
Weighted Distributed Hash Tables

Christian Schindelhauer*
Heinz Nixdorf Institute and

Computer Science Department
University of Paderborn, Germany

schindel@uni-paderborn.de

Gunnar Schomaker*
Heinz Nixdorf Institute and

Computer Science Department
University of Paderborn, Germany

pinsel@uni-paderborn.de

ABSTRACT
We present two methods for weighted consistent hashing
also known as weighted distributed hash tables. The first
method, called Linear Method, combines the standard con-
sistent hasing introduced by Karger et al. [9] with a linear
weighted distance measure. By using node copies and differ-
ent partitions of the hash space, the balance of this scheme
approximates the fair weight relationship with high proba-
bility. The second method, called the Logarithmic Method,
uses a logarithmic weighted distance between the peers and
the data to find the corresponding node. For distributing
one data element it provides perfect weighted balance. To
provide this distribution for many data elements we use par-
titions to achieve a fair balance with high probability. These
methods provide small fragmentation, which means that the
hash space is divided into at most O(n log n) intervals. Fur-
thermore, there is an efficient data structure that assigns
data elements to the nodes in expected time O(log n). If
small fragmentation is not an issue one can replace the use of
partitions by a method we call double hash functions. This
method needs O(n) for assigning elements to a node, yet it
can be directly used for Storage Area Networks, where the
number of nodes is small compared to participating nodes
in Peer-to-Peer networks.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems, Distributed Databases; E.1 [Data Struc-
tures]: Distributed data Structures; E.2 [Data Storage
Representations]: Hash-table representations; G.3 [Pro-
bability and Statistics]: Probabilistic algorithms

*This work was partially supported by the DFG Sonder-
forschungsbereich 376 and by the EU within 6th Framework
Programme under contract 001907 Dynamically Evolving,
Large Scale Information Systems (DELIS).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’05,July 18–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-58113-986-1/05/0007 ...$5.00.

General Terms
Algorithms, Theory

Keywords
Peer-to-Peer Networks, Storage Area Networks, consistent
hashing, adaptive hashing, web caching, non-uniform disks

1. INTRODUCTION
Karger et al. [9] introduced the notion of Consistent Hash-

ing, aka. Distributed Hash Table. Such a scheme gives a
mapping from a set of data elements to a dynamic set of
hosts. In the original setting data was to be distributed
among different sets of hosts, so called views. The goal was
to avoid swamped servers, by decreasing the usage of mem-
ory and to balance data fairly among the views.

For this, the hosts are mapped to some range using a
hash function. Also the data elements are mapped to the
very same range using an appropriate hash function. Now
in every view (relevant sub-set of hosts) a data element is
stored on a host, if this host’s image in the hash range min-
imizes the distance to the image of the data element. If a
sufficient number of copies of the hosts are mapped to the
range, one can show that this leads to a fair balance of data
elements [14, 6]. Now, if a new host is added to this system,
then only data elements need to be reassigned which will be
stored on the new host. This feature is called consistency.

Such distributed hash tables are universally applicable to
many areas of distributed computing. First they are in-
troduced to distribute web sites among servers distributed
around the globe relieving hot spots in the Internet [9]. Be-
sides the area of Web Caching they are popular in Peer-
to-Peer Networks, see CAN [15], Chord [16], Pastry [7],
Tapestry [8], and many more. A further important appli-
cation field are Storage Area Networks (SAN), to overcome
problems induced by huge RAID arrays. Here, the task is
to distribute data on multiple heterogeneous disks that act
like one virtual disk [3].

In this paper we consider the more general case of weighted
consistent hashing and compared to the original approach
every host vi comes now with a positive weight wi. Let
W =

P
i∈V wi be the overall weight. Then, the goal is to

distribute a data element with probability wi/W to node vi.
Clearly, such a weighting is a helpful extensions to all the
above named application areas. Especially for Peer-to-Peer
networks and Storage Area Networks such an extension is
crucial. In Peer-to-Peer networks participants are not nec-
essarily equipped with equal storage devices or transmission

bandwidth. Hence, a weighting can improve performance.
Maybe, in SANs the need for such a weighting is even higher.
The capacity of disks varies enormously, and a fair distribu-
tion of data is crucial for the performance [3].

The naive approach for introducing a weighted version

of consistent hashing is to use
l

wi
minj∈V {wj}

m
copies for each

peer wi. This is not feasible, if maxj∈V {wj}/ minj∈V {wj} is
too large. Furthermore, interesting nodes with small weights
increases the number of copies of all nodes.

Brinkmann et al. [5] presented a scheme to overcome this
problem, but not as elegant as the original weighted consis-
tent hashing and still uses a large number of copies. Further-
more, small disks are under-utilized and the scheme has to
undergo special reorganization procedures if too many disks
are in- or excluded.

We present two elegant and intuitive methods, called the
Linear and the Logarithmic Method, that overcome these
problems. In a nutshell these schemes work as follows. Both
schemes map data elements and nodes to a range using hash
functions. In the Linear Method for each data element x a
height Hi = di(x)/wi is computed where di(x) denotes the
distance of the hash value of x to the hash value of host i
in the hash range of the images of the data element and the
nodes vi. Now x is assigned to the host that minimizes this
height Hi. The Logarithmic Method is essentially the same,
yet using the height Hi = −(ln(1−di(x))/wi for finding the
host vi for the data element minimizing this term.

