
Improving the Average Delay of Sorting?

Andreas Jakoby1 Maciej Liśkiewicz1

Rüdiger Reischuk1 Christian Schindelhauer2

1 Inst. für Theoretische Informatik, Universität zu Lübeck, Germany
jakoby/liskiewi/reischuk@tcs.mu-luebeck.de

2 Dept. of Computer Science, Universität Freiburg, schindel@informatik.uni-freiburg.de

Abstract. In previous work we have introduced an average-case measure for the
time complexity of Boolean circuits – that is the delay between feeding the input
bits into a circuit and the moment when the results are ready at the output gates
– and analysed this complexity measure for prefix computations. Here we con-
sider the problem to sort large integers that are given in binary notation. Contrary
to a word comparator sorting circuit C where a basic computational element,
a comparator, is charged with a single time step to compare two elements, in a
bit comparator circuit C′ a comparison of two binary numbers has to be imple-
mented by a Boolean subcircuit CM called comparator module that is built from
Boolean gates of bounded fanin. Thus, compared to C, the depth of C′ will be
larger by a factor up to the depth of CM .
Our goal is to minimize the average delay of bit comparator sorting circuits. The
worst-case delay can be estimated by the depth of the circuit. For this worst-case
measure two topologically quite different designs seems to be appropriate for the
comparator modules: a tree-like one if the inputs are long numbers, otherwise a
linear array working in a pipelined fashion. Inserting these into a word compara-
tor circuit we get bit level sorting circuits for binary numbers of length m for
which the depth is either increased by a multiplicative factor of oder log m or by
an additive term of order m .
We show that this obvious solution can be improved significantly by constructing
efficient sorting and merging circuits for the bit model that only suffer a constant
factor time loss on the average if the inputs are uniformly distributed. This is
done by designing suitable hybrid architectures of tree compaction and pipelin-
ing. These results can also be extended to classes of nonuniform distributions if
we put a bound on the complexity of the distributions themselves.

1 Introduction

For circuits, depth is normally used to measure the time a computation takes. This is
a worst case estimation. In [JRS94] we have defined an average-case measure for the
time complexity of circuits called delay. It has been observed that in many cases critical
paths of a given circuit, e.g. paths between input and output gates of maximal length,
? Supported by DFG research grant Re 672/3.

have no influence on the final output. Hence, the output values of the circuit for some
inputs can be obtained much earlier.
The average delay of basic functions like OR,ADDITION,PARITY, and THRESHOLD
has been estimated precisely. These are special instances of the parallel prefix problem
that has been investigated in detail in [J98]. In many cases we have found circuit de-
signs that are exponentially faster on average than the optimal circuits for the worst-case
[JRS94,JRSW94,JRS95]. On the other hand, we could show lower bounds saying that
for certain functions, e.g. PARITY , the average delay remains asymptotically the same
as in the worst case. A similar result holds for the problem to sort n bits that has worst-
case complexity Θ(log n) . For the worst case, the lower bound follows from a simple
counting argument, the upper bound has been established by a nontrivial construction
of Ajtai, Komlos and Szemeredi [AKS83].

0

t = 1

t = 2

0

0

1

A

B

C

min{x, y}

max{x, y}

x = 1

y = 0

z = 0

1

0

t = 0

Fig. 1. The flow of inputs in a computation of C3 .

The delay of a sorting circuit may
be smaller than its depth as can
be seen in Fig. 1 showing a sort-
ing circuit C3 for 3 elements. The
first picture shows the circuit con-
sisting of 3 comparators A,B, C .
Its depth is 3 , too, since the line
in the middle marked with input
y goes through each comparator.
The pictures show the flow of the
inputs through the circuit starting
with time t = 0 when all inputs
are at the left end. However, for
the given input vector (1, 0, 0) , on
the critical path in the middle there
does not occur a delay of 3. The
reason is as follows: already in the
first time step the lower 0 can be
passed through comparator B to
its upper output line although the
second input for B has not arrived yet. No matter, what kind of bit this will be, com-
parator B can be set to an X that switches the inputs because we can be sure that a
0 must occur at the upper output. In the second phase this allows comparator C to do
its job since both its inputs are already there and comparator B to finish its work by
passing the input 1 on its upper line to the lower output line. Still, this saving in the
computation time has no asymptotic effect as we have shown in [JRS94].

