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ABSTRACT
We consider n wireless ad hoc network nodes with one an-
tenna each and equidistantly placed on a line. The trans-
mission power of each node is just large enough to reach
its next neighbor. For this setting we show that a message
can be broadcasted to all nodes in time O (logn) without
increasing each node’s transmission power. Our algorithm
needs O (logn) messages and consumes a total energy which
is only a constant factor larger than the standard approach
where nodes sequentially transmit the broadcast message to
their next neighbors. We obtain this by synchronizing the
nodes on the fly and using MIMO (multiple input multiple
output) techniques.

To achieve this goal we analyze the communication ca-
pacity of multiple antennas positioned on a line and use
a communication model which is based on electromagnetic
fields in free space. We extend existing communication mod-
els which either reflect only the sender power or neglect
the locations by concentrating only on the channel matrix.
Here, we compute the scalar channel matrix from the loca-
tions of the antennas and thereby only consider line-of-sight-
communication without obstacles, reflections, diffractions or
scattering.

First, we show that this communication model reduces
to the SINR power model if the antennas are uncoordi-
nated. We show that n coordinated antennas can send a
signal which is n times more powerful than the sum of their
transmission powers. Alternatively, the power can be re-
duced to an arbitrarily small polynomial with respect to the
distance. For coordinated antennas we show how the well-
known power gain for MISO (multiple input single output)
and SIMO (single input multiple output) can be described
in this model. Furthermore, we analyze the channel matrix
and prove that in the free space model no diversity gain can
be expected for MIMO.
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Finally, we present the logarithmic time broadcast algo-
rithm which takes advantage of the MISO power gain by
self-coordinating wireless nodes.
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Network topology, Network communications, Distributed net-
works
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1. INTRODUCTION
The broadcast problem is to distribute a single message

to all nodes in a wireless network. When the transmission
power is limited it seems obvious that the time to deliver
the message is lower bounded by the diameter of a graph of
wireless point-to-point connections. We show that without
additional power we can deliver a message in logarithmic
time, if one uses so-called MIMO (multiple input multiple
output) communication. In order to establish this result we
need an accurate model for radio communication.

1.1 Modeling Radio Communication
The capacity of radio communication is strongly influ-

enced by the locations of the radio stations and this influence
has been modeled and studied for a long time in computer
science. Since computer scientists concentrate on the algo-
rithmic aspects, the communication models have been cho-
sen mostly for simplicity while neglecting physical accuracy.

In the algorithmic networking community first considera-
tions started with graph based models where nodes represent
radio stations and edges indicate connections [3, 11]. There
is a long line of research in the area of radio broadcasting
which consists of handling the problem of interference in an
unknown graph in order to broadcast a message.

Later on, geometric graphs were used to model this com-
munication graph. Starting with unit-disk graphs [4], which
reflect the power fading around a transmitter and the signal-
to-noise ratio, this model was further developed. For a ge-
ometric modeling the delay, energy and dilation of routing



in networks have been investigated in [9] and approximative
solutions as well as trade-offs between these measures have
been presented. Further works [2, 12, 13, 14] also considered
variable disk ranges around senders. Different disk sizes in-
dicated safe, unsure and no message receipt. This research
was motivated by the path-loss model, where a communica-
tion between two radio stations takes place if the signal to
interference and noise ratio, defined as S

I+N
is larger than a

given constant. In this term S denotes the signal power pro-
portional to d−α where d is the distance and α is the path
loss exponent, usually in the range between 2 and 5. One
can find an overview for different indoor and outdoor path
loss models in [19]. The term I denotes the sum of all inter-
fering signal powers approximated as

∑m
i=1(di)

α and N is a
constant, which describes the noise coming from the medium
and the receiver’s hardware. Recent work has described the
geometric behavior of senders and interfering radio stations
[1] and the complexity of solving communication tasks [6].

Initially, Gupta and Kumar derive in [7] the capacity of a
wireless network from the signal-to-noise ratio (SNR). They
determine the network throughput for n arbitrarily or ran-
domly placed nodes with single antennas. The path loss
exponent is α > 2 and they consider interference as boolean
property: if the SNR is above a given threshold the signal
can be received with a constant not mentioned channel ca-
pacity. The capacity is in the order of

√
n. Kumar et al.

[8] extend their work from two to three dimensions and then
generalize their result for two dimensions by using Shannons
law to estimate the channel capacity with Θ (log (1 + SNR)).

However this approach completely fails to describe the
phenomena with coupled antennas, better known as smart
antennas or MIMO (multiple input and multiple output).
While there are models that are derived from experimen-
tal research in communication, there is little mathematical
understanding about these communication models. Further-
more, the relationship of the signal-to-noise ratio in MIMO
to the communication bandwidth, which has been theoret-
ically founded for single antennas by Claude Shannon [20],
is also not completely understood.

1.2 Related Work
Özgür, Leveque, and Tse show in [17] that linear capac-

ity in the number of nodes n is possible when
√
A/λ > n

where A denotes the area A for node placing and λ denotes
the wavelength. To achieve linear scaling they use MIMO
techniques by allowing several nodes with single antennas
to join into a coordinated antenna array. We also arrive at
the same precondition

√
A/λ > m for our model to receive

a SNR gain of 1/m for MIMO and nodes with m anten-
nas in [10]. In [16] they further divide wireless networks in
working regimes with the main parameters short-distance
SNR, long-distance SNR, and the path loss exponent α of
the environment.

