploration of
8f/k steps in this round.

Since there are at most O(logn) rounds in the while-loop there
are at most O((f logn)/k) steps for the exploration.

The global communication model can be replaced with a local
communication scheme, if all robots stop the algorithm every 8n
steps, move to the left upper node, communicate, and then return
to their work. This needs 4n steps and increases the run-time by a
constant factor.

COROLLARY 2.4. Using the local communication model the
n × n grid can be explored with k robots in time O(n log2 n +
n logn log k + (f logn)/k) where f is the number of nodes in the
grid (without obstacles) using the global communication model.

Every optimal exploration strategy where all k robots start in the
left upper corner needs at least 2n− 1 steps to reach the opposite
corner. The other lower bound of f/k results from the optimal
parallelization of the exploration of the f cells. Further note, that n2

robots can explore the n× n grid in time O(n logn). For this, each
robot navigates to its assigned node. This establishes a competitive
factor of O(logn). For k ≤ n2 we have log k ≤ 2 logn and thus a
run-time of O(n log2 n+ f(logn)/k) compared to lower bound of
Ω(n+ f/k) resulting in the following corollary.

COROLLARY 2.5. There is an exploration strategy to explore
an n × n-grid with oriented disjoint rectangular obstacles with a
competitive run-time ratio of O(log2 n) in the local communication
model.

3. LOWER BOUND FOR CONVEX GRID-
GRAPH

Since we are interested in asymptotic behavior we assume the
edge length n of the overall grid and the number of robots k to
be powers of 2. For our construction we choose n = k2. Our
construction is inspired by the lower bound construction in [9], called
the Jellyfish-Tree in Fig. 4. Our grid graph separates k rectangular
grids, called poison areas, such that the paths between these areas
have a length of at least n/2 and at most O(n) (non obstacle) cells
are located outside of these poison areas, see Fig. 1.

Given the paths of robots in a poison area visiting at most w
nodes in total and each robot starting (or departing) at one of the
four corners of an area of n/2× n/k we construct the grid poison
in the following way: For each j ∈ {1, . . . , logn− log k} consider
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Figure 1: Separation of the grid poison areas

Figure 2: Deterministic construction of the grid poison based
on the exploration paths of robots

Figure 3: Example graph for the deterministic lower bound

a sub-grid of 2j × 2j-squares. If no robot has visited a square,
then all cell nodes of this square but the border nodes (leftmost and
rightmost column, lowermost uppermost row) will be removed. The
border nodes are necessary to ensure that the square shaped obstacles
remain disjoint and that the robot in the neighboring square does not
learn anything. We call w the fooling size of the grid poison.

LEMMA 3.1. Given a deterministic strategy of robots where the
number of all traversed nodes of the robots is at most w in an n×m
(with n ≥ m) rectangle then the corresponding poison has at most
size O(n+ w logm). No visited cell is adjacent to a rectangle.

PROOF. Clearly, the w traversed cells remain in the graph. When
a subcell of dimension 2j × 2j is removed, then 2j+2 − 2 cells
remain in the graph.

We estimate the number of such sub-grids which can be reached
by any robots. Four cells can be reached without any traversal
since the robots may start at the corners. The explored subcells are
connected since they result from a set of paths starting in the corners.
So, at most 4+w22−j subcells of dimension 2j×2j can be reached.

We want to count all 2j × 2j subcells which are replaced by
an obstacle. Each such subcell has a neighbor cell (horizontal,
vertical or diagonal) which has been visited by a robot or m = 2j .
Otherwise, the super-ordinate 2j+1× 2j+1 subcell would have been
replaced by an obstacle. So the number of replaced subcells is at
most 8(4+w22−j). In each of them×m sub-squares of the n×m
grid poison with at most wi robot paths we observe at most the
following number of free cells.

logm∑
j=2

8(4 + w22−j) · (2j+2 − 2) ≤ 64m+ 128w logm

Summing over all such n/m squares we get at most
64n+ 128w logm = O(n+ w logm) free cells.

