
3rdf: Storing and Querying RDF Data on top of the
3nuts Overlay Network

Liaquat Ali, Thomas Janson, and Georg Lausen
University of Freiburg

Email: {ali, janson, lausen}@informatik.uni-freiburg.de

Abstract—In current research Peer-to-Peer (p2p) based Se-
mantic Web systems mainly use distributed hash table (DHT)
based networks. These networks provide good load balancing
by applying uniform hash functions with the drawback that
they destroy possible semantic relations between data elements.
But mapping the data semantics on the network structure could
improve the routing time in the network and consequently the
RDF query latency on application layer. In this paper, we present
3rdf, a distributed RDF system for storing and querying RDF
data. The 3rdf system has been built on top of the 3nuts p2p
network. The 3nuts network improves on reducing the query
response time and bandwidth usage in our system by adapting the
network structure to the semantics of the RDF data. In addition,
we study how the evaluation of SPARQL BASIC graph patterns
in existing distributed RDF repositories can be extended for other
graph patterns such as OPTIONAL and UNION in our 3rdf
system.

I. INTRODUCTION

With rapidly rising interest in the Semantic Web the prob-
lem of storing and querying RDF [1] data is a key issue.
The current centralized RDF storage and query engines like
Sesame [2], Jena [3], and 3store [4] have limitations both in
their failure tolerance and in their scalability. Moreover, due
to their limited capacities, they will not be able to handle the
anticipated load of Semantic web information available in the
future. Thus, efficiently distributed databases are a necessary
precondition for the acceptance of the Semantic Web. Peer-
to-Peer networks (p2p) can offer a foundation layer for such
distributed databases.

Distributed Hash Tables (DHTs), earlier introduced in [5]
for relieving hot spots in the Internet, have become the data
distribution method of choice for such distributed database
systems. Existing systems like RDFPeers [6], Atlas [7], [8],
[9], and BabelPeers [10], [11] use DHTs to store and query
RDF triples in a distributed manner. These RDF database
systems store three copies of each triple indexed by the subject,
predicate, and object to achieve an efficient search for triples
by subject, predicate, or object. Triples with the same index
key, such as the subject, are on the same peer. The use of hash
functions in DHTs for load balancing (of triples in this case)
has the drawback that it destroys possible semantic relations
between data with similar index keys on application level.
Thus, data with different index keys stored on the same peer is
usually unrelated. Without application-based data placement,
it is not possible to organize the triples in the network in
such a way that triples which tend to be queried combined

in queries are stored on nearby peers in the network for fast
communication with as small traffic as possible.

GridVine [12] addresses this by using the p2p network P-
Grid [13]. P-Grid provides a distributed search tree for order-
preserving indexing. Domain-related prefixes in subjects, pred-
icates, and objects ensure with their ordering that semantically
related data within the same domain is stored on nearby peers
or even on the same peer.

This paper presents a scalable and distributed RDF triple
repository named 3rdf for storing and querying RDF data.
3rdf is built on top of the 3nuts [14] p2p network. Like P-
Grid, 3nuts offers a distributed search tree and a distributed
data storage usually for extended meta information besides
search keys which we call index data. Besides this same
base, 3nuts comes with further features we want to exploit in
3rdf to reduce traffic and response time of SPARQL queries.
These offer a link structure optimization on the network layer
for small latencies between peers during the search. The
network also allows applications like 3rdf to adapt the network
structure according to the attempted search behavior. For this
we continuously analyze the nature of upcoming requests
in order to optimize the routing structure dynamically for a
speed-up of future requests. In our 3rdf system we use the
approved distributed SPARQL query evaluation scheme of [7]
and extend it for SPARQL query fragments like OPTIONAL
and UNION graph patterns, which have not been addressed in
a p2p framework so far.

The remainder of the paper is organized as follows: We start
with an overview of recent work in the field of distributed
RDF stores in Section II. Our 3rdf system uses the 3nuts
p2p network for a distributed application which is briefly
described in Section III. Section IV then presents our 3rdf
system architecture and the mechanisms used to store and
query RDF data. Finally, in Section V we make a conclusion
and offer suggestions for future work directions.

II. RELATED WORK

Existing systems like RDFPeers [6], Atlas [7], [8], [9] and
BabelPeers [10], [11] use distributed hash table (DHT) based
networks for distributed storage and querying of RDF data.
The basic idea here is to store each triple at three locations
using the hash value of subject, predicate, and object. Triples
with a specific subject, predicate, or object are obtained during
query evaluation by computing the hash value of that specific
key again to resolve the peer providing these triples.