In a recent work [15], Özgür et al. present a hierarchical
broadcast scheme for n nodes in an one-dimensional net-
work. The basic scheme distributes information in clusters
of size M and the beamforming gain of the the M nodes is
used to transmit the messages to the target. This recursion
step is repeated in a hierarchical strategy. Their analysis
assumes a path-loss exponent 1 ≤ α < 2 in the line-of-sight
case. At the same time, they demand low SNR� 0 dB and
for small-range communication between neighboring nodes

a SNRs ≤ nα−2. In this paper, we assume a path-loss expo-
nent α = 2.

On the other hand MIMO is already a standard in use in
IEEE WLAN 802.11n and there have been a series of con-
siderations describing the bandwidth gain, which have been
theoretically predicted up to a factor of n for n senders and
n receivers. However, these predictions rely on the presence
of a complex environment where radio signals are reflected
from many points which are scattered around. Counterin-
tuitively, such environments are helpful and for sometimes
even necessary for MIMO communication. So, we consider
here the worst case, which is the free space model.

1.3 Contribution
In this paper, we derive a theoretic model for the commu-

nication bandwidth for MIMO. This is based on the funda-
mentals of physics for electromagnetic waves combined with
the theorem of Claude Shannon. We can reduce our model
to the standard SINR (signal to interference and noise ra-
tio) model in the plane for the path loss exponent α = 2
but with the enhancement of describing bandwidth limits
and multiple synchronized senders and receivers. Thereby,
we approve the superposition of power of unsynchronized
interferences in the SINR model.

Then, we consider the case where multiple senders and
receivers are placed on a line. If n senders are synchronized,
then the transmission range can be extended by MIMO
(multiple input multiple output) communication to a dis-
tance of a factor

√
n compared to a single sender when us-

ing the same transmission power of all senders combined.
A similar observation can be made for SIMO (single input
multiple output) communication. For MIMO we predict a
range increase of a factor of n without increasing the power.
Regarding the bandwidth only little improvement can be ex-
pected if only one pair of MIMO senders and receivers is ac-
tive. However, it is possible to have multiple communication
links in parallel, when multiple MIMO pairs are communi-
cating. From these observations, we propose a broadcasting
scheme in O (logn) time and the same energy consumption
as direct-neighbor communication. We also show the ability
of parallelism of this broadcast algorithm in intervals on the
line.

2. THE COMMUNICATION MODEL
We consider radio stations R in the plane with antennas

oriented perpendicular to a plane and therefore neglect the
effects of polarization. The antennas are used for sending
and receiving signals, which essentially hold binary strings,
called messages. These messages are modulated on the same
carrier wave with some frequency f . We assume a line-of-
sight communication model without obstacles and neglect
the influence of the nodes to the radio communication.

The antennas are placed on a line of this plane. A ra-
dio station may use more than one antenna for sending or
receiving. The set of antennas of a radio station v are iden-
tified by their positions on the line. This position knowledge
allows a radio station to send coordinated signals. However,
it is also possible that antennas of different radio stations
are coordinated.



Definition 2.1. A set of sending antennas are coordi-
nated if their locations are known at their radio stations,
the carrier waves and signal encoding are synchronized and
they perform the same task, e.g. send the same message.
Receiving antennas are coordinated if they share these prop-
erties and the signal can be decoded without further wireless
transmission.

Note that it is conceivable to consider decoding using fur-
ther wireless communication. However, this causes an in-
creased message size. In the seminal work of [17] and sub-
sequent article [16] this factor is expressed by a so called
observation of a message. The increase of the message size
limits multi-hop routing with uncoordinated MIMO commu-
nication because the message size grows exponentially with
each hop when observations are forwarded instead of decod-
ing them right away.

We assume that uncoordinated radio stations use unsyn-
chronized clocks, which can be modeled by independently
identically distributed random variables describing the rela-
tive phase shift of the carrier waves.

The key term to model the reception of a signal is the
signal power, while the key of understanding how the signal
is transmitted is the electric field. In Appendix A you can
find a detailed derivation of our model, which we now shortly
summarize.

At the sending antenna u signals are described by the
function su (t) modulated over a carrier wave described by

au ej(2πft+φu) where au describes the amplitude of the field
and φu some random phase shift (we denote j as the imag-
inary unit). Now a2uf

2 is proportional to the transmission
power P and for coordinated senders we can adjust the am-
plitude and phase shifts to values a′u ≤ au and arbitrary φ′u.

The complex value su = a′u ejφ
′
u describes the full informa-

tion of the carrier wave with |su| ≤
√
P/f and transmission

power P at antenna u. Note that for coordinated senders
these complex numbers can be freely chosen and adjusted.

Definition 2.2. The electric field Eu at sending antenna
u is characterized by Eu(t) = sue

j2πft, where su = |su|ejφ

describes the amplitude |su| ≤
√
P/f for maximum trans-

mission power P and φ the phase shift of the sender u.

The propagation of the electromagnetic wave is described
by the channel matrix which takes two terms into account –
the decrease of the electric field of a sinusoidal wave, which
is proportional to 1

d
where d is the distance, and the phase

shift induced by the time the signal needs to travel with the
speed of light c.

Definition 2.3. The received electric field Ev (t) at a re-
ceiver antenna v is described by

Ev (t) =

n∑
i=1

si ·
ej2πf(t+|ui−v|/c)

|ui − v|
= ej2πft ·

n∑
i=1

si · hi,k

where u1, . . . , un are the sender antennas with characteristic
scalar si.