While w visited sub-cells are not enough to encounter any obsta-
cle, we show that visiting O(w logm+ n) cells suffice to visit all
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cells. An offline strategy with at most k ≤ n robots can do so in
time O(w

k
logm+ n).

LEMMA 3.2. A grid poison with fooling size w in a n × m
rectangle (n ≥ m) can be explored by k robots in time O(n +
w
k

logm) in the offline setting.

PROOF. Partition the p ≤ 64n+ 128w logm empty cells of the
grid poison in bi×m rectangles such that

∑k
i=1 bi = n and that the

number of empty cells in each rectangle is at most p
k

+m. Each of
the k robot explores one such rectangle. It needs n steps to reach the
rectangle. For exploring such a rectangle, a robot may have to take a
detour into neighbored rectangles because an obstacle hinders the
direct path. Such detours have at most 4m cells. Furthermore, paths
inside the rectangle may be traversed at most twice. This leads to an
upper bound for 2bi + 4m for the exploration within the rectangle.
To reach the rectangle at most n steps are necessary. This results in
an exploration time of at most n+6m+2 p

k
= O(n+ w logm

k
).

The fooling size of the grid poisons is chosen according to the
following distribution:

wσ(i) =

⌈
kn

(log k)2
· 1

i

⌉
Where σ denotes a permutation depending on the deterministic
exploration strategy.

LEMMA 3.3. There is an offline strategy which explores this
graph within O(n) steps using k robots.

PROOF. Remember that n = k2 and m = k. Define W :=
k∑
i=1

wσ(i) log k and note that W = O
(
k + kn

log k

)
. An offline ex-

ploration strategy sends one robot in each grid poison for time cn to
explore the grid poison. After this round, it sends

⌊
wσ(i)
W

k
⌋

robots
in each unexplored grid poison for time cn as well.

All cells with fooling size of at most n/ log k can be explored
within the first round. If wσ(i) > W

k
= O(1) then at least one robot

will explore the grid poison after this round. This is the case for
i ≤ c k

log k
for some constant c > 0. Exploring such a poison costs

time linear in

n+
wσ(i)⌊
k
wσ(i)
W

⌋ logm = O

(
n+

W

k
logm

)
= O(n) .

THEOREM 3.4. Any deterministic exploration strategy needs at
least Ω

(
n · log k

log log k

)
steps to explore this graph with k robots.

A proof is analogous to the lower bound in [9] and can be found in
Appendix A.1.

This implies an online time for any deterministic algorithm of

Ω

(
n · log k

log log k

)
leading directly to a lower bound for the competitive ratio of

Ω

(
log k

log log k

)

ci+1
ci

bi
bi+1

3

ai+1

ai+1

1

1

ci+1 3 ci+1 3 ci+1

Figure 5: Recursive construction of poison areas for the ran-
domized lower bound

4. LOWER BOUNDS FOR RANDOMIZED
ALGORITHMS

Now we show that the lower bound given in [9] also applies for
randomized algorithms. Consider the Jellyfish-Tree in Fig. 4. We
use the same construction with k subtrees and a random permutation
σ over {1, . . . , k}. The i-th subtree consists of a path of length
t = k and a poison which is a tree of size t · sσ(i) and depth sσ(i)
where

sσ(i) :=

⌈
k

log k
· 1

i

⌉
where in each level k − 1 leaves are connected to a parent and
the graph continues at a random child, which we call the target
child. The permutation σ is chosen uniformly at random. In [9] the
following lemma has been shown regarding the offline exploration
time.

LEMMA 4.1. The Jellyfish-Tree can be explored in time O(t)
using k robots.

Yao’s principle [17] is used to show a lower bound for randomized
strategies. We choose the randomized Jellyfish-Tree for a determin-
istic exploration strategy and show a lower bound on the expected
time.