Fact 1 The average delay of a sorting circuit over an arbitrary finite basis with gates
of bounded fanin that sorts n uniformly distributed bits is at least Ω(log n) .

Thus, sorting n elements requires logarithmic time - even on the average. The com-
plexity of sorting seems to be settled. But what happens if we do not have to sort single
bits, but long binary numbers. Obviously, the depth has to increase since a binary circuit
of bounded fanin cannot compare two long numbers in constant time.

2

Let n denote the number of elements that have to be sorted and let us start with a word
comparator circuit Cn . A comparator has indegree and outdegree 2 , and takes two
elements of the sorting domain and outputs the minimum at the top and the maximum
at the bottom output node. Let depth(Cn) denote the depth of the circuit where each
comparator is assumed to have depth 1 (see Fig. 1).
If the elements to be compared are binary numbers of some length m we call this the
(n, m) -sorting problem. Now let us consider the physical realization of comparators.
A comparator CMm that compares two m -bit numbers has to be built on the bit level.
Such a subcircuit we will call a comparator module. There are two obvious alterna-
tives how to design a comparator module and combine it with the topology of a word
comparator circuit.

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

x

y

z

2
3
4

1

2
3
4

1

2
3
4

1
min{x, y}

max{x, y}

Fig. 2. The sorting circuit C3,4 with comparators of a tree architecture.

On the one hand, one can compare two numbers x, y bitwise. Every bit comparison
generates a result <,= oder > and these results can be combined in binary tree-like
fashion to determine the result ρ determining which number is the smaller or whether
the numbers are equal. Each pair of bits of x, y is then routed to the appropriate output
position by a switch that is driven by ρ . Assume that the combination of two bit com-
parison results can be performed by a subcircuit of depth δ . Then such a comparator
CMm can be implemented by a binary circuit of depth δ log m + O(1) . This assumes
no bound on the fanout of a Boolean gate (if one insists on fanout at most 2 the depth
becomes (δ + 1) log m + O(1)). Thus, in total we get a bit level sorting circuit Cn,m

of depth (δ · log m + O(1)) · depth(Cn) (see Fig. 2).
Alternatively, one could compare the bits of two numbers in a linear fashion starting
with the leading bits. This requires depth linear in the number of bits, but has the ad-
vantage that after δ steps the leading bits of the two results of that comparator are
already known. This pipelined construction increases the depth of the sorting circuit
Cn only by an additive term δ ·m resulting in a bit level sorting circuit C ′

n,m of depth
at most δ · (m + depth(Cn)− 1) (see Fig. 3).
A detailed discussion of sorting in the bit model can be found in Section 1.1.2 of [L92].
Several papers have considered worst-case delay of Boolean sorting networks explic-
itly. In [AB93] Al-Hajery and Batcher constructed bit serial bitonic sorting networks
(BBSN) of size O(n log n) that sort n numbers each of length m = O(log n) in

3

O(log2 n) steps. BBSN is a periodic network of depth O(log n) and size O(n log n)
based on pipelining. The model of [AB93] differs, however, from the word comparator
circuit in that BBSN is a network of bit processors which has the same topology as
bitonic sorting network and which processes m -bit input strings in a bit serial fashion.
In [LP90] Leighton using methods due to Thompson [T79] proved an Ω(n+m) lower
time bound for (n, m)-sorting on a (m×n)–array of bit processors. In addition, several
papers have discussed VLSI architectures for sorting (e.g. [T83,LO99,HL00,LDH03]).

4

1

2
3
4

1

x

y

z

2
3
4

1
2
3
4

1

4
3

2
1

4
3

2
1

4
3

2
1

4
3

2
1

4
3

2
1

4
3

2
1

min{x, y}

max{x, y}

4
3

2
1

4
3

2
1

2
3
4

1

2
3

Fig. 3. The sorting circuit C′
3,4 based on linear arrays. The gray boxes on the links that connect

the comparator modules illustrate that output bits of higher order are available before the output
bits of lower order.

