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Abstract—Distance measurement between nodes in wireless
sensor networks is a prerequisite for a variety of applications
and algorithms. However, special hardware allowing such mea-
surements is expensive, especially if dealing with hundreds or
thousands of nodes. Fekete et al. presented an approach on
distance estimation based on only the neighborhood information
available to all nodes in the network. We improve this algorithm,
such that it does no longer rely on uniformly distributed nodes.
For our approach, it is sufficient that the second derivative of
the probability distribution function is a constant.

I. INTRODUCTION

Wireless sensor networks can provide lots of information
about the covered area. However, most scenarios (e.g. cov-
erage, routing, tracking, or event detection) require not only
the collection of sensors’ data, but also the geographic origin
of every single measurement, i.e. the position of the sensing
node. Unless the nodes are manually placed to exact known
locations, the network itself must report the positions of all
sensors.

An easy – and expensive – solution is to equip all nodes with
special localization devices, e.g. satellite navigation (GPS,
Galileo). An alternative is to use distance measurements be-
tween neighbored1 nodes and apply a localization algorithm
based on those distances [1]. Note, that although there ex-
ists lots of localization schemes that work well in practice,
the computational complexity of the corresponding decision
problem is NP-hard [2].

The next section gives some examples of the various ap-
proaches to measure the distance between two nodes. How-
ever, they all rely on special hardware. Other than that, Fekete
et al. [3] propose a scheme independent of additional distance
measurements. Under the assumption of uniformly distributed
nodes, the idea is to count the number of identical neighbors
of two different nodes u and v. Based on this and the total
amount of neighbors of both nodes, the distance between them
can be estimated.

II. HARDWARE DEPENDENT LOCALIZATION ALGORITHMS

A distributed localization scheme using noisy range mea-
surements is given in [4]. To overcome the problem of node
position ambiguity, the authors consider robust quadrilaterals

1Two nodes are neighbors, if they have a direct communication link.

– subgraphs of four nodes – where all distances between any
two nodes are known. Using only such quadrilaterals, it is
possible to locate their positions in the original graph with
high probability. In case a node’s position cannot be localized,
it is omitted in the final result, providing a high probability for
all other positions to be correct. The prerequisites to use this
scheme is a sensor hardware capable of distance measuring
(the authors used an additional supersonic sensor together with
RF with an accuracy between 1cm and 5cm), and a network
density, such that the average degree of nodes is at least 10.

A localization system, which does not require any special
hardware capabilities of the nodes except a sensor to recognize
light, is called Spotlight and is described in [5]. The idea is an
event-driven localization, where nodes recognize an artificially
created and well controlled global event. In the described case,
this event is a recognizable light (spotlight), whose position
and time coordinate is well known. Based on the different
times, when the spotlight was recognized by all nodes, the
localization is computed. However, an external device for
emitting the events is required. This external device has to be
aware of its precise position and orientation when the spotlight
is emitted making it quite expensive. For example, the device
used by the authors of [5] was worth approximately $1000.

StarDust [6] is yet another localization technique that also
uses externally controlled events, a stroboscope light in this
case. In contrast to Spotlight, the nodes themselves do not pro-
cess those signals, but merely reflect them back to the source.
The localization is based on a given map of the environment
and basically performed by the flashing device. The nodes
possibly support the localization with their neighborhood lists.

Both Spotlight and StarDust require a direct line of sight
between the event emitting device and the sensor nodes.
Another option is to use color filters for the nodes’ reflectors
to allow a differentiation of single nodes by their color but
the accuracy of this method is far less, when compared with
Spotlight and StarDust.

III. MODEL AND OVERVIEW

In this section we are giving an overview and the basic
idea of our new algorithm. A detailed analysis will follow in
Section IV.

As communication model, we use the unit disk graph [7],
i.e. there exists a link between two nodes, if and only if

9781-4244-3941-6/09/$25.00 c©2009 IEEE



2

du v

N1(v) 

x

y

N1(u) ∩ N1(v) 

N1(u) 

Fig. 1. Distance estimation by counting neighbors.

the Euclidean distance between them is at most 1. Thus, all
nodes have the same transmission range. We assume, that all
nodes know their two-hop neighborhood by exchanging their
neighborhood lists with all adjacent nodes.