The Linear Method comes historically first and is already
mentioned and implemented in [2]. We know that the Loga-
rithmic Method outperforms the Linear Method. Yet, know-
ing the Linear Method helps to understand the Logarithmic
Method. Therefore and because of its simplicity and ele-
gance we think the Linear Method is worthwhile to be pre-
sented here.

These two methods are very close to the original setting of
consistent hashing. Therefore, they are applicable to many
areas where distributed hash tables are in use. In this paper
we will present the essential features and limitations of these
schemes. The main measures are fairness, quality of the
weighting, and fragmentation which measures the number
intervals in the hash range.

The paper is organized as follows. In the following sec-
tion we present related research. Then, we present the basic
concept of consistent hashing. In Section 4 we present the
Linear Method, how the use of copies and partitions im-
proves its performance, and present an efficient data struc-
ture for finding the host of a data element. At the end of
the section we show the limitations of the Linear Method.
In Section 5 we present the Logarithmic Method improving
the Linear Method. We show how partitions improve this
scheme and present an efficient data structure. In Section 6
we discuss further techniques helpful for these weighted dis-
tributed hash tables. This is the use of the so-called double
hash function for Storage Area Networks. We show how the
volatility of data elements can be determined and present
isomorphic weighted hashing schemes. In the last section
we summarize our results.

2. RELATED RESEARCH
Distributed hash tables are commonly based on consistent

hashing [9] scheme or on the work of Plaxton et al. [13].
Usual distributed hash tables includes CAN[15], Chord[16],

Distance Halving[12], Koorde[10], Pastry[7] or Tapestry [17]
to name some of them. All these approaches have in common
that they are for homogeneous purpose only, which means
their methods neglects somehow the heterogeneity of nodes.

We have deployed a consistent hashing scheme respecting
the heterogeneous properties of nodes. These nodes might
represent storage devices in a SAN or peers in a P2P Net-
work and therefor the scheme can be deployed as placement
function for data elements, where weights are used to assign
node responsibilities within a hash range.

In [2] such a weighted consistent hashing scheme was men-
tioned and presented in a poster session. Actually they have
used the Linear Method based on the research of the au-
thors of this paper. In their Peer-to-Peer approach they
used the weighted consistent hashing scheme to distribute
route lookup information within hierarchical clusters. This
hierarchy was deduced from a landmark system, that iden-
tifies responsible nodes to determine the next hop for route
completion.

Our association of hash values to hash locations works
with a concept that is similarly to the scheme introduced
by [4], yet improves on the balancing properties and can be
evaluated more efficiently by this distributed network. In
[5] Brinkmann et al. the authors introduced several criteria
a placement scheme needs to fulfill, like a faithful distribu-
tion, efficient localization, and fast adaptation, this seems
to weaken the orignal notion of Karger [9]. One will see
that both schemes presented here accomplish the original
criteria of consistency, that induces a fair distribution. An
additional benefit of our scheme is that it still works correct
and fair with a few number of nodes. Compared to SHARE
[5] there is also no need to define a stretch factor s for cov-
ering the hash interval. In practice this implies to estimate
this factor, which hardly depends on n, and is needed to
achieve coverage [3]. In our weighted consistent hashing ap-
proach there is coverage guaranteed. As well there is no need
to restrict the capacity of nodes by including virtual bins.
Furthermore there is no need to know all node capacities in
the Logarithmic Method, because of its self-scaling property
when nodes are inserted or removed. By means, one can di-
rectly use the unscaled weights, e.g. megabytes for storage
devices. The second strategy introduced in [5] called SIEVE
takes use of a fallback bin to ensure data assignment. This
bin is typically the node with largest capacity and is needed
in addition to assure a balanced behavior. Such a construct
is also not needed in our approach.

Eventually, we introduce a relevant, simple, and elegant
weighted consistent hashing scheme including two basic as-
signment concepts, which both are easy to implement and
also compatible to many areas of application, like Peer-to-
Peer networks, Storage Area Networks or other related re-
search fields, where the heterogeneity of nodes is the tremen-
dous barrier that has to be conquered. Furthermore, this
model reduces the hash interval fragmentation, and deploys
smoothly fading techniques for appearing or leaving nodes,
and enables the involvement of migration prediction for as-
signed data elements, which to our knowledge has not been
investigated until now, even for the homogeneous case.

3. CONSISTENT HASHING
Given a set of n nodes V = {v1, . . . , vn} (aka. hosts,

peers) with weights wi := w(vi) ∈ R+ and data elements
X = {x1, . . . , xm}. The weighted consistent hashing maps

all elements fV : X → V . Let AV (x) := f−1
V (v) denote

the data elements assigned to v and MV (v) := |AV (v)| the
number of elements in v.

Definition 1. A mapping is called consistent, if for
V ⊂ V ′ all v ∈ V :

AV ′(v) ⊆ AV (v) .

The goal is to assign each node v ∈ V a fair share accord-
ing to its relative weight, i.e. for m data elements

MV (v) = m · wvP
i∈V wi

.

Consistent Hashing, as introduced in [9], uses two-sided
hashing into some continuous range [0, 1). First the nodes
are randomly mapped into this set using a hash function
h1 : V → [0, 1). Then, the data elements are mapped us-
ing a hash function h2 : X → [0, 1). We may assume that
appropriate hash functions are used that behave like inde-
pendently distributed random variables. In the original hash
functions data elements are assigned to the node which is
closest to the element in [0, 1).