Using the topology of the asymptotically optimal AKS-network [AKS83] and notic-
ing that δ = O(1) , the pipelined construction by linear arrays described above sorts
n numbers of length m ≤ O(log n) in O(log n) depth. For m ≥ log n loglog n ,
tree-like comparator modules seem to be better suited and give depth O(log n log m) .
Because of huge constants, AKS-networks are only advantageous for very large n .
In [LP90] Leighton and Plaxton constructed butterfly-based sorting networks that sort
correctly with probability close to 1 . These networks have depth 7.45 log n . An im-
plementation of this topology with binary gates yields a randomized sorting circuit of
O(m + log n) , resp. O(log n log m) depth with small constant factors and low error
probability.
In this paper we investigate the (n, m)-sorting problem for m significantly larger than
log n . New comparator modules that are hybrid versions of the two basic topologies
will be constructed that speed up sorting networks on average assuming uniformly dis-
tributed inputs.

Theorem 1. For every m , there are comparator modules CMm with the following prop-
erty: If a Boolean circuit Cn,m for the (n, m)-sorting problem is derived from a word
comparator circuit Cn by implementing its comparators as CMm modules then as-
suming uniformly distributed inputs Cn,m faces a delay of at most O(depth(Cn))
with probability at least 1 − 1/n . Even in the worst case, the delay does not exceed
O(depth(Cn) · log (n + m)) . Thus, the average delay is at most a constant factor
larger than the depth of the word comparator circuit independent of the length of the
binary numbers.

4

The proof will be given in Section 4. This construction requires gates of unbounded
fanout to spread information about comparison results fast. If one requires a constant
fanout restriction the delay bound becomes O(depth(Cn) + log m) with probability
1− 1/n and the average delay stays independent of m as long as m ≤ 2n . Thus even
in case of strictly bounded fanout, for large numbers m we achieve the best combina-
tion of the simple architectures described above concerning the average delay: only a
logarithmic increase log m instead of m , and this only by an additive term rather than
a multiplicative factor.
Small average delay can also be achieved for merging lists of m -bit numbers. In partic-
ular, based on the odd-even merge topology we show that there exists a bit comparator
circuit that merges two lists of n/2 numbers each in O(log n + log m) steps on aver-
age. As a consequence we obtain

Theorem 2. Let Mn be the odd-even merge sort word comparator circuit for n ele-
ments. Then for every m , there are comparator modules CMm such that the Boolean
circuit derived from Mn by replacing its comparators by CMm modules solves the
(n, m)-sorting problem and with probability at least 1 − 1/n its delay is bounded by
O(log2 n) .

Furthermore, the average delay of these circuits is bounded by O(log2 n) and their
worst-case behaviour is as good as that of worst-case optimal ones. This small average
delay bound can also be obtained for families of nonuniform distributions of low com-
plexity (Theorem 4 below). For this result our circuit design does not use any knowledge
about the actual distribution µ , it works uniformly for all such µ .

The rest of this paper is organized as follows. Section 2 defines asynchronous Boolean
circuits and their timing, in particular the complexity measure delay. The design of ef-
ficient comparator modules is described in Section 3. In Section 4 we construct specific
bit comparator circuits for sorting and merging and analyse their average delay for the
uniform distribution. This is extended to nonuniform distributions in Section 5.

2 Timing of a Boolean Circuit

In the following let log n := dlog2 ne denote the binary logarithm rounded up.
If we want to exploit possibilities to speedup the computation of a Boolean circuit it has
to work in an asynchronous fashion. For this mode one has to extend the binary logic
to indicate when a Boolean value is ready of valid. How this can be done efficiently has
been discussed in [JRS94]. To concentrate on the topological aspects of sorting circuits
here we simply assume that each gate knows from its predecessors when their values
are ready.
Let C be a Boolean circuit, and Vin, Vout denote its input, resp., output gates. For a
gate g and input x of C let resg(x) denote the value that is generated by g on x . If
g is the i-th input gate then resg(x) = xi . Otherwise, resg(x) is determined by the
values resgi(x) of its immediate predecessors gi and the type of g .
Circuits that work in an asynchronous mode may not get all their input bits at the same
time. Similar to [JS01] we therefore make the following definitions.