RDFPeers [6] was the first work to consider the storage
and querying of RDF data on top of a DHT. In this system
the evaluation of only atomic triple patterns and triple patterns
with the same variable subject and possibly different constant
predicates have been developed. The authors in [7] extended
this work in [6] and presented two novel algorithms for the
evaluation of conjunction of RDF triple patterns. They further
improved their system in [9] with new query optimization
techniques for reducing query response time and bandwidth
usage. In their greedy optimization algorithms they tried to
minimize the size of the intermediate relation produced during
the query evaluation using selectivity based heuristics.

Traditional DHT-based networks such as Chord [15] or
Pastry [16], which are used as an underlying network in these
systems, apply uniform hash functions to map data keys to
the peers in the network. This achieves good storage load
balancing but sacrifices the relationship of the keys (attributes)
based on their order. Keys which are semantically close at the
application level are heavily fragmented in the DHT. Since
semantically close data items are stored in a highly fragmented
manner in DHTs, the efficiency of range queries or queries
posed on semantically related attributes is significantly spoiled.

GridVine [12] is another distributed RDF system proposed
for the storage and querying of RDF data. GridVine uses the P-
Grid p2p network [13] to provide an order-preserving search
tree instead of a DHT-based search structure. The ordering
in the tree can represent the semantical proximity of closely
related RDF triples (e.g. predicates with the same prefix will be
organized in the same subtree). In contrast to other networks
like Pastry [16] and 3nuts [14], P-Grid does not provide a
routing structure with latency-optimized links for reducing the
search time in the network.

III. THE 3NUTS P2P NETWORK

Our proposed 3rdf system for a distributed RDF database
is build on top of the 3nuts peer-to-peer network [14]. This
overlay network establishes a distributed search tree providing
point and range queries in O (log n) routing hops1 with high
probability where n denotes the number of peers in the
network. There are two reasons for choosing this network.
First, there is an implementation in Java that we can use
for our system. Most other semantic networks that provide
range queries except for PGrid are only theoretical. Secondly,
the 3nuts network provides further features which allow to
adapt the network structure to the search structure for reducing
the communication time and traffic on the application layer.
While other RDF systems aim to achieve the principle of
data independence [17] and focus on enhancing the query
processing on application layer, we see real potential in the
interaction of application and network. For this, 3nuts provides
three types of locality:

With network locality the routing structure of the network
is optimized for links with low turn-around-times (ping), e.g.

1Multi-hop routing in an overlay network: a request for a search key routed
over several peers (hops) from the requesting peer to the target peer which is
responsible for the search key and generates the response.

peers choose communication partners with a low ping for short
latencies.

The distributed search tree of 3nuts preserves key ordering.
Each peer manages a continuous part of the key space, e.g.
all data elements share the same prefix. The similarity of
data elements can be mapped one-dimensionally to the data
ordering, which we call information locality, e.g. nearby
elements get the same prefix key (see Fig. 1). The benefit
here is that a lookup between two peers sharing the same
prefix takes less hops. So if a SPARQL query contains data
related to several keys sharing the same prefix, the number of
hops required to reach all these keys is reduced (at best, some
keys are managed by the same peer).

The 3nuts network also allows a peer to have additional
routing structures in certain paths in the tree. In this so called
interest locality, peers with special interest for a certain search
key or prefix range can voluntary manage data there or simply
have fast routing in these paths with an additional routing
structure. Of course, this benefit comes with the extra costs
of maintaining additional routing links there. So how can
we exploit this feature in a RDF system? In a nutshell, if
we know that certain routing paths between some RDF keys
are frequently used, we can establish routing shortcuts with
interest locality to reduce traffic and query response time.
Of course, one could also keep such shortcut links between
applications on the RDF layer. But on the network layer the
shortcuts are automatically maintained in the dynamic network
scenario and integrated in the query algorithm of the network
with all its backup techniques for failed routing.

The latter two localities require interaction of the application
and the network. For information locality we have to preset the
ordering of the keys given for the RDF data which have to fit
to the data correlation in the SPARQL requests. To use interest
locality, we have to analyze the SPARQL queries online and
establish/destroy routing shortcuts dynamically.

3nuts supports two basic operations: Get(key) for searching
a certain key (or key range) and retrieving the associated
data items and Put(key, value) for storing new data items.
Optional operations for interest locality are AddVolunteer(key)
and RemoveVolunteer(key) for establishing and destroying vol-
untary routing structures for shortcuts.

IV. 3RDF IN DETAIL

In this section we elaborate on the 3rdf architecture and
API and sketch the algorithms for storing and querying RDF
data. In addition, we will show how the localities (network,
information, and interest locality) provided by 3nuts help us
to improve the performance in terms of query response time
and bandwidth usage.