THEOREM 4.2. For every randomized online exploration al-
gorithm A, there is a graph such that the total time is at least
Ω
(

log k
log log k

)
times longer than the optimal time needed to explore

this graph offline by k robots.

Proof deferred to Appendix A.2.

4.1 Randomized Lower Bound for Grids
This theorem can be transferred to grids with rectangular bounds.

Again we use a construction with poison areas like in the determin-
istic lower bound for the grid. It is clear that we cannot use the
same construction, since it heavily depends on the knowledge of the
deterministic strategy.
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Figure 4: Jellyfish-Tree construction from [9].

Therefore, we use a randomized recursive construction where we
place one poison within another. This ”Matryoshka doll”-like con-
struction has two features. First, it is hard to find the next enclosed
grid poison. Second and most astonishingly, every next Matryoshka
doll inside is twice as large as the outer one. This is possible, be-
cause of the fact that the outer poison has much fewer (yet longer)
paths.

The outer grid construction is depicted in Fig. 2. We construct
poison areas specifically designed for k =

√
n randomized robots

where the overall size of the grid is n×n. The whole area is designed
such that there is an offline strategy where k robots explore the graph
in O(n) steps.

We recursively define the poison areas as depicted in Fig. 5 start-
ing with the uppermost layer which fits into the overall construction
with a0 = 1

4
n− 2, b0 = b = 1

2
n and c0 = c = n

k+3
in the overall

construction of Fig. 2. Further, define for i ≥ 0

ai+1 =
1

4
bi − 2 , bi+1 =

1

2
bi , ci+1 = ci

1

22i

So, we have the closed form for i ≥ 0:

ai = n 2−i−2 − 2 , bi = n 2−i−1 , ci =
n

k2i(i+1)

This recursive definition ends when cr+1 ≤ 1 for some r. Therefore
n

k2(r+1)(r+2)
≥ 1

which is implied by

logn ≥ log k + (r + 1)2

And therefore:

r ≤
√

logn− log k − 1 =

√
2

2

√
logn− 1

Note that the recursive constructions replace at most one of the
inner rectangles with the next level. In this construction one of the
inner obstacles is replaced by another element. In the lowest level
this obstacle is a barrier. The following lemma describes the length
of all paths in the fixed level i of the recursion.

LEMMA 4.3. For a grid poison of level i ≥ 1 the complete area
to be explored is at most n2i.

PROOF. We have at least d ci
ci+1+3

e vertical paths of length bi
which have an overall length of bi = n2−i−1. Note that by definition

ci
ci+1

= 22i

Therefore
ci

ci+1 + 3
bi ≤ 22i n 2−i−1 = n2i−1

The length of all horizontal paths is bounded by 4ci ≤ n.

Define the workload of an exploration strategy in a poison as the
sum of all paths of all robots.

LEMMA 4.4. For all p ∈ [0, 1] in a grid poison of level i ≥ 1
the next recursive grid poison has not been found with a workload
of at most 1

2
pn2i with probability 1− p.

PROOF. Consider the paths of a deterministic strategy of length
w = pn2i. The expected number of possible poisons that can be
inspected with this workload is at most 1

2
pn2i

bi
= 1

2
pn2i

n2−i−1 = p22i.
Clearly the probability is p for finding the correct target and therefore
1− p for failing to do so.

Now we choose the levels `j of the poisons 1, . . . , k according
to the following distribution where σ is a random permutation over
{1, . . . , k}.

sσ(i) =
tk

log k
· 1

i

and

`j = blog sjc
The maximum size of such a grid poison is bounded by

t2O(
√
log k). So, we replace our distribution of poison sizes with

sσ(i) =


tk

log k
· 1

i
if k

2O(
√

log k) log k
≤ i

n2O(
√
log k) else

where we round to the next power of two.
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THEOREM 4.5. For every randomized online exploration algo-
rithm there is a grid graph with disjoint rectangular obstacles such
that the total time is at least Ω

( √
log k

log log k

)
times longer than the

optimal time needed to explore this graph offline by k robots.