5

Definition 1. A starting-line for C is a function S : Vin → IN. Given a starting-line
S for C , we define a function timeC

S for pairs (g, x) where g is a gate of C and x
an input as follows:

timeC
S (g, x) :=

S(g) if g is an input gate,
0 if g is a constant gate,
1 + tg(x) else,

where tg(x) denotes the smallest time t , such that the values resgi
(x) of those imme-

diate predecessors gi of g with timeC
S (gi, x) ≤ t uniquely determine resg(x) .

Thus, timeC
S (g, x) denotes the earliest moment when g knows its value assuming that

the inputs are available according to the starting time S . For the circuit C itself we
define the timing by timeC

S (x) := maxg∈Vout timeC
S (g, x) .

Let timeC(x) denote the timing if the starting-line S is identically 0 .
Given a probability distribution µ on the input space, we define the average delay of
C by Etimeµ(C) :=

∑
x µ(x) · timeC(x) . �

Normally, all input bits are available at the beginning of a computation, that is at time
0 . In the following we will also consider the case when some bits are delayed. For this
purpose, for k ∈ [1..m] let us define the function σk : [1..m] → IN by

σk(j) :=
{

j − 1 if j ≤ k,
k + 1 else.

3 Average-case Efficient Comparator Modules

Definition 2. Let IB = {0, 1} denote the binary alphabet and Σρ := {LE, EQ, GT} an
alphabet to specify the result of a comparison of two elements, numbers or bits: less,
equal, or greater. Σρ will suitably be coded over IB – for example by the 3 vectors
(1, 0, 0), (0, 1, 0), (0, 0, 1) . In the following x, y, u, v will always denote variables
that hold a binary value and ρ, ρ1, ρ

′, ... are variables that take values from Σρ . The
Boolean sorting circuits will be constructed from 2 basic types of gates, S -gates and
R -gates (see Fig 4).

– S -gate: it takes 3 inputs ρ, x, y and generates the 3 outputs u, v, ρ′ . The input-
output relation is defined as follows:
for ρ = EQ and x < y : u = min{x, y} = x , v = max{x, y} = y , ρ′ = LE ,
for ρ = EQ and x > y : u = min{x, y} = y , v = max{x, y} = x , ρ′ = GT ,
for ρ = EQ and x = y : u = min{x, y} , v = max{x, y} , ρ′ = EQ ,
for ρ = LE : u = x , v = y , ρ′ = LE ,
for ρ = GT : u = y , v = x , ρ′ = GT .

– R -gate: the inputs are ρ, ρ1, ρ2 , the only output is ρ′ :
for ρ 6= EQ : ρ′ = ρ ,
for ρ = EQ and ρ1 6= EQ : ρ′ = ρ1 ,
else ρ′ = ρ2 . �

6

ρ2

ρ′

ρ

S

x y

vu ρ′

R

ρ

ρ1

Fig. 4. S -gate and R -gate

u5v5

x1y1

x2y2

x3y3

ρ0

ρ5

ρ1S1

S2

S3

S4

S5

x4y4

x5y5
u1v1

v2u2

u3v3

u4v4

Fig. 5. A line comparator module.

According to the Boolean basis and the coding of Σρ both types of gates can be realized
by small subcircuits of some fixed depth at most δ . For simplicity, through the rest of
the paper we will assume that δ = 1 , otherwise one has to add this as a constant
factor to all the circuit bounds stated below. For an S -gate it is important to note that
depending on its input values, its 3 outputs may be ready at different times. Thus, the
timing information should rather be attached to the output wires of a gate than to the
gate itself. Since this will not be important in the following we stick to the simpler
model.
Our circuit designs will also make use of simplified versions of an S -gate. An L-gate
is an S -gate where the ρ′ -output is not needed. An U -gate in addition does not need
the ρ -input and behaves as if this input were EQ . Furthermore, an U -gate does not have
the outputs u and v . Also some R -gates will have the input ρ be missing.
A comparator module CMm is a subcircuit built from S - and R -gates that takes two
binary numbers x = x1 . . . xm and y = y1 . . . ym and produces two output strings u
and v such that u = min{x, y} and v = max{x, y} . We assume that x1 , resp. y1