We do not discuss the issue of selecting an appropriate
hash function. However, the approach of [9] suffers under
the coupon collector problem. So, there are nodes receiving
intervals in the hash range that are up to a factor of O(log n)
times higher than the average size. This problem can be
easily handled by using some O(log n) copies of each node.
Then by applying Chernoff bounds one can show that the
error reduces to a small factor of 1±ε for any ε > 0. Recently,
other approaches have been presented for this problem [11].
It is an open problem how the principle of multiple choice, or
the principle of two choices can be applied to this weighted
distributed hashing.

4. THE LINEAR METHOD
In this section we present the Linear Method in detail.

The method, as mentioned, is applicable for data placements
in the area of SAN. In advance to improve clarity we now
consider an example containing five heterogeneous storage
devices {v1, . . . , v5} with different capacities c(vi) = wi, e.g.
w1 = 2, w2 = 5, w3 = 1, w4 = 0.8, w5 = 6. To place the disks
into the range [0, 1) we use an appropriate hash-function
h(vi). Doing so for the first four devices may lead to the
following positions s1 = 0.5, s2 = 0.8, s3 = 0.35, s4 = 0.1. If
we examine Hi with respect to the minimum one can easily
see how the mapping range gets divided and which fragments
belong to which node, see Fig. 1. Similar to Karger [9],
the location of a data element is determined by mapping
it into the range too. The resulting position identifies the
associated device, where the element belongs to.

Another crucial problem in this area is the scalability of
such systems, by means devices might be removed or added.
In our example we add a further device v5 at the randomly
chosen position s5 = 0.2. This results to the following frag-
mentation points [0, 0.1, 0.157, 0.2, 0.35, 0.38, 0.5, 0.65,
0.8, 1), and leads to shares obtained from the Figure 1 for
v1 : 15%, v2 : 34, 3%, v3 : 3%, v4 : 5, 7%, v5 : 42%, whereas
the expected shares were v1 : 13, 51%, v2 : 33, 78%, v3 :
6, 76%, v4 : 5, 41%, v5 : 40, 54%. One can observe that some
xi previously assigned to v1 are now assigned to the new
device and that this insertion has an impact on other assign-
ments too. To preserve placement consistency the already

0.60.40.20

y

1.2

1

0.8

0.6

0.4

0.2

0

x
10.8

Figure 1: The Linear Method

assigned elements must be moved to the new device, all the
other elements stay untouched. If a device is removed and
the remaining capacity is sufficient enough to compensate
the re-movement the procedure is analogous. To level out
such re-movements other strategies are possible too.

The results in following subsections show that this scheme
provides a fairly balanced distribution for data elements and
is also capable to compensate dynamics with an minimal
effort, concerning data movement or system reorganization.

4.1 The basic method
A set of nodes V = {v1, . . . , vn} and a set of data ele-

ments X = {x1, . . . , xm} are mapped to the continuous set
M = [0, 1) using appropriate hash functions that behave
like uniform independent random variables. Each node vi is
associated with a capacity wi ∈ R+. The hash function* h
maps each data element xi into M denoted by ri = h(xi).
Similarly we receive si = h(vi) denoting the position of node
vi in the set M .

We define the scaled distance function as

Dw(r, s) :=
((s− r) mod 1)

w
,

where a mod 1 := a−bac, i.e. Dw(r, s) := 1
w

((s−r)−bs−rc).
According to the Linear Method we assign each data item
ri to the node vi which minimizes the term Dwv (ri, sv).
For a position r ∈ [0, 1) we also call this term H(r) :=
minv∈V Dwv (r, sv) the height of r.

This Linear Method is consistent: If the capacity of a
single node increases or if a node is inserted, then only data
items need to be reassigned which will be associated to this
node. No other data elements will be reassigned. If a node
disappears or its capacity decreases then only data elements
from this node are reassigned to other nodes (according to

*For simplicity we name the hash function h for nodes and
data elements mapped to M .

the above weighting). Again, no other data elements will be
reassigned.

Lemma 1. Given n nodes with weights w1, . . . , wn. Then
the height H(r) assigned to a position r in M is distributed
as follows:

P[H(r) > h] =

 Q
i∈[n](1− hwi) , if h ≤ mini{ 1

wi
}

0 , else

Theorem 1. The Linear Method stores with probability
of at most wi

W−wi
a data element at a node vi, where W :=P|V |

i=1 wi.

Proof. Let R denote the position where this data el-
ement is inserted. Let Hi denote the height of the data
element. Note that all these random variables are indepen-
dent and uniformly distributed (since we consider only one
data element). Hence, the probability that si is at most in
weighted distance h (or the element receives at most height
h from node vi) is described as follows.

P[Hi ≤ h] =

1 , h ≥ 1

wi

h · wi else.

From this we can determine the probability, that an element
receives a height in the interval [h, h + δ] for node vi and
receives greater heights for all other nodes. Let h + δ ≤ 1

wi
:

P[Hi ∈ [h, h + δ] ∧ ∀j 6= i : Hj > h] =(
0 , ∃j : h ≥ 1

wj

δwi

Q
j 6=i(1− hwj) else .

Let Pi,h,δ := δwi

Q
j 6=i(1 − hwj). Now, an upper bound

on the probability that an element is assigned to node vi is
given by the sum

P∞
m=1 Pi,δm,δ. Note that for h = mδ

Pi,h,δ = δwi

Y
j 6=i

(1− hwj) ≤ δwie
−δm

P
j 6=i wj .