A. System architecture

We have implemented a prototype of the 3rdf system for
initial tests. Figure 1 illustrates a node in the distributed
system. It is a two layer model with the 3nuts network layer as
the basis for the distributed application at the bottom and the
3rdf layer for RDF storing and querying on top. In the 3nuts



DB with 
triples

Query
Processor

Query
Parser

TCP 
Connections

Index
Management

3nuts
Peer

UDP
Socket

Search
Tree

RDF Triple
Processor

local SQL
query

synchronize
local triples

put(key,triple)

search(key):address

query,
partial result
transmission

SPARQL
request

RDF
documents

3rdf
layer

3nuts
layer

Fig. 1. Implementation overview of a 3rdf node in a distributed environment.

network, each 3nuts peer has a local view on the Search Tree
which enables the peer the search in the distributed tree of the
entire network. For routing, the peers use the UDP protocol.
Based on the overlay network, there is a distributed Index
Management which provides operations for putting and getting
triples from the distributed network. Here, the search function-
ality of the 3nuts network in the search tree is used to place
triples at the correct peers responsible for the corresponding
index keys and on the other hand for downloading triples
for a certain index key from the responsible peers. TCP/IP
connections are used here for triple exchange. The same
network connections are shared by the 3rdf query processing
for exchanging queries and results between 3rdf nodes.

Input for the distributed RDF storage are RDF documents
which are converted to tuples (key, triple) in the RDF Triple
Processor in order to inject them into the Index Management
with the Put-operation. Three tuples are created for each triple
with the different keys for subject, predicate, and object to
index all three parameters. Each 3rdf node is then responsible
for a range of index keys, and the Index Management stores the
corresponding tuples for these index keys. As we cannot di-
rectly perform SPARQL queries on the internal data structures
of the Index Management, we synchronize the triples from the
Index Management with a local database. This enables us to
state SQL queries on the triples in the database.

To perform SPARQL queries, we first transform a SPARQL
statement into a sequence of so called triple patterns in the
Query Parser. This separation of the query into smaller partial
queries reflects the single steps of execution at different 3rdf
nodes only with their local database and some intermediate
results. The triple pattern sequence is then passed to the
Query Processor which controls the distributed execution of
the query. There are basically two cases in the distributed
execution. In the first case, the 3rdf node will execute the
next triple pattern in the sequence if the 3rdf node is capable
of resolving it with its local database because the node is

responsible for a given subject, predicate, or object and has
the corresponding triples in its database. Otherwise it will
use the search operation of the 3nuts peer to find the peer
that can execute the query and transmit the query and some
intermediate results to that 3rdf node. For transmission it uses
the TCP connections of the 3nuts network layer which can be
established between the peers in the network on demand.

B. Storing RDF Triples

Each node in our system can publish RDF resources in
the network. For this it has a RDF Triple Processor which
supports the encoding of different types of RDF resources
into metadata in form of RDF triples. The RDF triples are
then inserted into the distributed triple storage. In the RDF
data model, resources are expressed as subject-predicate-object
expressions, called triples in RDF terminology. The subject in
a RDF triple denotes the resource, and the predicate expresses
a relationship between the subject and the object[1].

@prefix bench : <h t t p : / / l o c a l h o s t / vocabulary / bench/>
@prefix ub : <h t t p : / / www. leh igh . edu / zhp2 /2004/ univ−bench#>
@prefix r d f : <h t t p : / / www.w3 . org /1999/02/22− rd f−syntax−ns#>
@prefix u0 : <h t t p : / / www. Department0 . Un i ve r s i t y0 . edu#>
u0 :G7 r d f : type bench : GraduateStudent .
u0 :G7 ub : name Jim .
u0 :G7 ub : emai l Jim@ub .com.
u0 :G8 r d f : type bench : GraduateStudent .
u0 :G8 ub : name Pet .

Listing 1. Example RDF statements about a resource GraduateStudent48
encoded in RDF/N3 format.

RDF data is inserted as RDF documents into the 3rdf
system. Each document is decomposed into a collection of
RDF triples to store them distributedly in the network. Since
the majority of RDF query languages, including SPARQL, are
based on constraints-search of the triple’s subject, predicate
or object, we index and thus store each triple three times
using its subject, predicate, and object as different keys. Triples
are stored in the 3nuts network by using the Put(key, value)
operation. This operation finds the responsible peer for the
key and transmits the triple there. The responsible peer then
manages the triple and inserts it into its database ready for
query evaluations.