The full proof can be found in Appendix A.3. The proof is analogous
to the proof of the randomized lower bound for trees. One main
difference is that we do not prove with high probability, but with
probability 1− 1

logn
. This probability for each poison is large enough

since the expected number of unexplored poisons is considered.
Another main difference is that the number of rounds is now

limited by r =
√
log k

log log k
. This is the reason for the worse lower

bound.
The lower bounds can be easily generalized to robots with vision

where each cell needs only to be seen by the robots (and not neces-
sarily visited). This can be done by placing small view obstructing
squares at all junctions in the lower bound construction presented
here.

5. CONCLUSIONS
We consider multi-robot exploration where robots know their loca-

tions and are computationally well equipped. From the algorithmic
perspective little is known. It turns out that even for trees the question
how well an unknown graph can be explored is wide open between
the lower bound for the competitive time ratio of Ω(log k/ log log k)
and the upper bound of O(k/ log k) for k robots. In this paper we
have generalized the lower bound to random algorithms. But note
that the trivial lower bound of 1 and the trivial upper bound of O(k),
where only one robot explores the tree, are not far from the known
bounds.

Planar sceneries with disjoint oriented rectangular obstacles have
been considered so far only for single robot exploration. We present
an efficient online algorithm which explores such areas with time
overhead of factor O(log2 n) compared to the optimal solution in
an n × n grid. As lower bounds we prove Ω(log k/ log log k)
for deterministic strategies and Ω(

√
log k/ log log k) for random

strategies with k robots. So, there is only a logarithmic gap between
the upper and the lower bound.

For multi-robot exploration in general graphs little is known and
finding efficient algorithms is a pressing research topic since the
robotic exploration plays an increasing part in practical research.
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APPENDIX
A. OMITTED PROOFS

A.1 Proof for Lower Bound with Determinis-
tic Exploration Strategy

PROOF. For the lower bound argument we consider rounds of
length n/2. Note that in each round a robot can visit only one poison
grid. Let rt,i denote the number of robots that visit poison i in round
t. At the beginning of each round the adversary allows the robots
to know the size of some of the poisons while a decreasing number
of poisons remain of unknown size. As soon the robots learn the
size of the poison the poison is lost and no more exploration costs
are accounted for (since the overall offline exploration cost is O(n)).
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Furthermore, we do not count the costs of replacement from one
poison grid to another.

Let ui be the number of unexplored poisons after the i-th round.
Then, at least ui

2
poisons are explored by at most 2 k

ui
robots. By

our construction we can ensure that

ui ≥
k

2i log2i k
.

For this we choose the permutation σ in the following way. All
the poisons are sorted according to whether more than 2 k

ui
robots

visit a poison in the i-th round. For this we place the poison grids
with larger number of robots in the first round at the beginning, then
we continue within the set at the beginning by sorting poison grids
according to the robots of the second round and so forth.

By induction before round i at least ui−1 poisons are unexplored.
Now the search algorithm can place at most k robots among those
poisons and at least ui−1

2
poisons are explored by at most 2 k

ui−1

robots in round i. So, the robots cannot explore those poisons where

sσ(i) ≥ n2i log2i−2 k ≥ kn
(

1

ui−1
+

1

ui−2
+ . . .+

1

u0

)
(by induction) since the robots have only time n/2 to explore the
poison area. The number of poisons ui of this size can be evaluated
by using the definition of the distribution.

kn

ui(log k)2
≤ n2i log2i−2 k

So, we have

ui ≥
k

2i log2i k

which proves the number of unexplored poisons by induction.
Note that for r = 1

4
log k

log log k
we have

ur =
k

22r log2r k
≥ k

k
1

2 log log k 2
1
2
log k

≥ k

k
1
2 k

1
2

= 1 .

By this construction we have at least Ω
(

log k
log log k

)
rounds with

unexplored poison grids where each of the rounds have a run-time
of n

2
.