Now let a :=
P

j 6=i wi > 0, then the sum
P∞

m=1 Pi,δm,δ can
be transformed into an integral if δ tends to 0:

lim
δ→0

∞X
m=1

Pi,δm,δ ≤ lim
δ→0

∞X
m=1

wiδe
−aδm

=

Z ∞

x=0

wie
−axdx =

wi

a

=
wiP

j 6=i wj

4.2 The Use of Copies
Each node participates in the following scheme with d 2

ε
+

1e copies for some ε > 0. We do not formalize this prop-
erty and treat each copy separately. We simply note that
the number of nodes is increased by this constant factor.
We need this to ensure the following inequality for all j ∈
{1, . . . , n}:

W :=

nX
i=1

wi ≤
1

1− 1
2
ε

X
i6=j

wi ≤ (1 + ε)
X
i6=j

wi .

Theorem 2. Let ε > 0. Then, the Linear Method using
d 2

ε
+ 1e copies assigns one data element to node vi with

probability pi where

(1−
√

ε) · wi

W
≤ pi ≤ (1 + ε) · wi

W
.

Proof. We will now prove the first part. We use Theo-
rem 1 and conclude

wiP
j 6=i wj

≤ 1

1− 1
2
ε

wiP
j wj

≤ (1 + ε)
wi

W
.

For the lower bound we use the following lemma.

Lemma 2. For ε′ > 0, h ≤ ε′

maxj{wj}
, for all i ∈ [n]:

e−hW/(1−ε′) ≤
Y

j

(1− hwi) ≤
Y
j 6=i

(1− hwi) .

Proof. Note that for k > 1: (1 − 1
k
)k−1 > 1

e
. Then for

x ∈ (0, 1):

1− x > (1− x)
−x
1−x

Therefore for h ≤ wi:

(1− hwi) > e
− hwi

1−hwi

Note that hwj ≤ ε′Y
j

(1− hwj) ≥ e
−
P

j 6=i

hwj

1−hwj

≥ e
−
P

j

hwj

1−ε′

≥ e−hW/(1− ε′) .

A sufficient condition that a data element is assigned to node
vi is the following:

P[Hi ∈ [h− δ, h] ∧ ∀j 6= i : Hj > h] =(
0 , ∃j : h ≥ 1

wj

δwi

Q
j 6=i(1− hwj) else .

let P ′
i,h,δ := δwi

Q
j 6=i(1− hwj) for h ≤ min{1/wj}. Now,

the sum

S = lim
δ→0

ε′
δ max{wi}X

m=1

P ′
i,δm,δ =

Z ε′
max{wi}

h=0

wi

Y
j 6=i

(1− hwj)dh

gives an lower bound on the probability that an element is
assigned to node vi. From Lemma 1 it follows for ε = ε′2:

S >

Z ε′
max{wi}

h=0

wie
−hW/(1−ε′)dh

= (1− ε′)
wi

W

1− e

− ε′W
(1−ε′) max{wi}

!

≥ (1− ε′)
wi

W

1− e

− ε′

(1−ε′)ε

!

≥ (1− ε′)

„
1− (1− ε′)ε

ε′

«
wi

W

≥ (1− ε′)
“
1− ε

ε′

” wi

W

≥ (1−
√

ε)
wi

W

Insert-Node(v, T)
begin

sv ← h(v)
T ∗ ← Insert-Table(T ∗, sv, v)
`← blog2 wvc
T` ← Insert-Table(T`, sv, v)
return (T)

end.

Figure 2: Insert a node v

4.3 The Use of Partitions
Note that after nodes have been assigned to the hash range

then the probabilities pi remain the same because they cor-
respond to the intervals assigned to the node. Therefore the
previous result does not imply that every node receives data
elements according to this probability. Even in the balanced
case the coupon collector problem occurs such that some
nodes receive intervals which are a factor of O(log n) larger
than desired.

One can try solve this by introducing more copies. We
suggest to partition the hash range into O(log n) partial in-
tervals, called partitions, and apply the Linear Method to
each of these intervals.

The nodes V = {v1, . . . , vn} are mapped to each of the
continuous set M1, . . . , Mk with Mi = [(i− 1)/k, i/k) (with
some copies) and the data elements X = {x1, . . . , xm} are
mapped the whole interval [0, 1) using hash functions.

Theorem 3. For all ε, ε′ > 0 and c > 0 there exists c′ > 0
such that when we apply the Linear Method to n nodes using
d 2

ε
+1e copies and c′ log n partitions, the following holds with

Insert-Table(T, s, v)
begin

N ← size(T)

S ←
PN−1

i=0 |T [i]|
if T is empty then

N ← 1
T [0]← {v}

else if N ≤ S + 1 then
N ← 2N
T ′[0, . . . , N − 1]← ∅
for all v ∈

SN/2−1
i=0 T [i] ∪ {v} do

T ′[bs/Nc]← T ′[bs/Nc] ∪ {v}
od
T ← T ′

else
T [bs/Nc]← T [bs/Nc] ∪ {v}

fi
return(T)

end.

Figure 3: Insert a node v into a table

Delete-Node(v, T)
begin

sv ← h(v)
T ∗ ← Delete-Table(T ∗, sv, v)
`← blog2 wvc
T` ← Delete-Table(T`, sv, v)
return (T)

end.

Figure 4: Delete a node v

high probability, i.e. 1− n−c.
Every node vi ∈ V receives all data elements with proba-

bility pi such that

(1−
√

ε− ε′) · wi

W
≤ pi ≤ (1 + ε + ε′) · wi

W
.

Proof. This result follows by Theorem 2 and applying
Chernoff bounds.