are the leading bits of the binary numbers. In addition, CMm outputs the result ρ ∈ Σρ

of the comparison, that is either LE , EQ or GT . In the following, ρ will be called the
compare info of CMm . Let us first describe more formally the line- and tree-comparator
module introduced above.

Definition 3. A line comparator module LCMm (see Fig. 5) is a comparator module
consisting of a linear array of S -gates S1, . . . , Sm where each Si gets the i-th bit of
x and y and the compare result ρi−1 of Si−1 . For S1 we define ρ0 := EQ . Si outputs
the two bits ui and vi and ρi as the result of comparing the prefixes x1, . . . , xi and
y1, . . . , yi . The compare info of CMm is ρm , i.e. the compare result of the last Sm . �

Even though some of the pairs ui, vi may be computed faster (if xi = yi), since the ρi

form a linear chain, gate Si always has to wait for the output ρi−1 of its left neighbour
in order to determine its output ρi . Thus, we get the following timing for a LCM .

Lemma 1. If S is a starting-time for LCMm such that S(xi),S(yi) ≤ i − 1 for all
i ∈ [1..m] then timeLCMm

S (Sj , (x, y)) = j for all j ∈ [1..m] and all input pairs (x, y) .

Definition 4. A tree comparator module TCMm (see Fig. 6) makes all the compar-
isons of input pairs xi, yi in parallel by a sequence of U -gates U1, . . . , Um , and then

7

combines their results ρ1, . . . , ρm by a binary tree of R -gates to obtain the compare
info ρ . The root of this tree will be denoted by R̂ . The compare info ρ at R̂ is then
used to drive m L-gates L1, . . . , Lm . Li either leads the two inputs xi, yi simply
through if ρ equals LE or EQ , or exchanges their order otherwise. Value ρ can either
be forwarded to the Li directly if we allow unbounded fanout or we have to use another
binary tree to duplicate this information if the fanout is bounded. In the following we
will consider the case of unbounded fanout, otherwise in the timing bounds below one
has to add another additive term log m . �

ρ0

x1y1 x2y2 x3y3 x4y4

v4u4u3v3u2v2v1u1

x4y4y3x3x1y1 x2y2

L1 L2 L3 L4

U1 U2 U3 U4

ρ5

R̂

Fig. 6. A tree comparator module.

y1x1

x7y7

S2

S1

S3

x4

U1 U2 U3 U4

y7x7y6x6x5y5x4y4

L1 L2 L3 L4

u7v7v6u6v5u5u4v4

ρ0

ρ3

ρ7

y4 x5

v3

y5

u3

v2u2

u1v1

x6y6

x3y3

y2x2

R̂

Fig. 7. A line tree comparator module.

Lemma 2. For arbitrary S and all inputs (x, y) it holds for all j ∈ [1..m]

timeTCMm

S (Lj , (x, y)) = 2 + log m + max{S(xi), S(yi) | i ∈ [1..m]} .

To be more efficient in the average case we now define hybrid versions of these two
architectures. They will depend on an additional parameter k ∈ IN . When applying to
the sorting problem of n elements k typically will be of order log n .

Definition 5. A k -line tree comparator module (see Fig. 7), LTCMm,k for short, con-
sists of a line comparator module LCMk for the prefixes x1, . . . , xk and y1, . . . , yk , and
a tree comparator module TCMm−k for the suffixes xk+1, . . . , xm and yk+1, . . . , ym

with the following modification. The root R̂ of the tree comparator additionally gets the
compare info ρk of LCMk and if this result is EQ then it works as previously. Otherwise,
R̂ outputs this value as a result of the comparison between x and y and propagates this
value to the Li . �

A combination of the two timing bounds for LCM and TCM modules gives

Lemma 3. For all starting-lines S with S(xi),S(yi) ≤ σk(i) and all input pairs (x, y)
it holds time

LTCMm,k

S (Sj , (x, y)) ≤ j for j ≤ k and

time
LTCMm,k

S (Lj , (x, y)) ≤
{

k + 2 + log (m− k) for ρk = EQ,
k + 2 for ρk 6= EQ.