This modification between sender and receiver can be de-
scribed by a multiplication with the complex number hi,k =
ej2πf|ui−vk|/c

|ui−vk|
, where ui and vk denote the positions of sender

and receiver on the line. The resulting matrix H = (hi,k)i,k
is called the channel matrix.

Similarly, at the receiver it is possible to amplify and phase
shift signals. This is denoted by the multiplication with ri.
However, the amplification also changes the received noise
and possibly interfering messages by a factor of |gi|.

So, for (coordinated or uncoordinated) senders u1, . . . , un
the receiver antennas v1, . . . , vm receive an electric field which
consists of the linear combination of the signals

E (t) =

n∑
i=1

m∑
k=1

gk · Eui,vk (t)

where gk ∈ C is chosen for each receiver antenna which
consists of a phase shift and an amplification. Furthermore,
some noise N will be received which we will take care of
soon. Whenever a phase shift occurs the constant factor
2πf/c occurs. For readability, we omit it and set 2πf/c = 1
for the rest of this paper. We also omit the carrier wave
function ej2πft, since the characteristics are solely described
by the factors. So, the electric field is no longer a function of
time. The power of the coordinated signal can be described
by (ES)2 as well as the power of the uncoordinated signal
is (EI)

2. Since we assume independent choices of the phase
shifts we can simplify this term.

Lemma 2.4. The expected power of uncoordinated senders
w1, ..., w` with signal s′1, ..., s

′
` at the coordinated receivers

v1, ..., vm is

E [P ] = E
[
|E|2

]
=

m∑
k=1

∑̀
i=1

|gk|2
|s′i|2

|wi − vk|2

where gk denotes the signal gain of the k-th receiver.

The following proof of Lemma 2.4 approves the superpo-
sition of power of unsynchronized interferences in the SINR
model.

Proof of Lemma 2.4: Given n senders with character-
istic scalars s′i = ai ejφi and distance |wi − r| to a receiver
r. The sender antennas are not synchronized with phase
angle φi and produce interference at r. The electrical field
strength of sender wi with far field approximation is

Esi =
ai · ejφi
|wi − r|

.

The power of the field produced by sender wi at r alone is

Pwi,r =

∣∣∣∣ai · ejφi|wi − r|

∣∣∣∣2 =
a2i

|wi − r|2
.

The superposition principle can be applied to the electrical
field strength and not to the power.

Er =
∑n
i=1Ewi

The power of the superposed field is then

Pr =
(∑n

i=1Ewi
)2

. (1)



The expected power of the noise is then

E [P ] = E

[∣∣∣∣∣
n∑
i=1

ai · ejφi
|wi − r|

∣∣∣∣∣
2]

= E

[
n∑
i=1

ai · ejφi
|wi − r|

·
n∑
i=1

ai · e−jφi
|wi − r|

]

= E

 ∑
i∈{1..n}

(
ai

|wi − r|

)2


+E

 n∑
i=1

n∑
k=1,i6=k

ej(φi−φk)


︸ ︷︷ ︸

=0

ai
|wi − r|

· ak
|wk − r|

= E

[
n∑
i=1

a2i

|wi − r|2

]
.

This corresponds to the well known SINR model. The
noise power is amplified like all other signals at the m coor-
dinated receivers by a factor of |gk|2 with signal gain gk at
the k-th receiver. Since electric fields superpose we get the
following signal-to-noise ratio.

Definition 2.5. For n coordinated senders at positions
u1, . . . , un and m coordinated receivers at positions v1, . . . , vm
the signal-to-noise-ratio (SINR) can be determined as

SINR =

∣∣∣∑n
i=1

∑m
k=1 si ·

ej|ui−vk|
|ui−vk|

· gk
∣∣∣2∑m

k=1 |gk|
2
(
N +

∑`
i=1

P ′i
|wi−vk|2

) =
|s ·H · g|2

N ′ + I

where u = (u1, . . . , un) ∈ Rn is the set of the coordinated
sending antenna positions, v = (v1, . . . , vm) ∈ Rm is the
set of the coordinated receiving antenna positions, and w =
(w1, . . . , w`) ∈ R` is the set of uncoordinated sender antenna
positions on the line. N is the power equivalent of the noise
level at each receiving antenna vk. P ′i describes the power
of the interfering antenna wi. The positions of the coordi-
nated senders and receivers describe the channel matrix in
free space

Hi,k =
ej|ui−vk|

|ui − vk|
i ∈ [n], k ∈ [m] .

I =
∑

i∈[`],k∈[m]

|gk|2
P ′i

|wi − vk|2

is the sum of the received signal power from uncoordinated
senders. And the received noise is given by

N ′ = N
∑
k∈[m] |gk|

2 .

The vectors s = (s1, . . . , sn) ∈ Cn with |si|2 ≤ Pui and
g = (g1, . . . , gm) ∈ Cm can be chosen arbitrarily.

For the bandwidth we follow Shannon’s theorem. We also
assume that a minimum SINR is necessary to establish com-
munication.

Definition 2.6. If the SINR is above a certain threshold,
then communication can be established. For higher SINR
values the bandwidth of the transmission is modeled by
f · log(1 + SINR) where f is the carrier frequency.

The threshold effect [20] causes the error rate to increase
drastically when the noise is over a certain threshold of the
system design.