4.4 Efficient Data Structure

Theorem 4. There is an algorithm that determines for
a data element the corresponding node according the Linear
Method in expected time O(log n). The data structure has
size O(n). Inserting and deleting nodes in this data struc-
tures needs amortized time O(1).

Proof. We present the algorithms for the data structure
for the plain Linear Method without copies and partitions,
see Fig. 6, 2, 4, 3, and 5.

The nodes are classified according their weights into the
sets . . . , V−2, V−1, V0, V1, V2, . . . such that any node vi ∈
V` ⇔ blog2 wic = ` . For each non-empty node-set we use

Delete-Table(T, s, v)
begin

N ← size(T)

S ←
PN−1

i=0 |T [i]| − 1
T [bs/Nc]← T [bs/Nc] \ {v}
if S = 0 then

T ← empty
else if S < N/4 then

N ← N/2
T ′[0, . . . , N` − 1]← ∅
for all v ∈

S2N−1
i=0 T [i] do

T ′[bs/Nc]← T ′[bs/Nc] ∪ {v}
od
T ← T ′

fi
return(T)

end.

Figure 5: Delete a node from a table

a table Ti[0, .., Ni−1] of Ni elements where Ni is chose such
that Ni ≤ |Vi| ≤ 4Ni. In this table we store at each entry
Ti[j] all nodes satisfying sv ∈ [j/Ni, (j + 1)/Ni). These sets
can be stored by a linked lists. Besides this, we provide a
table T ∗ for all nodes organized as the other tables.

Lemma 3.

1. For Vi 6= ∅ a set Ti[j] is empty with probability of at
most 3/4. The probability that an interval Ti[j, . . . , j+
d] consists only of empty sets is at most (3

4
)d.

2. The expected number of elements in the sets Ti[j], . . . ,
Ti[j + d] is at most 2d (even under the condition that
the rightmost d/2 sets are empty).

3. If a data element x has d empty entries in T` left on-
wards from its position p = brx · N`c, i.e. T`[p −
d + 1], . . . , T`[p] = ∅ and T [p − d] 6= ∅ then the cor-
responding node to x must lie in the in the sets T`[p−
2d], . . . , T`[p− d] if it belongs to the layer `.

Lookup(x, T)
begin

rx ← h(x)
H ←∞
`max ← max{i : Vi 6= ∅}
while ` ≥ `max − 2 log n− 1 do

p← brx ·N`c
q ← p
d← 0
while T`[q] = ∅ do

q ← (q − 1) mod N`

d← d + 1
od
for i← q − d− 1to q do

for all u ∈ T`[i mod N`] do
sv ← h(v)
if H > Dwv (rx, sv) then

y ← v
H ← Dwv (rx, sv)

fi
od

od
`← `− 1

od
p← brx ·N∗c
d← 0
for all v ∈ T ∗[p] ∪ T ∗[p− q mod N∗] do

sv ← h(u)
if H > Dwv (rx, sv) then

y ← v
H ← Dwv (rx, sv)

fi
od
return(y)

end.

Figure 6: Look up node y for data element x

Now let d = H2−` the expected number of nodes in this
array is at most 2d and the chances to check so many entries
is at most (3/4)d. Summing over all d shows the expected
running time to check one level Ti is constant. For the small
weights wi ≤ 1

n2 maxu{wu} the probability to assign a data

element to such a node is at most 1
n2 . The probability that

a data element is assigned to any such node is therefore at
most 1

n
. Then, even linear time to detect this element leads

to constant expected run time.
The amortized analysis of the Insert-Node and Delete-

Node procedure uses standard techniques.

By introducing q copies and k partitions, the needed space
for this data structure rises to O(knq), while the running
time is O(log n + log q) for data lookup and O(qk) for in-
serting or deleting a node.

4.5 The limits of the Linear Method
Consider w1 = 1 and w2, . . . , wn = 1

n−1
. The desired

share for node 1 is 1
2
. It turns out that 1 receives more than

this, if only one copy for the node positions is chosen.

Theorem 5. The Linear Method (without copies) for n
nodes with weights w1 = 1 and w2, . . . , wn−1 = 1

n−1
assigns

a data element with probability 1 − e−1 ≈ 0.632 to node 1
when n tends to infinity.

Proof. We use Lemma 1 and reduce the probability to
the following term.

lim
n→∞

Z 1

x=0

x

„
1− x

n− 1

«n−1

dx =

Z 1

x=0

xe−xdx =
ˆ
−e−x˜1

0
= 1− e−1 .

This shows that the Linear Method needs copies for im-
proving the fairness. It is not enough to introduce partitions,
although this leverages the size of intervals. So, the number
of copies improve the quality of the Linear Method.

5. THE LOGARITHMIC METHOD
In this section we present the Logarithmic Method, it is

usable for the same application areas. It uses similar tech-
niques to assign data elements to storage devices, but differ-
ent functions to concern their weights. So in the example,
see Fig. 7*, one can see that the mapping range is again
divided into several pieces, but slightly differs compared to
Fig. 1. This yields in the example to diverse data assign-
ments before and after the integration of the additional de-
vice v5. Nevertheless the results in following subsections
will show that this scheme also provides a fairly balanced
distribution for data elements and is also capable to com-
pensate dynamics with an minimal effort, concerning data
movement or system reorganization.

*The vertical coordinate is compressed by applying the
arctan with values from the hight function. This has no
impact on the partition of the mapping range.