Fekete et al. [3] estimate the distance between two nodes
by comparing the areas covered by their communication range.
The larger the intersection of those two areas, the smaller is
the distance between the nodes. Since the size of the areas
may be unknown (in the unit disc graph model they depend
on the transmission radius), as well as the exact positions are
unknown, those areas are estimated by the number of nodes
in them, see Figure 1. Ni(u) denotes the i-hop neighborhood
of node u. Note, that N1(u) and N1(v) are both known to the
nodes u and v.

In [3] the authors base the distance estimation between the
nodes u and v on dividing one node’s covered area by the inter-
section of both nodes’ covered areas: d = f

(
|N1(u)∩N1(v)|

|N1(u)|

)
,

where d is the distance.
We argue, that instead of using the intersection N1(u) ∩

N1(v) in this function as the basis for the estimation of d, it
is preferable to use the union N1(u) ∪ N1(v) instead. Since
the considered area is larger, the statistical error is reduced.
Furthermore, if one has to cope with inhomogeneous density,
the calculated distance between two nodes is symmetrical,
which otherwise is not necessarily the case.

IV. DETAILS AND ANALYSIS

We continue by giving the details of the distance
measurement by our improved algorithm. Afterwards, we
compare our approach to the one presented in [3].

A. Distance Estimation Between Nodes

Let f(x, y) denote the two-dimensional probability density
function of the positioning scheme in the two-dimensional
plane. Furthermore, for simplicity, we identify a node u in the
plane by its vector u = (x, y)T and let f(u) = f(x(u), y(u)),

where x(u) and y(u) denote the cartesian coordinates of u.
All nodes are placed independently.

We assume that the probability density function f is twice
differentiable and concentrate on determining the distance d =
||u, v||2 between the nodes u and v. W.l.o.g. we assume that
u and v share the same y-coordinate, i.e. y(u) = y(v).

Let D(u) denote the disk with center u and radius 1.
Straight-forward geometry proves the following lemma, where
A(R) denotes the area of a region R.

Lemma 1: Let s(d) := 2 arccos d
2 − sin 2 arccos d

2 , and let
|d| < 2. Then

A(D(u) ∩D(v)) = s(||u, v||2).

Thus, the distance between two nodes determines the inter-
secting area of their communication discs.

The one-sided method in [3] is based on the observation
that for all nodes w 6= u, v:

Pr[w ∈ D(u) ∩D(v) | w ∈ D(u)]

=

∫∫
(x,y)∈D(u)∩D(v)

f(x, y)dx dy∫∫
(x,y)∈D(u)

f(x, y)dx dy
.

If D(u) is within a region where f(x, y) = c is uniform with
a constant c > 0, it follows

Pr[w ∈ D(u) ∩D(v) | w ∈ D(u)]

=

∫∫
(x,y)∈D(u)∩D(v)

f(x, y)dx dy∫∫
(x,y)∈D(u)

f(x, y)dx dy

This describes the probability of a node being a neighbor of
node v if it is already neighbored to node u. The values for
D(u) and D(v) are estimated by counting the total number of
neighbors. This approach is independent of the communication
radius Rc, if Rc is constant for all nodes. However, if the node
density in the network (i.e., in the area covered by the two
considered nodes) is not constant, one node may have more
neighbors than the other, although both nodes cover the same
area size, see also Figure 1. In the following, we improve
the one-sided estimation method to the symmetric estimation
method.

If D(u) is within a region where f(x, y) = c is uniform
with a constant c > 0, it follows

Pr[w ∈ D(u) ∩D(v) | w ∈ D(u)] =
s(d)
π

.

This function is depicted in Figure 2.
If f(x, y) is not constant, the probability can be estimated

by the following lemma, if the first derivative f ′ = (f ′x, f ′y) :=(
∂f
∂x , ∂f

∂y

)
is a constant:

Lemma 2: Let f ′(u) = (f ′x, f ′y) consist of constant func-
tions f ′x and f ′y within the disk D(u). Then, for y(u) = y(v)
and x(v) > x(u) it holds:

Pr[w ∈ D(u) ∩D(v) | w ∈ D(u)] =
s(d)
π

·
f

(
u+v

2

)
f(u)

=
s(d)
π

·
(

1 +
d · f ′x
2f(u)

)
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Fig. 2. Illustration of the function s(d).

Proof:

f(u + w) + f(u− w) = 2f(u)

and
f(u + w) ∈ D(u) ⇐⇒ f(u− w) ∈ D(v) .