8

To achieve small average-case delay for nonuniform distributions we need another type
of comparator module that can be found in the full paper.

4 Average-case Delay for the Uniform Distribution

The previous section has shown that the delay of a comparator module depends on the
length of the prefix up to which its two inputs x and y are identical. Therefore, we
make the following definition.

Definition 6. Let X = X1, . . . , Xn be a sequence of strings with Xi = xi
1 . . . xi

m ∈
{0, 1}m , c ∈ IN , and w ∈ {0, 1}c . We call w a conflict prefix of X if X contains two
string Xi, Xj (i 6= j) with prefix w . Let confc(X) denote the number of different
conflict prefixes in X of length c .
A c -congestion of X is a subsequence of X such that all its members have identical
prefixes of length c . Let conc(X) denote the maximal size (number of elements of the
subsequence) of a c-congestion of X .

Obviously, the values confc(X) are monotonically decreasing with c . If conc(X) =
1 then the strings in X have pairwise different prefixes of length c .
In this section we assume that Xn,m is a uniformly distributed random variable gener-
ating an independent sequence X1, . . . , Xn of binary numbers of length m each. We
can upperbound conflicts and congestion as follows.

Lemma 4. [Conflict Prefix and Congestion Bound] For every c, β, γ ∈ IN it holds:

and

Pr[confc(Xn,m) ≥ β] ≤ 2−β(c−2 log n)

Pr[conc(Xn,m) ≥ γ] ≤ 2−γ(c−log n)+c .

We will use k -line tree comparators with different parameters k . Circuits of such com-
parator modules work efficiently if the k -congestion of the input strings is small. From
the lemma above follows that for c ≥ 3 log n the c-congestion does not exceed 1 with
high probability, in particular Pr[con3 log n(Xn,m) > 1] ≤ 1/n .
On the other hand for c ≤ (1 − ε) log n with ε > 0 , the c-congestion may typically
be quite large. Hence, our circuit designs will choose the parameter k in the interval
[2 log n + ε..3 log n] . For the rest of this section we will choose k := 3 log n and
assume that m ≥ k is large enough.
Let Xi, Xj be inputs of an LTCMm,k . If the prefixes of length k of Xi, Xj are differ-
ent then the module can obtain the compare info in O(k) steps. In this case, we say that
it gets the result fast, otherwise it gets the result slowly.
Using the function σk introduced at the end of Section 2, we define a starting line Sk

for a sorting circuit C as follows. For i ∈ [1..n] and j ∈ [1..m] let xi,j denote the gate
that gets the j -th input bit of the i-th number Xi , and yi,j the corresponding output
gate. Then Sk(xi,j) = σk(j) . Note that an input sequence X = X1, . . . , Xn with
conk(X) = 1 can be sorted by comparing the prefixes of length k and exchange the
remaining part of the strings according to the compare info of these prefixes.

9

Lemma 5. Let C be a circuit for the (n, m)-sorting problem that is obtained from an
arbitrary word comparator circuit Cn by implementing its comparators as LTCMm,k .
Then with probability at least 1 − 1/n , for every output gate yi,j of C it holds
timeC

Sk
(yi,j ,Xn,m) ≤ σk(j) + depth(Cn) .

From this lemma we get that all output gates can compute their values by time step
k + depth(Cn) + 1 . This proves Theorem 1.
For circuits with fanout at most 2 one obains a slightly worse estimation of the form

timeC
Sk

(yi,j ,Xn,m) ≤
{

σk(j) + depth(Cn) if j ≤ k,
σk(j) + depth(Cn) + log (m− k) else.