0.60.40.20

y

1.4

1.2

1

0.8

0.6

0.4

0.2

0

x
10.8

Figure 7: The Logarithmic Method

5.1 The Basic Method
Instead of a linear function we use g(x) = − ln(1− x) for

the computation of the height. According to the Logarithmic
Method a data element x is stored on the node vi with weight
wi and hashed position si = h(vi) which minimizes the term
Lwi(rx, si) where

Lw(r, s) :=
− ln((1− (r − s)) mod 1)

w
,

where a mod 1 := a − bac. Again, for each node v and
data element x we call the value of this function the height
H(z) := minv(− ln((1− (z − sv)) mod 1))/wv.

Lemma 4. Given n nodes with weights w1, . . . , wn. Then
the height H(r) assigned to a position r in M is distributed
as follows:

P[H(r) > h] = e−
P

i∈V wih .

We observe for small h that this probability is close to the
corresponding probability of the Linear Method. Further-
more, the probability P [HLin(r) > `] of the Linear Method
tends also for larger h to this probability if we use many
copies:

lim
copies→∞

P [HLin(r) > `]1/copies =

e−
P

i∈V wih = P[HLog(r) > h] .

Since the Linear Method is fair when the number of copies
grows towards an infinite number, this gives an alternative
proof for the following theorem.

Theorem 6. Given n nodes with some positive weights
w1, . . . , wn the Logarithmic Method assigns a data element
to node vi with probability wiPn

j=1 wj
.

Proof. Hence the probability that a data element re-
ceives height Hi in the interval [h− δ, h] and receives larger
height than h is at most

P[Hi ≥ h− δ ∧Hi < h ∧
^
j 6=i

Hi ≥ h] =

“
e−wi(h−δ) − e−wih

”Y
j 6=i

e−wjh =

e−wih
“
ewiδ − 1

”Y
j 6=i

e−wjh =

“
ewiδ − 1

” Y
j∈[n]

e−wjh

The probability that an element is assigned to node vi is
upper-bounded by the following sum:

lim
δ→0

∞X
k=1

“
ewikδ − 1

” Y
j∈[n]

e−wjδk ≥

lim
δ→0

∞X
k=1

kδwie
−

P
j∈[n] wjδk =Z ∞

x=0

xwie
−

P
j∈[n] wjxdx =

wiP
j∈[n] wj

The probability that a data element receives height in the
interval [h, h + δ] and receives larger height than h is

P[Hi ≥ h ∧Hi < h + δ ∧
^
j 6=i

Hi ≥ h] =

“
e−wi(h) − e−wi(h+δ)

”Y
j 6=i

e−wjh =

e−wih
“
1− e−wiδ

”Y
j 6=i

e−wjh =

“
1− e−wiδ

” Y
j∈[n]

e−wjh

The probability that an element is assigned to node vi is
lower-bounded by the following sum:

lim
δ→0

∞X
k=1

“
1− e−wikδ

” Y
j∈[n]

e−wjδk ≤

lim
δ→0

∞X
k=1

kδwie
−

P
j∈[n] wjδk =Z ∞

x=0

xwie
−

P
j∈[n] wjxdx =

wiP
j∈[n] wj

Similarly as in Theorem 1 this statement holds for n nodes
and one data element inserted at the same time. In this sit-
uation, we achieve a perfect balance. If we insert more data
elements, then we face strong dependencies between the as-
signments of the data elements. For the second element the
probability that this element is inserted at some node vi is
highly dependent on whether the first element has been in-
serted at this node. This follows simply by the fact, that the
intervals are fixed and their sizes determine the probability
distributions.

5.2 Partitions
However, as in the Linear Method we can overcome this

problem by using partitions and applying Chernoff bounds.
The nodes V = {v1, . . . , vn} are mapped to each of the

continuous set M1, . . . , Mk with Mi = [(i − 1)/k, i/k) and
data elements X = {x1, . . . , xm} are mapped to one of
the intervals in [0, 1) using hash functions. Then a data
element is assigned to a node which is the closest in the
sub-range Mbrx/kc+1 according to the logarithmic weighted
height function.

Theorem 7. For all ε > 0 and c > 0 there exists c′ > 0,
where we apply the Logarithmic Method with c′ log n parti-
tions. Then, the following holds with high probability, i.e.
1− n−c.

Every node vi ∈ V receives data elements with probability
pi such that

(1− ε) · wi

W
≤ pi ≤ (1 + ε) · wi

W
.

Proof. This result follows by Theorem 6 and applying
Chernoff bounds.

5.3 Data Structure
Here we can re-use the data structure of the Linear Method.

Theorem 8. There is an algorithm that determines for
a data element the corresponding node according the Linear
Method in expected time O(log n). The data structure has
size O(n). Inserting and deleting nodes in this data struc-
tures needs amortized time O(1).

Proof. We can re-use the data structure presented for
the Linear Method. We just replace all occurrences of the

height function Dv by Lw(r, s) := − ln((1−(r−s)) mod 1)
w

. One
can show that Lemma 3 also holds for the Logarithmic Method
as well as for the low weighted nodes, the same run time
analysis is valid.

6. FURTHER TECHNIQUES

6.1 Fragmentation
For some applications like Storage Area Networks there is

only one hash function for the nodes, i.e. storage devices.
The data elements are continuously placed in the interval.
Then, it is interesting to count the number of intervals of
data elements assigned to a node, called fragments. The
fragmentation counts this number of intervals.