A.2 Proof for Lower Bounds for Randomized
Algorithms

PROOF. We consider rounds of length t. In each round a robot
can visit only one poison. The deterministic exploration strategy
knows the graph family. Therefore it has determined a poison if it
has found all target children.

Now in each round of length t steps a different numbers of robots
might explore a poison.

LEMMA A.1. The probability that in a round a target child in
depth ` is explored with k′ ≤ t robots in less time than 1

2
t
k′ is at

most e−
1
8
`.

PROOF. We assume that all k′ robots test different children where
each child is a target child with equal probability. Then, the prob-
ability to find the target child of the next level within i steps is
i · k

′

t
.

Define the random variable X which denotes the number of steps
to find one target child with k′ robots. Then P [X = j] = k′

t

for j ∈ {1, . . . , dt/k′e − 1} and P [X = dt/k′e] = t−k′ mod t
t

.
Clearly, 1

2
bt/k′c ≤ E[X] ≤ 1

2
t/k′.

If k′ ≥ t/2 the target child may be found in each step. Otherwise
if k′ ≤ t2 we can bound the number of steps to find a series of `
target children using Hoeffding’s tail inequality. Assume ` indepen-
dent target children and let S` =

∑`
j=1Xj,i, where Xj,i denotes

the random variable above for k′ robots. Then by the tail inequality
in [13] we have for all t ≥ 0 and ai = 1 and bi = dt/k′e

P [S` − E[S`] ≤ −δ] ≤ e−2δ2/
∑`
i=1(bi−ai)

2

Since bi − ai ≤ t/k′ we have

P [S` − E[S`] ≤ −δ] ≤ e−2δ2k′2/(`t2)

We choose δ = 1
2
E[S`] ≥ 1

2
` · b t

k′ c and get for k′ ≤ t/2

P

[
S` ≤

1

2
E[S`]

]
≤ e−

1
2
`2bt/k′c2k′2/(`t2)

≤ e−
1
2
`(1−k′/t)2 ≤ e−

1
8
`

Remember that for k′ > t/2 we have

P

[
S` ≤

1

2
E[S`]

]
= 0

The probability that a target child in depth ` is explored with k′

robots in less time than 1
2
t
k′ is at most e−

1
8
`.

This implies the following corollary which shows that with high
probability 1 − 1

n2 that maximum speedup by randomization in a
poison is a factor of O(logn).

COROLLARY A.2. The probability that in a round of length t a
target child in depth 16 lnn is explored with k′ ≤ t = k robots in
less time than 1

2
t
k′ is at most 1

n2 .
So, k′ robots in a round of length t can only find all target children

in depth of at most 32k′ lnn = (64 ln 2)k′ log k with probability
1− 1

n2 .

Now in the first round we have k robots which are (deterministi-
cally) assigned to one poison each, but one necessarily each poisons
receives the one robot. They have at most time t to explore each
poison.

Consider poisons of depth of at least cj logj k for c = 28. There
are k

cj logj+1 k
many such poisons. Such a poison cannot be explored

with less than cj logj−2 k
26 ln 2

robots with high probability. Then, only
target children up to depth cj log1−j k, i.e. a fraction of 1

log k
of the

poison can be explored with high probability.
So, there at most 26(ln 2)k

cj logj−2 k
poisons which may have enough

robots and these poisons are randomly distributed over the set of
all poisons. The probability that more than cj logj−2 k

26 ln 2
robots are

assigned to a poison is at most 26(ln 2)

cj logj−2 k
.

The expected number of explored poisons of this depth cj logj k
after the first round is at most

r =
k

cj logj+1 k

26(ln 2)

cj logj−2 k
=

26(ln 2)k

c2j log2j−1 k
.