In the rest of this section we will concentrate on particular sorting and merging cir-
cuits, namely on odd-even merge and bitonic architectures. We start by considering the
(n, m)-merging problem for binary numbers of length m .

Lemma 6. Let Cn be an odd-even-merge word comparator circuit merging two sorted
m -bit sequences of n/2 elements each. For k ≤ m let Cn,m,k be derived from Cn by
replacing its comparators by LTCMm,k . Then for every integer γ ≥ 1 , every input X
with conk+1(X) = γ and confk+1(X) = β and for every output gate yi,j of C it
holds

time
Cn,m,k

Sk
(yi,j , X) ≤

{
σk(j) + log n if j ≤ k,
σk(j) + log n + log (m− k) · (β + log γ) else.

The proof of the lemma above is based on the following properties of odd-even-merge
circuits:

– Let X be an input of length n for odd-even -merge and X ′ be one of the two
sorted subsequences of length n/2 . Then within the first ` steps of the recursive
problem division X ′ is partitioned into 2` subsequences X ′

1, . . . , X
′
2` .

– Let B1, . . . , Br be a partition of X ′ into consecutive strings. After log maxi |Bi|
recursive steps every subsequence X ′

i contains at most one element from each Bj .
– Every pair of input strings Xi and Xj of X is compared at most once.

Theorem 3 (Odd-Even Merge). Let Cn be an odd-even-merge word comparator cir-
cuit merging two sorted m -bit sequences of n/2 elements. Let Cn,m,k a Boolean cir-
cuit derived from Cn by implementing its comparators as LTCMm,k modules. Given a
sequence Xn,m , let Z1, . . . , Zn/2 be a permutation of the subsequence X1, . . . , Xn/2

sorted in nondecreasing order, and similarly Zn/2+1, . . . , Zn for Xn/2+1, . . . , Xn .
Then with probability at least 1− 1/n : timeC(Z1, . . . , Zn) ≤ 5 · log n .

The proof follows from the Congestion-Bound and the lemma above. This theorem
implies also the result for the sorting problem as stated in Theorem 2 in Section 1. A
similar bound can be obtained for bitonic circuits.

10

5 Average-case Delay for Nonuniform Distributions

This section will extend the previous results to nonuniform distributions. We have to
bound the complexity of distributions somehow, because otherwise the average case
would equal the worst case. This will be done within the circuit model itself.

Definition 7. A distribution generating circuit is a Boolean circuit D of fanin and
fanout at most 2. If D has r input gates and n output gates it performs a transformation
of a random variable Z uniformly distributed over {0, 1}r into a random variable X
over {0, 1}n . The input vector for D is chosen according to Z, and the distribution of
X is given by the distribution of the values obtained at the output gates. �

In the following we will identify a distribution over {0, 1}n·m with a corresponding
random vector variable X . Let X = (X1, . . . , Xn) with Xi = Xi

1 . . . Xi
m ∈ {0, 1}m .

Definition 8. Let Dn,m denote the set of all probability distributions µ on {0, 1}n·m .
For µ ∈ Dn,m let Supp(µ) be the set of all vectors X ∈ {0, 1}n·m with nonzero prob-
ability µ(X) . We call a distribution in Dn,m strictly positive if Supp(µ) = {0, 1}n·m

and let D+
n,m denote the set of such distributions. Finally define

Depthn,m(d) := {µ ∈ D+
n,m | ∃ an r-input and (n ·m)-output Boolean circuit D

of depth d that transforms a uniformly distributed random
variable Z over {0, 1}r into a random variable X with
distribution µ, where r may be any integer} . �

By definition, Depthn,m(d) contains strictly positive probability distributions only. In
our setting where a single circuit should have good average-case behaviour for every
distribution in this class this is obviously necessary to exclude trivial cases. Otherwise
one could concentrate the probability mass on the worst-case inputs and average-case
complexity would equal worst-case complexity. The same problem would arise if the
distribution generating circuits may use gates of unbounded fanin or fanout.
To guarantee small average delay the congestion has to be low as seen above. Below
we establish a bound on the congestion of a random variable generated by a circuit of
small depth.