Theorem 9. The Linear Method with q copies and k par-
titions has a fragmentation of qkn for n nodes. The Loga-
rithmic Method using k partitions has a fragmentation of
2kn− 1.

Proof. This theorem follows by applying results from
Davenport Schinzel Sequences [1].

The standard choice of parameters is q = O(1) and k =
O(log n) to achieve constant precision with high probabil-
ity. Therefore both methods provide a fragmentation of
O(n log n).

6.2 Double Hash Functions
If fragmentation is not an issue and if the number of nodes

is small, then double hash functions are an interesting ex-
tension of the Linear and Logarithmic Method.

For this, we apply for each node an individual hash func-
tion h : V × [0, 1) → [0, 1). So, we start mapping the data
element x to rx ∈ [0, 1) as above and then for every node
we compute ri,x = h(i, rx). Now x is assigned to a node vi

which minimizes ri,x/wi according the Linear Method. In
the Logarithmic Method x is assigned to the node minimiz-
ing − ln(1− ri,x)/wi.

The main advantage of this method is that it achieves the
same probability distribution as the Linear Method, resp.
Logarithmic Method with a large number of partitions. The
drawback is (intrinsic) linear running time O(n) to deter-
mine the node a data element is assigned to.

Theorem 10. The Linear Method using double hash func-
tions assigns data elements to all of the n nodes with prob-
abilities pi for each node, such that

(1−
√

ε) · wi

W
≤ pi ≤ (1 + ε) · wi

W
.

The Logarithmic Method using double hash functions assigns
data elements to all of the n nodes with probabilities pi for
each node, such that

pi =
wi

W
.

Proof. follows by the proof of Theorem 2 and Theorem 6
using the fact that now the heights of the data elements are
independently distributed.

6.3 Predicting Migration
We have defined the height Hx of a data element x for

finding its corresponding node. There is a further property
we like to point out. This height is proportional to the
probability that this data element is moved, if a new node
arrives.

Fact 1. If in the Linear Method (without copies and with-
out partitions) a node arrives with weight w, then the proba-
bility that data element x with previous height Hx is assigned
to the new node is min{Hxw, 1}.

This fact follows by calculating the length of the interval
describing possible positions where the new node receives
this data element. In the Logarithmic Method the situation
is similar:

Fact 2. If in the Logarithmic Method (without copies and
without partitions) a node arrives with weight w then the
probability that data element x with previous height Hx is
assigned to the new node is 1− e−wHx .

Note that for small values Hx � 1
w

the term 1 − e−wHx

can be approximated by wHx.
So, the probability that a data element needs to be as-

signed to a new arriving node can be calculated in advance.
Note that the order of these reassignment probabilities is
independent from the weight of the arriving node. This
feature can be used for predicting data migration and opti-
mizing data storage for this purpose.

6.4 Fading and Adaption
An interesting feature of the proposed weighted consistent

hashing is the chance of smoothly fading in of new nodes
without any overhead (according to data re-assignments).
This avoids allocating a large chunk of storage for a new

node in one step. The alternative is a new node starts with
a very small weight w = ε and slowly increases this weight. If
this is the only node entering the system then only data will
be assigned to this node which anyway would end there. So,
bursty traffic can be avoided this way and the transmission
bandwidth can be used more efficiently. Another advantage
is that during the insertion of the new node the system state
is always defined and in every time step only a little portion
of data needs to be kept on two nodes.

Of course, the inverse function of fading out can be used,
too. If a node is taken out of the system, then depending on
the available bandwidth this node slowly reduces its weight
towards zero weight.

Along this line nodes can use the weight to adapt the
storage usage. However, such distributed algorithms need to
be designed carefully since all nodes receives some relative
portion wi/

P
j wj . E.g. if all nodes increase their weight

synchronously then nothing changes*.

6.5 Other height functions and range spaces
We have proposed the linear and the logarithmic height

function in one-dimensional ring to achieve a weighted ver-
sion of distributed hash tables. One might asks what hap-
pens if we use different height measures or two-, three- or
higher-dimensional space.

Therefore we shortly discuss the following modifications.
It is a straight-forward observation that a polynomial height
function for some β > 0:

Dw(r, s) :=
“r − s

w
mod 1

”β

as a replacement for the linear height function does not
change anything. This follows from the fact that for deter-
mining the minimum height we apply the minimum function
and the outcome remains the same. Of course any other
monotonic growing function applied to r−s

w
mod 1 leads to

the same situation.
On first sight the situation seems to be more interesting

if we map data elements and nodes to a two-dimensional
space [0, 1]2 and use a distance function. However one can
reduce the probability distribution of a node receiving a cer-
tain height to a quadratic height function in one-dimensional
space. So, for the balance we end up with the Linear Method
in the one-dimensional space [0, 1). Analogously, it turns
out that for every constant dimensional space and distance
measure according to the probability distribution there the
situation is more or less the same as in the Linear Method.

7. CONCLUSIONS
We present two elegant, simple methods for weighted con-

sistent hashing that go along the original method of [9],
called the Linear Method and the Logarithmic Method. They
are efficient, easy to implement, and applicable to many
fields where up to now only uniform distributed hash tables
are used. Both methods overcome problems in approaches
presented so far for weighted distributed hash tables.