We can apply a Chernoff bound since the explored poisons are
negatively correlated: The exploration of a poison decreases the
probability that another poison is explored. For r ≥ 8 lnn we
get with high probability that at most 2r poisons are explored with
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high probability which is the case for 2 ≤ j ≤ 1
4

log k/ log log k.
Further, note that for j ≥ 2

2r ≤ k

cj+1 logj+1 k

since

27(ln 2)k

c2j log2j−1 k
≤ k

cj+1 logj+1 k

and

cj logj k ≥ (27 ln 2)c log2 k .

because c ≥ 27 ln 2.
Hence the number of unexplored poisons of depth at least

cj logj k for j ≥ 2 is at least(
1− 1

c

)
k

cj logj+1 k

after the first round with high probability.
By induction, at the beginning of the (u+ 1)-th round we have at

least (1− 1
c
)ukc−j log−j−1 k unexplored poisons of depth at least

cj logj k for j ≥ 2u and j ≤ 1
4

log logn/ logn. We assume that
these bounds are tight.

Again, for poisons of depth at least cj logj k a number of
cj logj−2 k

26 ln 2
of robots is not able to explore more than a fraction of

1
log k

of such poisons. So, there at most 26(ln 2)k

cj logj−2 k
poisons which

may have enough robots and these poisons are randomly distributed
over the set of all unexplored poisons which is at least
(1− 1

c
)ukc−2u log−2u−1 k. The probability that enough robots are

assigned to a poison is therefore at most

26(ln 2)k

cj logj−2 k

((
1− 1

c

)u
kc−2u log−2u−1 k

)−1

= 26(ln 2)c2u−j log2u−j+1 k

The expected number of explored poisons is at most

r =

(
1− 1

c

)u
k

cj logj+1 k
· 26(ln 2)c2u−j log2u−j+1 k

= 26(ln 2)

(
1− 1

c

)u
c2u−2jk log2u−2j−2 k

Note that for j ≥ 2u+ 2

2r ≤
(

1− 1

c

)u
k

cj+1 logj+1 k

since

27(ln 2)

(
1− 1

c

)u
c2u−2jk log2u−2j−2 k

≤
(

1− 1

c

)u
k

cj+1 logj+1 k

and

cj−2u logj−2u k ≥ (27 ln 2)c log2 k .

because c ≥ 27 ln 2. Again we can apply Hoeffding’s bound since
the explored poisons are negatively correlated. Applying Hoeffd-
ing’s bound for r ≤ 8 lnn we get with high probability that at most
2r poisons are explored with high probability which is the case for
2u ≤ j ≤ 1

4
log k/ log log k.

So, the number of unexplored poisons of depth at least cj logj k
for j ≥ 2u+ 2 is at least(

1− 1

c

)(
1− 1

c

)u
k

cj logj+1 k

after the (u+ 1)-th round with high probability, which proves the
induction.

Since for all u ≤ 1
4

log k
log log k

we can find unexplored poisons with
high probability, the claim follows.

A.3 Proof for Randomized Lower Bound for
Grids

PROOF. The proof is analogous to the proof of the randomized
lower bound for graphs. The first difference is that we do not prove
with high probability, but with probability 1 − 1

logn
. This proba-

bility for each poison is large enough since the expected number of
unexplored poisons is considered.

The second difference is that the number of rounds is now limited
by r =

√
log k

log log k
. This is the reason for the worse lower bound.

We consider rounds of length n/2. In each round a robot can visit
only one poison grid. We use Yao’s principle [17]and consider a
deterministic strategy on the random graphs.

Consider poison grids of level of at least log(cj logj k) for c = 28.
There are k

cj logj+1 k
many such poison grids. Not even a fraction of

1
log2 k

of such a poison grid can be explored in a round of length n/2
with less than cj logj−2 k robots with probability 1− 1

log2 k
. We can

bound the number of poisons that are explored in the error case with
Chernoff bounds. If k

cj logj−2 k
≥ 8 lnn then the error probability

that more than 2 k
cj logj−2 k

such poison grids are explored is at most
1
n2 .