Lemma 7. Let X ∈ Depthn,m(d) and c ≥ 3 · 22d+1+2d+1 log n . Then it holds
Pr[conc(X) ≥ 2] ≤ 1

n and Pr[confc(X) ≥ 1] ≤ 1
n .

For small d , i.e. d = logloglog n , the bound given in Lemma 7 implies Pr[conc(X) ≥
2] ≤ 1

n for c ∈ Θ(log2 n · loglog n) . One should note that even with such a small depth
bound d one can construct highly biased bits x (for example such that Pr[x = 1] =
1/ log n) and also a lot of dependencies among subsets of bits.

Theorem 4. Let Cn,m be a Boolean circuit for the (n, m)-sorting problem derived
from the word comparator odd-even merge sort circuit Cn by replacing its comparators
by a specific family of comparator modules CM . Then for X ∈ Depthn,m(logloglog n) ,
with probability greater than 1−1/n it holds timeCn,m(X) ≤ 5 log2 n logloglog n .

11

That a tiny depth bound is indeed necessary can be seen as follows. For d = loglog n
one can construct X ∈ Depthn,m(d) such that Pr[conmε/2(X) ≥ nε/2] ≥ 1

2 for
some ε > 0 . In this case a larger delay has to occur even in line tree comparator
modules.

6 Conclusion

We have presented new topologies for bit level comparators. Using these modules to
replace the comparators of a word level sorting circuit yields sorting circuits that are
highly efficient on the average. For odd-even sorting circuits we could show that one
can achieve an average-delay on the bit level that is asymptotically the same as on the
word level.
The question arises whether simular results can be shown for other computational prob-
lems that can be realized on the word as well as on the bit level.

References

[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi, Sorting in c log n parallel steps, Combinator-
ica 3, 1983, 1-19.

[AB93] M. Al-Hajery and K. Batcher, On the bit-level complexity of bitonic sorting networks,
Proc. 22. Int. Conf. on Parallel Processing, 1993, III.209 – III.213.

[HL00] I. Hatirnaz and Y. Leblebici, Scalable binary sorting architecture based on rank ordering
withlinear area-time complexity, Proc. 13. IEEE ASIC/SOC Conference, 2000, 369-373.

[J98] A. Jakoby, Die Komplexität von Präfixfunktionen bezüglich ihres mittleren Zeitverhaltens,
Dissertation, Universität zu Lübeck, 1998.

[JRS94] A. Jakoby, R. Reischuk, and C. Schindelhauer, Circuit complexity: from the worst case
to the average case, Proc. 26. ACM STOC, 1994, 58-67.

[JRS95] A. Jakoby, R. Reischuk, and C. Schindelhauer, Malign distributions for average case
circuit complexity, Proc. 12. STACS, 1995, Springer LNCS 900, 628-639.

[JRSW94] A. Jakoby, R. Reischuk, C. Schindelhauer, and S. Weis, The average case complexity
of the parallel prefix problem, Proc. 21. ICALP, 1994, Springer LNCS 820, 593-604.

[JS01] A. Jakoby, C. Schindelhauer, Efficient Addition on Field Programmable Gate Arrays,
Proc. 21. FSTTCS, 2001, 219-231.

[LDH03] Y. Leblebici, T. Demirci, and I. Hatirnaz, Full-Custom CMOS Realization of a
High-Performance Binary Sorting Engine with Linear Area-Time Complexity, Proc. IEEE
Int. Symp. on Circuits and Systems 2003.

[L92] T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes, Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[LP90] T. Leighton and C. G. Plaxton, A (fairly) simple circuit that (usually) sorts,
Proc. 31. IEEE FOCS, 1990, 264-274.

[LO99] R. Lin and S. Olariu, Efficient VLSI architecture for Columnsort, IEEE Trans. on VLSI 7,
1999, 135-139.

[T79] C.D. Thompson, Area-Time Complexity for VLSI, Proc. 11. ACM STOC 1979, 81-88.
[T83] C.D. Thompson, The VLSI Complexity of Sorting, IEEE Trans. Comp. 32, 1983, 1171-

1184.

12