3. POWER GAIN AND DELIBERATE
ATTENUATION OF COORDINATED
SENDERS IN MISO

For senders on a line, this results in a power gain when the
senders are in sync, e.g. all senders emit the same signal and
a receiver on the line receives the signal of all senders in the
same phase (Theorem 3.1). The coordinated senders pro-
duce noise in the opposite of the receiver’s direction and we
can also attenuate this noise by increasing the path loss ex-
ponent at the expense of decreasing power gain towards the
receiver. We call this deliberate attenuation (Theorem 3.3).

Theorem 3.1. If n coordinated senders send with trans-
mission power Pi = P/n each, at positions ui ≥ 0, they can
always produce a signal at a receiver vk ≥ max`{u`}, which
is n times more powerful than a single sender at position
0 with transmission power P when m receiver antennas are
positioned at v1, . . . , vm ≥ un.

Proof. Choose si = ejui
√
P/n and gk = e−jvk . This

results in

SINRn,m =

∣∣∣∑n
i=1

∑m
k=1 ejui

√
P/n · e

j|ui−vk|

|ui−vk|
e−jvk

∣∣∣2∑m
k=1 |e−jvk |

2 · (N + I)

=

P
n
·
∣∣∣∑n

i=1

∑m
k=1

1
|ui−vk|

∣∣∣2
m · (N + I)

≥
n · P ·

∣∣∣∑m
k=1

1
|vk|

∣∣∣2
m · (N + I)

.

The same equation for one sender at the origin yields for
s1 =

√
P and gk = e−jvk .

SINR1,m =

∣∣∣∑m
k=1

√
P · e

j|vk|
|vk|

· e−jvk
∣∣∣2∑m

k=1 |e−jvk |
2 (N + I)

= P

∣∣∣∑m
k=1

1
vk

∣∣∣2
m (N + I)

≤ 1

n
SINRn,m .

This implies that although the overall transmission power
is the same, the signal range with n coordinated antennas
extends by a factor of

√
n. This phenomenon is long known

and is called power gain in MISO [21].

Corollary 3.2. Any n coordinated senders can send
√
n

times farther than a single sender consuming the same power.

This is not contradicting the principle of conservation of
power, since we consider only the power on the line, whereas
the power distribution in the rest of the space changes dras-
tically.

While the factor n power gain is well known, the obser-
vation, that one can deliberately attenuate the signal in one
direction, is new to our knowledge.



Theorem 3.3. Any n coordinated antennas in general po-
sitions on the line can produce a fast fading signal on the line
which decreases with SINR O

(
1/d2n

)
in distance d.

Proof. To increase the path-loss exponent to α = 2n or
a field strength decreasing with 1/dn we want to ensure that

h (x) =

n∑
i=1

si ·
ej(x−xi)

x− xi
=

γ

O (xn)

for the complex antenna characteristics si and some con-
stant γ. W.l.g. we only consider x-values outside the sender
group with x > xi. We extend all summands to the same
denominator and the goal is to simplify the nominator to a
constant γ to decrease the signal strength to O

(
x−n

)
.

h (x) =

n∑
i=1

si ej(x−xi) ·
∏n
k=1,k 6=i (x− xk)

(x− xi) ·
∏n
k=1,k 6=i (x− xk)

=

n∑
i=1

si
(
d0,ix

n−1 + d1,ix
n−2 + · · ·+ dn−1,i

)
∏n
k=1 (x− xk)

(2)

=
γ∏n

k=1 (x− xk)
(3)

There is a choice for (s1, . . . , sn) resolving (2) to (3), since
there is a solution to the following equation

 d0,1 . . . d0,n
. . . . . .

dn−1,1 . . . dn−1,n

 ·
 s1

...
sn

 =


0
...
0
γ

 .

Because n vectors of length (n− 1) are linear dependent
there is always a non-trivial solution (s1, . . . , sn) 6= (0, . . . , 0)
to this equation.

One may object that the neglected near-field components
have stronger asymptotics than this attenuated signal. How-
ever, this proof technique also applies to a more accurate
model chosen, which reflects far-field and near-field, and
yields the same result, i.e. a near-field component for the
electromagnetic field of O

(
1
d2

)
with distance d to the sender

(see Equation 5 in the appendix).

Theorem 3.4. Given n = ρ · β (for ρ ≥ 2) coordinated
senders with power P each, we can obtain in opposite direc-
tions a power gain O

(
βP/d2

)
and a deliberate power atten-

uation of O
(
βP/d2ρ−2

)
.

Proof Sketch. Let u = (u1, . . . , un) be the sender anten-
nas divided into β groups of ρ antennas.

Each group of the ρ antennas will deliberately attenuate
for a position x > max{ui} and distance d = (x−max{ui})
with a power of O( P

d2ρ−2 ) and send a signal of power of

at least P/d2 to a position x < min{ui} and the distance
d = (min{ui} − x) to the group of antennas. In order to
achieve this claim the linear equation in the proof of Theo-
rem 3.3 needs to be combined with an inequality preventing
the attenuation to the left. The probabilistic method shows
that the additional degree of freedom by attenuating only
to O(P/d2ρ−2) allows this property. Now we multiply each
of the β groups with a random phase shift.

By the argument of Lemma 2.4 the expected power will
be the sum of all signal powers of the sub-groups. From this,
we can induce the existence of a choice such that the signal
is attenuated by O(ρβ/d2) to the left and O

(
βP/d2ρ−2

)
to

the right.

Corollary 3.5. Among many others the following com-
bination of deliberate attenuation and power gain to different
directions are possible for antennas with power P each.