The plain Linear Method assigns a data element to a node
vi with probability of at most wi/

P
j 6=i wj . If used with

q = d2/εe+1 copies of all nodes, one can show that this prob-
ability is at least a factor of 1−

√
ε larger and at most a factor

of 1 + ε smaller than the desired probability wi/
P

j wj . To

*Note that in this case also no data elements are reassigned.

apply this method for many data elements with high proba-
bility, we partition the range space into O(log n) sub-spaces,
called partitions. We can show that then with high proba-
bility all data elements are assigned to all nodes according to
this probability distribution. This increases fragmentation
up to O(n/ε2 log n), and provides an 1± ε approximation of
the probability wi/

P
j wj . We are using this method in a

Peer-to-Peer network storing routing information for a mo-
bile ad hoc network in [2]. There is an efficient data struc-
ture that provides for each data element the corresponding
peer in time O(log n). Furthermore, we present an efficient
data structure of size O(n) for n nodes which allows to com-
pute the assignment for each data element in expected time
O(log n). Insertion and deletion of nodes in this data struc-
ture can be handled in amortized time O(1).

The Logarithmic Method is fairer than the Linear Method.
The plain Logarithmic Method assigns a data element to
node vi with probability wi/

P
j wj . Using O(log n) parti-

tions this scheme can handle more data elements. With high
probability it assigns them with a constant factor approx-
imation of the balanced probability distribution. It turns
out that the data structure designed for the Linear Method
can also be used for this Logarithmic Method with the same
time and space resources.

8. REFERENCES
[1] P. K. Agarwal and M. Sharir. Simple bounds. In

Davenport-Schinzel Sequences and Their Geometric
Applications, chapter 1, pages 1–47. Cambridge
University Press, in handbook of computational
geometry edition, 1995. ISBN 0-521-47025-0.

[2] P. Bleckmann, S. Böttcher, E. Cesnavicius,
A. Francisco, T. D. Hollerung, B. Kühnel, M. J. Liu,
S. Obermeier, S. Oberthür, F. Peter, F. Rammig,
C. Schindelhauer, G. Schomaker, T. Steenweg, Q. A.
Tarar, M. Tiemeyer, A. Türling, and A. Vater. The
design of pamanet the paderborn mobile ad-hoc
network. In MobiWac ’04: Proceedings of the second
international workshop on Mobility management &
wireless access protocols, pages 119–121, New York,
NY, USA, 2004. ACM Press.

[3] A. Brinkmann, F. Meyer auf der Heide, K. Salzwedel,
C. Scheideler, M. Vodisek, and U. Rückert. Storage
management as means to cope with exponential
information growth. In Proceedings of SSGRR 2003,
L’Aquila, Italy, 28 July - 3 Aug. 2003.

[4] A. Brinkmann, K. Salzwedel, and C. Scheideler.
Efficient, distributed data placement strategies for
storage area networks (extended abstract). In
Proceedings of the twelfth annual ACM symposium on
Parallel algorithms and architectures, pages 119–128.
ACM Press, 2000.

[5] A. Brinkmann, K. Salzwedel, and C. Scheideler.
Compact, adaptive placement schemes for
non-uniform distribution requirements. In Proc. of the
14th ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 53–62, Winnipeg,
Manitoba, Canada, 11 - 13 Aug. 2002.

[6] J. Byers, J. Considine, and M. Mitzenmacher. Simple
load balancing for distributed hash tables. Technical
report, BU Computer Science, 2002.

[7] P. Druschel and A. Rowstron. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In R. Guerraoui, editor,
Middleware 2001, IFIP/ACM International
Conference on Distributed Systems Platforms
Heidelberg, Germany, November 12-16, 2001,
Proceedings, volume 2218 of Lecture Notes in
Computer Science, pages 329–350. Springer, 2001.

[8] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y.
Zhao. Distributed object location in a dynamic
network. In Proceedings of the 14th Annual ACM
Symposium on Parallel ALgorithms and Architectures
(SPAA-02), pages 41–52, New York, Aug. 10–13
2002. ACM Press.

[9] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing and
random trees: Distributed caching protocols for
relieving hot spots on the World Wide Web. In
Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, pages 654–663,
El Paso, Texas, 4–6 May 1997.

[10] D. R. Karger and M. F. Kaashoek. Koorde: A simple
degree-optimal distributed hash table. In Proc. 2nd
IPTPS, Berkeley, CA, Feb. 2003, Feb. 10 2003.

[11] M. Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on
Parallel and Distributed Systems, 12(10):1094–1104,
2001.

[12] M. Naor and U. Wieder. Novel architectures for p2p
applications: the continuous-discrete approach. In
Proceedings of the fifteenth annual ACM symposium
on Parallel algorithms and architectures, pages 50–59.
ACM Press, 2003.

[13] C. G. Plaxton, R. Rajaraman, and A. Richa.
Accessing nearby copies of replicated objects in a
distributed environment. In 9th Annual ACM
Symposium on Parallel Algorithms and Architectures
(SPAA ’97), pages 311–320, New York, June 1997.
Association for Computing Machinery.

[14] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp,
and I. Stoica. Load balancing in structured p2p
systems. In 2nd International Workshop on
Peer-to-Peer Systems (IPTPS ’03), 2003.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Computer Communication Review, volume 31, pages
161–172. Dept. of Elec. Eng. and Comp. Sci.,
University of California, Berkeley, 2001.

[16] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-Peer
lookup service for internet applications. In R. Guerin,
editor, Proceedings of the ACM SIGCOMM 2001
Conference (SIGCOMM-01), volume 31, 4 of
Computer Communication Review, pages 149–160,
New York, Aug. 27–31 2001. ACM Press.

[17] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141,
Computer Science Division, U. C. Berkeley, Apr. 2001.