So, there at most 3 k
cj logj−2 k

poison grids which may have
enough robots and these poisons are randomly distributed over the
set of all poisons w.h.p. The probability that more than cj logj−2 k
robots are assigned to a poison is at most c−j log2−j k.

The expected number of explored poisons of this level
log(cj logj k) after the first round is at most

r =
k

cj logj+1 k

3

cj logj−2 k
=

3

c2j log2j−1 k

We can apply a Chernoff bound since the explored poisons are
negatively correlated: The exploration of a poison decreases the
probability that another poison is explored. For r ≥ 8 lnn we get
with high probability that at most 2r poisons are explored with high
probability which is the case for 2 ≤ j ≤

√
log k/ log log k.

Further, note that for j ≥ 2

2r ≤ k

cj+1 logj+1 k

since
6k

c2j log2j−1 k
≤ k

cj+1 logj+1 k

and

cj logj k ≥ 6c log2 k .

if we choose c ≥ 6.
Hence the number of unexplored poison grids of level at least

log(cj logj k) for j ≥ 2 is at least(
1− 1

c

)
k

cj logj+1 k

35



after the first round with high probability.
After each round the robots may be placed on different poison

grids. Although the robots need time n/2 to travel from one poison
grid to another we do not use this feature, since we also have to deal
with robots which do not travel to new poisons which complicates
the analysis. It is easy to see that taking the travel time into account
accounts only for a constant factor.

By induction, at the beginning of the (u+ 1)-th round we have
at least (1− 1

c
)ukc−j log−j−1 k unexplored poison grids of level

at least log(cj logj k) for j ≥ 2u and j ≤
√

log log n/ logn. We
assume that these bounds are tight, i.e. we allow the robot strategy
learn about the situation in the other poison grids.

Again, for poison grids of level at least log(cj logj k) a number
of cj logj−2 k of robots is not able to explore more than a fraction of

1
log2 k

of such poisons with probability 1− 1
log2 k

. Again we bound
the error case by Chernoff bound if k

cj logj−2 k
≥ 8 lnn then the

error probability that more than 2 k
cj logj−2 k

such poison grids are
explored is at most 1

n2 .
So, there at most 3k

cj logj−2 k
poisons which may have enough

robots and these poisons are randomly distributed over the set of
all unexplored poisons which is at least (1− 1

c
)ukc−2u log−2u−1 k.

The probability that enough robots are assigned to a poison is there-
fore at most

3

cj logj−2 k

((
1− 1

c

)u
kc−2u log−2u−1 k

)−1

= 3c2u−j log2u−j+1 k

The expected number of explored poisons is at most

r =

(
1− 1

c

)u
k

cj logj+1 k
· 3c2u−j log2u−j+1 k

= 3

(
1− 1

c

)u
c2u−2jk log2u−2j−2 k

Note that for j ≥ 2u+ 2

2r ≤
(

1− 1

c

)u
k

cj+1 logj+1 k

since

6

(
1− 1

c

)u
c2u−2jk log2u−2j−2 k ≤

(
1− 1

c

)u
k

cj+1 logj+1 k

and

cj−2u logj−2u k ≥ 6c log2 k .

because c ≥ 6.
Again we can apply Hoeffding’s bound since the explored poisons

are negatively correlated. Applying Hoeffding’s bound for r ≥
8 lnn we get with high probability that at most 2r poisons are
explored with high probability which is the case for 2u ≤ j ≤√

log k/ log log k.
So, the number of unexplored poisons of depth at least cj logj k

for j ≥ 2u+ 2 is at least(
1− 1

c

)(
1− 1

c

)u
k

cj logj+1 k

after the (u+ 1)-th round with high probability, which proves the
induction.

So, for
√

logn/ log log n rounds of length n there will be unex-
plored poisons with high probability.

p

R1

R2

Q1Q2

Q3 Q4

n

m

NW-path

SE-path

Figure 6: Partitioning an area for the efficient exploration
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