From this it follows∫∫
(x,y)∈D(u)

f(x, y)dx dy = f(u)A(D(u)) = f(u)π .

Using the symmetry point u+v
2 for D(u) ∩ D(v) we can

analogously show∫∫
(x,y)∈D(u)∩D(v)

f(x, y)dx dy = f
(

u+v
2

)
s(d) .

Note that f
(

u+v
2

)
= f(u) + d

2f ′x.

So, the one-sided method cannot be used for distance
estimation, if the density function is not constant. However,
in the special case of a constant derivative one can use the
symmetric method.

Lemma 3: If f ′(u) is constant within the disk D(u), then

Pr[w ∈ D(u) ∩D(v) | w ∈ D(u) ∪D(v)] =
s(d)

2π − s(d)
.

Proof: For all w ∈ R2 we observe the following:

f(u+v
2 + w) + f(u+v

2 − w) = 2f(u+v
2 ) ,

f(u+v
2 +w) ∈ D(u)∪D(v) ⇐⇒ f(u+v

2 −w) ∈ D(u)∪D(v)

and

f(u+v
2 +w) ∈ D(u)∩D(v) ⇐⇒ f(u+v

2 −w) ∈ D(u)∩D(v) .

From this it follows∫∫
(x,y)∈D(u)∩D(v)

f(x, y)dx dy = s(d)f
(

u+v
2

)
and∫∫

(x,y)∈D(u)∪D(v)

f(x, y)dx dy = (2π − s(d))f
(

u+v
2

)
.

Dividing these terms proves the claim.

This lemma can be generalized for arbitrary density func-
tions to the following theorem:

Theorem 1:∣∣∣∣Pr [D(u) ∩D(v) | D(u) ∪D(v)]− s(d)
2π − s(d)

]
≤ s(d)

2π − s(d)
·

5
2 |f

′′|2,sup

1− 2|f ′′|2,sup
,

for |f ′′|2,sup := supw∈D(u)∪D(v)

∣∣∣∂2f(w)
∂2x , ∂2f(w)

∂2y

∣∣∣
2

.

Proof: First note that the maximum distance of every
point in D(u) ∪ D(v) from u+v

2 is at most 2. This leads to
the following bound for all w ∈ R2 with ||w||2 ≤ 2:∣∣f(u+v

2 + w) + f(u+v
2 − w)− 2f(u+v

2 )
∣∣ ≤ |f ′′|2,sup|w|2

≤ 4|f ′′|2,sup .

Hence,∣∣∣∣∣
∫∫

(x,y)∈D(u)∪D(v)

f(x, y)dx dy − s(d)f
(

u+v
2

)∣∣∣∣∣
≤ 2(2π − s(d))|f ′′|2,sup .

Now for D(u) ∩ D(v) the maximal distance to u+v
2 is at

most 1. This leads to the bound of∣∣f(u+v
2 + w) + f(u+v

2 − w)− 2f(u+v
2 )

∣∣ ≤ |f ′′|2,sup .

So, ∣∣∣∣∣
∫∫

(x,y)∈D(u)∩D(v)

f(x, y)dx dy − s(d)f
(

u+v
2

)∣∣∣∣∣
≤ 1

2
s(d)|f ′′|2,sup .

Combining these error bounds gives an error bound for the
quotient of 1+ 1

2 |f
′′|2,sup

1−2|f ′′|2,sup
− 1 which proves the claim.

B. Comparison of One-Side and Symmetric Estimators

A natural assumption of a probability density function is a
Gaussian distribution with the center (0, 0):

f(x, y) :=
1

2πσ2
exp

(
−1

2
x2 + y2

σ2

)
,

where σ is the standard deviation. For this Gaussian distribu-
tion we want to compare the quality of the one-sided with the
symmetric method. Furthermore we assume that σ > 1.

The error for the one-sided and the symmetric method is
maximized for u and v. W.l.o.g. let y(u) = y(v) = 0. In this
case we have the following derivatives:

f ′x(x, y) = − x

σ2
f(x, y)

f ′′x (x, y) =
(

x2

σ4
− 1

σ2

)
f(x, y)

f ′′′x (x, y) =
(
−x3

σ6
+

2x

σ4

)
f(x, y)
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Fig. 3. The graph shows the absolute error difference as probability ∆p
between the one-sided and the symmetric method for σ = 20 and u ≤ 750.