1. O
(
P/d2

)
to the left and O

(
P/d2n−2

)
to the right (ρ =

n, β = 1)

2. O
(√
nP/d2

)
to the left and O

(√
nP/d2

√
n−2
)

to the

right (ρ =
√
n, β =

√
n)

3. O
(
nP/d2

)
to the left and O

(
nP/d2c

)
to the right for

any integer c ≥ 1 (ρ = c+ 1, β = n/(c+ 1)).

4. POWER GAIN AND DIVERSITY GAIN
OF SIMO AND MIMO

For a single sender we can also experience a power gain
of a factor n if we use coordinated antennas for receiving
(SIMO).

Theorem 4.1. Given m coordinated receivers 0 < v1 <
. . . < vm and a sender at the origin 0. Let SINR1,m be the
SINR of these receivers and let SINR1,1 be the SINR of a
single receiver at vm. Then, SINR1,1 ≤ 1

m
SINR1,m.

Proof. Choose s1 =
√
P and gk = e−j2πfvk . This results

in

SINR1,m =

∣∣∣∑m
k=1

√
P · e

j|vk|

|vk|
· e−jvk

∣∣∣2∑m
k=1 |e−jvk |

2 (N + I)

= P ·

∣∣∣∑m
k=1

1
|vk|

∣∣∣2
m (N + I)

≥ m
P

(vm)2 · (N + I)

= m · SINR1,1

Again this results in an extension of the transmission range.

Corollary 4.2. Any n coordinated receivers can get a
message from a distance

√
n times farther than a single re-

ceiver.

With the same calculation one can see a power gain in
MIMO.

Theorem 4.3. Given n coordinated senders u1 < . . . <
un < 0 and m coordinated receivers 0 < v1 < . . . < vm. Let
SINRn,m be the SINR of these senders and receivers and let
SINR1,1 be the SINR of a single sender at u1 and a single
receiver at vm. Then, SINRn,m ≥ nm · SINR1,1.

These power gains help to extend the communication reach.
However, there is also a direct possibility to increase the
bandwidth using the so-called diversity gain.

It is often mentioned in literature (e.g. in [18]) that an-
gular spread is essential for MIMO transmission. Our first
observation is that in principle such a diversity gain is pos-
sible on the line even in free space.



Lemma 4.4. For coordinated senders u1 < . . . < un and
coordinated receivers v1 < . . . < vm on a line with un < v1
or vm < u1 the channel matrix H has rank min{n,m}.

Proof. Without loss of generality we consider the only
the case un < v1. Let n = m, then the channel matrix is

H =

(
ej|ui−vk|

|ui − vk|

)
i,k∈[n]

=

(
ej(vk−ui)

vk − ui

)
i,k∈[n]

= D

((
e−jui

)
i∈[n]

)(
1

vk − ui

)
i,k∈[n]

D

((
ejvk

)
k∈[n]

)
where D(a) denotes the diagonal matrix of vector a, which

has full rank if a has no zero entry. The matrix
(

1
vk−ui

)
i,k∈[n]

is a Cauchy matrix and thus is invertible for all u, v if for all
i, k: ui 6= vk.

Theorem 4.5. For coordinated senders u1 < . . . < un
and non coordinated receivers v1 < . . . < vm with m < n on
a line with un < v1 or vm < u1 it is possible to send to any
subset of receivers without producing a signal at the other
receivers.

Proof. Consider the vector a1, . . . , am such that ai = 1
if i is in the subset of aimed receivers and ai = 0 otherwise.
Now, we use only m senders. Then let H−1 be the inverse of
H, which exists because of Lemma 4.4. Then each sender ui
uses the parameter qH−1a, where q = P/max{|(H−1a)i|},
where P denotes the maximum possible transmission power.
The resulting signal is therefore qHH−1a = qa.

Using this theorem it is possible to send n messages in paral-
lel from n coordinated senders to n uncoordinated receivers,
which can be seen as parallel MISO. For this, we choose a
receiver and modulate a signal, which can be received at
this receiver only, while the other receivers get no signal.
Now, we repeat this for all receivers and send the super-
posed signal from the n coordinated senders. As a result
each uncoordinated receiver gets only “his message”. This
seems to increase the bandwidth between senders and re-
ceivers on the line by a factor of n. However, the delimiting
factor is the attenuation of the signals imposed by the max-
imum transmission power P and the entries of the inverse
channel matrix H−1.

Lemma 4.6. Fix a set of n senders u1, . . . , un and n re-
ceivers v1, . . . , vn. Consider the channel matrix of u and
(v1 + d, . . . , vn + d) for increasing distance d on the line.
Then, the maximum absolute value of the inverse of the
channel matrix is Θ(d2n−1).

Proof. The absolute values of the channel matrix are
described by the Cauchy matrix

M =

(
1

vk − ui

)
i,k∈[n]

.

The determinant of a Cauchy matrix is

det M =

∏n
i=2

∏i−1
k=1(vi − vk)(ui − uk)∏n
i=1

∏n
k=1(vi − uk)

=

∏n
i=2

∏i−1
k=1(vi − vk)(ui − uk)∏n

i=1

∏n
k=1(d+ vi − uk)

= Θ

(
1

dn2

)
.