RDF resources are normally represented by Uniform Re-
source Identifiers (URIs) and hence closely related resources
share a common prefix (e.g. the ’name’ and ’email’ predicates
of the subject ’G7’ in Listing 1 share the same prefix ’ub’). The
information locality of the 3nuts search tree then guarantees
that the triples corresponding to the closely related keys are
stored on nearby nodes or at best on the same node.

C. Resolving SPARQL Queries in 3rdf

We extend the distributed evaluation of SPARQL BASIC
graph pattern queries considered by the existing approaches
RDFPeers, Atlas, BabelPeers, and GridVine with the graph
patterns OPTIONAL and UNION. SPARQL is the W3C
candidate recommendation query language for RDF [18].

To understand the evaluation of SPARQL BASIC, OP-
TIONAL, and UNION graph patterns in 3rdf, we will first
briefly describe the semantics of SPARQL graph pattern



@prefix bench : <h t t p : / / l o c a l h o s t / vocabulary / bench/>
@prefix ub : <h t t p : / / www. leh igh . edu / zhp2 /2004/ univ−bench#>
@prefix r d f : <h t t p : / / www.w3 . org /1999/02/22− rd f−syntax−ns#>
@prefix u0d0 : <h t t p : / / www. Department0 . Un i ve r s i t y0 . edu#>
SELECT ?Y1 ?Y2
WHERE {

?X r d f : type bench : GraduateStudent .
?X ub : name ?Y1 .
OPTIONAL { ?X ub : emai l ?Y2 }

}

Listing 2. SPARQL query returning names and emails of all graduate
students.

expressions. The definition of so-called mappings and com-
patibility of mappings is helpful to understand the semantics
of SPARQL. In the following we use the notation from [19].

Let UL represent the set of URIs and literals in RDF and
V be a set of variables disjoint from UL. A mapping is a
partial function µ : V → UL from set V to UL. The domain
dom(µ) of a mapping µ is defined as the subset of V for
which µ is defined. Two mappings µ1 and µ2 are said to be
compatible if µ1(?X) = µ2(?X) for all ?X ∈ dom(µ1) ∩
dom(µ2). We denote by var(t) all variables in triple pattern t,
and µ(t) represents the triple pattern obtained when replacing
all variables in triple pattern t according to the mapping µ. We
now define the SPARQL expression semantics for 3rdf based
on the definition of [19].

Definition 1: Let D be an RDF database, t be a triple
pattern, Q1, Q2 represent SPARQL expressions, and v ⊂ V
be a finite set of variables. Then the evaluation of a SPARQL
expression over D, denoted by [[.]]D, is recursively defined as
follows:

1) [[t]]D = {µ | dom(µ) = var(t) and µ(t) ∈ D}.
2) [[SELECTv(Q1)]]D = πv([[Q1]]D)
3) [[Q1 AND Q2]]D = [[Q1]]D ./ [[Q2]]D.
4) [[Q1 OPTIONAL Q2]]D = [[Q1]]D 1 [[Q2]]D.
5) [[Q1 UNION Q2]]D = [[Q1]]D ∪ [[Q2]]D.

For the evaluation of a SPARQL expression
(Q1 OPTIONAL Q2) we consider the mapping µ1 in
[[Q1]]D and determine if there is a mapping µ2 in [[Q2]]D
such that µ1 and µ2 are compatible. If so, µ1 ∪ µ2 belongs
to [[Q1 OPTIONAL Q2]]D. In the absence of such a mapping
µ2, µ1 belongs to [[Q1 OPTIONAL Q2]]D.

Example 1: We consider the evaluation of the SPARQL
query in Listing 2 over the RDF database D in Listing 1.
The query extracts all graduate students including the name
plus the email address optional. By applying Definition 1 to
the given query we obtain the expression:

E := π?Y 1,?Y 2(([[?X, rdf:type, bench:GraduateStudent]]D
./ [[?X, ub:name, ?Y 1]]D)1[[(?X, ub:email, ?Y 2)]]D).

After applying the ./ (join) and1 (leftjoin) operators, expres-
sion E evaluates to the mapping set

{{?Y 1→ Jim, ?Y 2→ Jim@ub.com}, {?Y 1→ Pet}}

1) Query processing: We have adopted the query process-
ing algorithm originally presented in [7], where the triple
patterns contained in the query are iteratively resolved by
a chain of nodes. In the process, each node adds to an
intermediate result all triples of its local database, which are
qualified for the evaluated query so far. The last node in the
line of nodes then has the complete result and returns it to
the requesting node. The query request takes the parameters
(id, ti, Q, I, type, IP (p)) where id denotes the query ID, ti is
the currently active triple pattern, Q is the list of remaining
triple patterns, I is the relation that will accumulate triples
(intermediate results generated so far), type represents the
query type i.e. BASIC or OPTIONAL graph patterns, and
IP(p) is the IP address of node p that posed the query. Initially,
ti is the first triple pattern in the given query with i = 1, Q
contains all triple patterns except ti, and I is empty.