Hence, for x = ±
√

2σ and y = 0, the term |f ′′|2,sup is only
locally maximal:

f ′′x (±
√

2σ, 0) =
1

2πeσ4

For x = 0, y = 0 we have the maximum absolute value with

f ′′x (0, 0) =
−1

2πσ4
.

It follows from Theorem 1:

Corollary 1: For σ ≥ 2 and a (µ, σ)-distributed two-
dimensional Gaussian probability density function:∣∣∣∣Pr [D(u) ∩D(v) | D(u) ∪D(v)]− s(d)

2π − s(d)

∣∣∣∣
≤ s(d)

2π − s(d)
3

2πσ4
.

Proof: Since σ ≥ 2 we have |f ′′|2,sup ≤ 1
32π . Therefore

5
2 |f

′′|2,sup

1−2|f ′′|2,sup
≤ 80

31 |f
′′|2,sup ≤ 3

2πσ4 .

If the variance σ2 of the Gaussian placement distribution is
large enough compared to the communication radius Rc = 1,
then this corollary shows that the symmetric method gives a
good approximation of the distance.

Figure 3 shows the deviation from the probability for the
one-sided method and the symmetric method, i.e. the absolute
difference between the result of the two methods. The graph2

clearly shows the advantage of the symmetric method over the
one-sided method for growing u.

2The plotted function in detail:

∆p =
s(d)

2π − s(d)

(
max

{
1 + f′′(u + 1 + d/2)

1 − f′′(u + 1 + d/2)
,

1 + f′′(u − 1 − d/2)

1 − f′′(u − 1 − d/2)

}
− 1

)
−

∣∣∣ s(d)f(u + d/2)

(π − 2s(d))f(u) + s(d)f(u − d/2) + s(d)f(u + d/2)
−

s(d)

π

∣∣∣

C. Implementation

The computation complexity of the distance estimation by
our algorithm is very small. The main calculation that has
to be done is the calculation of the function s(d). It merely
consists of simple arithmetic functions and, moreover, it can
be easily implemented by using a lookup-table to approximate
its values. Due to its simple developing, a lookup-table can
be kept rather short, cp. Figure 2. Furthermore, based on
the distance estimations presented above, a node can also
easily estimate its neighboring nodes’ relative positions and
directions.

D. Sensing Range Based Coverage

Oftentimes localization should be used not solely for com-
munication purpose (e.g. routing), but also to determine the
sensing coverage of a network. Since a sensor node’s com-
munication range will usually be different from its sensing
range, it is not sufficient for all nodes to know their two-
hop communication neighbors. In fact, to enable a similar
approach for sensing coverage as for communication, the two-
hop sensing neighborhood must be known. Keep in mind, that
both types of coverage should be ensured by local decisions
of nodes.

This information is obviously already available, if the com-
munication radius Rc is larger than the sensing radius Rs.
However, if Rc < Rs, then additional information is required.
A straight-forward approach would be to enlarge the collected
i-hop neighborhood information Ni(u) of node u, such that
Rs/Rc ≤ i/2. This holds under the assumption that all i-hop
neighbors have exactly a geometric distance between (i−1)·Rc

and i · Rc. This assumption is only true for infinitely dense
networks. In real-life scenarios, the average radii of the discs
containing the i-hop neighbors around a node become smaller,
the sparser the network is.

A simple approach to cope with this problem could be
to multiply Rs by a sufficiently large factor to compensate
the deviation. The tradeoff would be possibly unnecessarily
gathered neighborhood information, i.e. traffic overhead.

V. CONCLUSION

We took up the idea of hardware independent node local-
ization by Fekete et al. [3] and refined it. We improved the
accuracy of this method for scenarios with non-uniform node
placement, if the second deviation of the probability density
function is constant. Our scheme can especially cope with
scenarios, in which the node placement follows a Gaussian
distribution, e.g. if all nodes are dropped simultaneously from
a plane. Still, distributed implementation is easy and only
small computational power is required from each node. Since
a higher density (i.e. a higher degree) increases the accuracy
of the relation between the amount of common neighbors and
the size of the intersecting communication areas, the design is
especially suitable for scenarios, in which the communication
range of nodes is large compared to the sensing range, if full
sensing coverage is desired.
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