The inverse D = (dik)i,k∈[n] of a matrix can be computed as

dik = (−1)i+k
det(Mik)

det(M)

where Mik is the submatrix of M without the i-th row and
k-th column. Note that Mik is also a Cauchy matrix. There-
fore

|dik| = Θ

(
dn

2

d(n−1)2

)
= Θ

(
d2n−1)

So, the usage of Theorem 4.5 leads to an attenuation by a
factor of O(1/d2n−2), which is close to the deliberate atten-
uation which we have discussed before. On the positive side,
we show that it is possible to send n message in parallel from
n coordinated senders to n uncoordinated receivers even in
free space. However, the power of each antenna must be
chosen extremely large with respect to the noise, interfer-
ence power, and distance, i.e. P ≥ (N + I)d4n+2. For such
powerful senders the diversity gain of MIMO is larger than
the bandwidth increase using the classic Shannon bounds
even in the free space communication model.

5. BROADCASTING ON A LINE
We now concentrate on the main problem, which is the

broadcast problem where n nodes with one antenna each
are placed equidistantly on a line. Assume the first node
of the line is the originator of the broadcast message. The
broadcast scheme works in rounds. In the first round the
only informed node u1 transmits the message to neighbor
u2. The informed node synchronizes with the first node and
thus becomes coordinated. In the subsequent rounds all co-
ordinated senders use the MISO power gain to reach the next
neighbors and synchronize them. This process continues un-
til all nodes are informed. Using our previous observations
of the MISO power gain we can prove that this way the num-
ber of coordinated nodes increases exponentially inducing a
logarithmic time for the broadcast.

nodes
line

u1 u2 u3 u4 u5 u6 u7 u8

` = 4 informed nodes send to

transmission range d

Figure 1: Four coordinated nodes u1, .., u4 broadcast
and double the the number of informed nodes.

Theorem 5.1. The broadcast problem of n equidistant nodes
on a line where each node can establish a point-to-point con-
nection to each neighbor, can be solved in time O (logn) and
energy O (n) using MISO and wireless self-coordination.

Proof. Without loss of generality the nodes have unit
distance. For a given noise N and a required threshold
SNR0, the minimum power P0 to reach a neighbor in unit
distance is P0 ≥ N · SNR0.

First let us analyze the transmission range d of ` adjacent,
coordinated, and informed nodes. Each informed node ui
uses the characteristic si =

√
P0e
−ji. If all ` nodes send with



unit power P0 the signal power they produce in distance d
is

|h (`, d)|2 =

∣∣∣∣∣∣∣
∑̀
i=1

√
P0 · e−ji︸ ︷︷ ︸
si

·e
j(d+i)

d+ i


2∣∣∣∣∣∣∣

= P0 ·

(∑̀
i=1

1

d+ i

)2

= P0 · (Ψ (d+ `+ 1)−Ψ (d+ 1))2

> P0 · ln ((d+ `) /d)2 .

where Ψ (x) is the digamma function.

Now, if |h(`,d)|
2

N
≥ SNR0, then the receiver in distance d

gets the message and can be coordinated.

|h (`, d)|2

N
≥ SNR0 · ln ((d+ `) /d)2

So, for ln ((d+ `) /d)2 ≥ 1 the node in distance d can be
reached. This is the case for d ≤ 1

e−1
`. If the number of

informed and coordinated nodes in round i is `i then in the
next round

`i+1 ≥ `i + max

{
1,

⌊
1

e− 1
`i

⌋}
nodes are informed. Clearly `i = Ω(κi) for any κ < e

e−1
.

Hence, after T = O(logn) rounds all n nodes are informed.
The energy is bounded by

O

(
T∑
i=1

P0`i

)
= O

(
P0

T∑
i=1

κi
)

= O

(
P0

T−1∑
i=0

n

κi

)
= O(nP0) .

An interesting feature of this broadcasting process is that
it can be performed in parallel, since we can bound the in-
terfering energy by the following theorem.

Theorem 5.2. For an infinite number of equidistant nodes
on the line the broadcasting algorithm above can be per-
formed for each contiguous group of n nodes if the minimum
distance between these groups is O(n).

` = 4 interferring nodes send to

node

` = 4 informed nodes send to

linetransmission range d

interference range dN

transmission range d

Figure 2: parallel transmissions: ` = 4 nodes (blue)
send to range d with interference in distance dN
(red).

The following proof shows Theorem 5.2 that the noise pro-
duced by unsynchronized simultaneous sending antenna groups
is independent from the number of nodes in the network n.

Proof of Theorem 5.2: Let ` ≤ n be the number of
active senders and let d denote the distance between the
groups. Using the upper bound for the signal strength of
one sender group with ` antennas with (s · `/d) we get a
noise level of

|hN | ≤
∞∑
i=0

s · `
i · d ejβi =

`

dN
·
∞∑
i=0

ejβi

i
=

`

dN
· cN .

Let cN denote the complex conjugate of cN .

|cN |2 = cN · cN

=

∞∑
i=1

ejβi

i
·
∞∑
k=1

e−jβk

k

=

(
∞∑
i=1

1

i2

)
+

 ∞∑
i=1

∞∑
k=1,i 6=k

ej(βi−βk)

i · k


=

π2

6
+

∞∑
i=1

∞∑
k=1,i 6=k

ej(βi−βk)

i · k

For each index tuple (i, k) with i 6= k there exists a symmet-
ric (k, i) with the negated imaginary value.

∀i 6= k : =
(

ej(βi−βk)
)

+ =
(

ej(βk−βi)
)

= 0

So, we get only a sum of real numbers.

∞∑
i=1

∞∑
k=1,i 6=k

ej(βi−βk)

i · k =

∞∑
i=1

n∑
k=1,i 6=k

cos (βi − βk)

i · k

We have assumed that angles βi ∈ [0, 2π) are independently,
identically, and uniformly distributed over [0, 2π). So the

expectation of cos (βi) is
(

1
2π

∫ 2π

β=0
cosβ dβ

)
= 0 And, the

expected value of the sum is

E
[
|cN |2

]
=

π2

6
+

∞∑
i=1

∞∑
k=1,i 6=k

0︷ ︸︸ ︷
E [cosβi − βk]

i · k =
π2

6
.

The root mean square of hN is therefore

|hN |rms =
`

dN

π√
6

= O
(
`

dN

)
. (4)

Figure 3 illustrates the result of Lemma 5.2 for the noise
strength |hN |rms = `

dN

π√
6
. In the experiment, `

dN
was set to

1 and the phase angels of the interfering sender groups are
chosen uniform at random with βi ∈ [0, 2π). Each number of

#Interfering sender groups p

m
ea

n
|h

N
|

0 100 200 300 400 500

0.5

1.0

1.5

Figure 3: Experimental result for the signal strength
|hN | varying the number of sender groups p.

interfering sender groups was tested 100 times and averaged.



The total average measured strength of noise was ≈ 1.17
whereas the factor in the proof is π√

6
≈ 1.28.

6. CONCLUSION
We present a communication model for the bandwidth

in MIMO communication in free space which enhances the
SINR model. Exploiting MISO power gain of n coordinated
senders increases the transmission power by factor n com-
pared to a single sender with same power. We show how to
obtain a deliberate attenuation in MISO for n coordinated
senders on a line with factor 1/O

(
d2n
)
. While theoreti-

cally diversity gain of MISO/MIMO communication with
n independent data streams is possible, we show that this
works in the free space model only for high SINR and for
short distances. We present a logarithmic time MISO broad-
cast scheme for n nodes placed on a line in time O (logn)
which needs only a constant times more energy than the se-
quential direct-neighbor communication. We show that this
algorithm broadcasting to O (n) nodes does not influence
simultaneous broadcasts which are in distance Ω(n).

Note that the communication model is deduced from ana-
lyzing Hertz dipole antennas and basic physical observation.
So, the model has a solid foundation, which can be under-
stood even by non-physicists. The complete derivation can
be found in the Appendix.

Outlook
A straight-forward question is how this approach generalizes
to two dimensions. This question is not easy to be answered.
The power gain in MISO and SIMO results from the beam
forming. In a preceding paper we have analyzed the angle
of the main beam [10] for the case of randomly placed an-
tennas in a disk of radius r. It turns out that besides the
main beam a small number of side beams appears next to
it, while in the residual directions the power behaves like a
Gaussian distribution. A next step is an understanding of
free space MIMO effects in equidistant grid networks, and
how broadcasting can be improved.

Note that the polarization does not play a role in the two-
dimensional case, since we assume antennas perpendicular
to the plane. Clearly this effect cannot be ignored anymore
in three dimensions. Then, the channel matrix cannot be
described by a single complex value. A more sophisticated
model is needed, which is also part of future research.

In this work we have only considered the free space model.
It is well known that the channel matrix allows a diversity
gain, if the environment provides reflections and multiple
path diffraction. The relationship of the environment to the
channel matrix is not fully understood so far. So, many re-
search papers simply assume the best possible channel ma-
trix, the existence of which is not clear. Here, further re-
search may help to a better understanding of the influence
of a limited number of obstacles to the possible positive im-
pact on communication.
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APPENDIX
A. APPENDIX: DERIVATION OF THE COM-

MUNICATION MODEL
In this appendix, we present the physical basis for our

communication model of Section 2 starting at electromag-
netic fields of antennas to data transmission, and the derived
transmission capacity.

A.1 Electric Fields
We briefly summarize essentials for radio communication

based on Maxwell’s equations. You can find the following
observations in much greater detail in Physics textbooks.
Here, we now present a compilation of “The Feynman Lec-
tures on Physics” Vol. I. [5], chapter 28 and 29. An electric
field E is a vector at each point describing the force on a
charged particle. It is described for a single particle with
charge q as

E =
−q

4πε0

(
er′

r′2
+
r′

c

d

dt

(er′

r′2

)
+

1

c2
d2

dt2
er′

)
(5)

where c ≈ 3.000 × 106m/s is the speed of light, and ε0 ≈
8.854×10−12F/m is the electric constant, r′ is the distances
to the particle where it has been considering the speed of
light and the distance. er′ denotes the unit factor in the
direction.

Note that this equation already combines the electric and
magnetic field which is described by (the Maxwell-Faraday
equation)

B = −er′ ×E/c .

In the far-field for large distances r the last component in
Eq. 5 prevails, rendering the equation to

E =
−q

4πε0 · c2
· d

2

dt2
er′ . (6)

If a particle moves vertically along a line according where
charged particles are moved with acceleration function a (t)
the electric field has an approximated magnitude of

E (t) =
−q

4πε0 · c2r
· sin θ · a (t− r/c)

and the orientation of the vector is as been shown in Fig-
ure 4.

The electric fields have the superposition property. For
two electric fields E1 and E2 the resulting electric field is

E = E1 + E2 . (7)

Er0
a0

e.g. dipole
radiator

✓

particle

Figure 4: Electric field E in distance r′ of a dipole
radiator in the plane with a charge q accelerated
with a.

This of course applies for single charges in antennas as well
as the different currents of multiple antennas.

Radio signals are modulated as sine curves with x0 cosωt,
which leads to an acceleration of

a (t) = −ω2x0 cosωt = a0 cosωt

where ω = 2πf with frequency f , x0 is the amplitude of the
charged particle, ω denotes the frequency, and a0 = −ω2x0.
This results in the well-known Hertz dipole equation

E (t) =
−q

4πε0 · c2r
· sin θ · a0 cosω (t− r/c) . (8)

Of course the orientation of the antennas plays a major
role. However, if we restrict ourselves to a two-dimensional
plane with perpendicular antennas all electric fields are ori-
ented perpendicular to the plane. This allows us to simplify
the dynamic electric field to a scalar field. The far-field ap-
proximation of Equation 6 holds for a distance r of a few
wavelengths λ = c/f .

A.2 Power
The power or energy per second of an electric wave through

an unit area is

S = ε0c · E2

with the impedance of free space 1/ (ε0c) ≈ 376.7 ohms.
Thus, the power increases inversely to the square of the dis-
tance with

S =
q2 · a (t)2 · sin2 θ

16π2ε0 · r2 · c3
.

Therefore the power through the enveloping surface of radius
r produced of a charge q oscillating with ω is

P =
q2ω4x20
12πε0c3

.

The length of the antenna is described by x0 which is pro-
portional to c/f = 2πc/ω.

At a receiver antenna parallel to the movement of the
particle this causes a voltage proportional in E. Also the
current is proportional according to Ohm’s law, however the
inductances plays a major role. Summarizing we observe
that the received power P at the antenna is

P = kE2 (9)

where k is a suitable constant for a fixed frequency. This
also holds for the combination of antennas, since the electric
fields increase each voltage and each current.

This leads to two interesting observations, which has been
proved useful in antenna design for a long time.



1. Two antennas in sync produce an electric field twice
the size. So, four times the power arrives at the receiver
antenna.

2. Two receivers can reproduce four times the power of
a sender antenna if the induced current is time shifted
accordingly.

A.3 Modulation
This observation is only possible if one carefully consid-

ers the interplay of the locations of the antennas and the
time shift to achieve the constructive interference. For this
we introduce the following notations. Let s1, . . . , sn denote
the locations of sender antennas in two dimensional space,
likewise r1, . . . , rn denote the receiver antennas.

If we assume a amplitude/phase shift key modulation with
function aam (t), apm (t) , so the movement of a particle can
be described as:

aam (t) · cos (ωt+ apm (t)) = <
(
aam (t) · ejapm(t) ejωt

)
For simplicity we use the complex number

a (t) = aam (t) · ejapm(t)

as the combined signal emitted at s over time (while s de-
notes the location).

A.4 Superposition
So, at receiver r we have the following electric field for one

sender s.

E ∝ <
(
a (t) · ejω(t−|s−r|/c)

|s− r|

)
= <

(
a (t) · e−jω|s−r|/c

|s− r| · ejωt
)

We denote by hi,k = e−j|si−rj|/c · |si − rk|−1 the amplitude
shift transformation of the signal from sender si to receiver
rk. Hence, the electric field received at receiver rk is there-
fore

Ek ∝ <

(
n∑
i=1

ai (t) · hi,k · ejωt
)
.

This describes the MISO case (multiple input/single out-
put). For true MIMO all antennas are combined. This could
be a simple addition of the electric fields. However, more
likely is that a time shift tk and a dampening dk ≤ 1 is
applied. These terms can be adjusted to increase the sensi-
tivity and we combine these terms to rk = dke

jtk .
Now the combined received electrical field is

E =
m∑
k=1

Ek = <

(
m∑
k=1

n∑
i=1

ai (t) · hi,k · rk · ejωt
)
. (10)

A.5 Signal to Interference + Noise Ratio
(SINR)

For the successful radio reception of the information in
a (t) from sender si to receiver r, the magnitude of the also
undesirably received noise is crucial. The standard measure
in literature is the Signal-to-Noise Ratio (SNR) or Signal-
to-Interference+Noise Ratio (SINR). The second measure
SINR (see [7]) also includes – besides environmental noise
and noise in the receiver (e.g. amplifier stage) N – the noise

produced by interfering senders sk involved in parallel trans-
missions

SINR (r) =

P (si)
|si−r|α

N +
∑
k 6=i

P (sk)
|sk−r|α

. (11)

The path-loss exponent is here α which is α = 2 for free-
space and α > 2 including obstacles absorbing the energy.
The power P is in Eq. 11 exclusive the path-loss factor.
Here we answer the question why we sum up the receive
power when the superposition principle is applied for the
field strengths.

A.6 Data Rate in Presence of Noise
The maximum possible data rate in a channel with white

noise was derived by Shannon in 1949 [20]. In the pres-
ence of noise with power N , each modulation scheme with
power P uses a limited number of distinguishable signals.
The maximum power of the received signal is then (P +N)
and since each transmitted signal can be perturbed by noise
power N there are K ·

√
(P +N) /N = K ·

√
1 + P/N dis-

tinguishable signals for some constant K near unity. Given
a bandwidth W in Hertz we can transmit in a time unit up

to
(
K
√

1 + P/N
)2W

distinct signals. Since we can decode

in m possible states log2m binary digits this gives a maxi-
mum capacity in bits per second of the well-known Shannon-
Hartley theorem

C = W · log2

(
1 +

P

N

)
= W · log2 (1 + SINR) . (12)

For a low SNR ≈ 0 we can approximate

C ≈W · SINR · log2 (e) . (13)
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