The node, which initiates a new SPARQL query request,
first reorders the triple patterns to avoid the computation and
transformation of Cartesian products through the network and
then routes the query request to node ri through prefix search
using one of the constants in ti. When node ri receives the
query request, it first resolves the triple pattern ti with a local
relational query on the local triple table R, i.e. it computes the
relation T = πX(σSC(R)) where SC is a selection condition
and X represents the positions of variables. For example, if
ti is (?si, pi, oi) then T = πsubject(σpredicate=pi∧object=oi(R)).

Then, depending on the type, i.e. BASIC (AND) or OP-
TIONAL, ri computes a new relation I ′ as follows:

1) If type = AND then I ′ = πS(I ./ T )
2) If type = OPTIONAL and ti is not in the optional part

of the query then I ′ = πS(I ./ T )
3) If type = OPTIONAL and ti is in the optional part of

the query then I ′ = πS(I 1 T )

The set S identifies the attributes of I and T that exist
in answer variables or are needed for the evaluation of the
remaining triple patterns. If I ′ is not the empty relation then
ri sends the query message (id, ti+1, Q, I

′, type, IP (p)) to the
node responsible for the evaluation of the next triple pattern
ti+1. When the last node is reached and the last triple pattern
of the given query is evaluated, this node simply returns
relation I ′ back to the start node p using its IP address IP(p).

Example 2: Consider the evaluation of the OPTIONAL
graph pattern in Listing 2 over RDF database D in List-
ing 1. Let r1, r2, and r3 be the nodes responsible for
the evaluation of the triple patterns in Listing 2. Node
r1 evaluates (?X, rdf:type, ub:GraduateStudent) and finds
T={(u0:G7), (u0:G8)}, I ′={(u0:G7), (u0:G8)}. Node r2 eval-
uates (?X, ub:name, ?Y 1) and finds T = {(u0:G7, Jim),
(u0:G8, Pet)}, I ′={(u0:G7, Jim), (u0:G8, Pet)}. The last
node r3 computes (?X, ub:email, ?Y 2) and finds T =
{(u0:G7, Jim@ub.com)}, I ′ = {(Jim, Jim@ub.com), (Pet)}.
For the evaluation of UNION graph patterns we extend the
algorithm mentioned above to achieve a better distribution
of the query processing load and to improve the query re-
sponse time and bandwidth usage. When a node p poses



a SPARQL query of the form (P1 UNION P2), it creates
the query request messages (id, ti1 , Q1, I1, type, IP (p)) and
(id, ti2 , Q2, I2, type, IP (p)) for the graph patterns P1 and
P2 respectively. These query messages are then processed in
parallel by a chain of nodes in the same way as discussed
for the BASIC and OPTIONAL graph patterns in the above
algorithm, and the results are stored as intermediate results
in relations I1 and I2 respectively. When the last nodes for
the evaluation of P1 respectively P2 are reached, they return
I1 respectively I2 back to the originating node p, which then
creates the final result I ′ = πS(I1) UNION πS(I2).

2) Exploiting Interest Locality: While we have already
placed triples with the same index prefix on nearby nodes in
the network with information locality resulting in a fast routing
time in between, triple indexes with more diverse prefixes still
need routing time of O (log n) hops in the p2p network (e.g.
’rdf:type’ and ’ub:...’ in List. 2). The interest locality supported
by the 3nuts network also gives us the opportunity to speed-up
the routing between more diverse prefixes by placing routing
shortcuts. But there is a trade-off between speed and costs
in the form of network traffic. The more routing shortcuts
we place, the more the network structure is extended, which
results in higher maintenance costs for routing links. But the
good news is that the traffic produced in the query execution
can be reduced by using the routing shortcuts instead of the
original longer routing paths. Thus, when a placed routing
shortcut is heavily used by lots of SPARQL queries, the
routing time can be shortened and the overall traffic is reduced
at the same time.

So to reach the three goals fast query latency, reasonable
small traffic and network structure, we can only place a limited
amount of routing shortcuts based on the frequency of being
used in SPARQL queries. For this we measure the frequency
of successive occurring triple patterns in SPARQL queries.
In the distributed execution, the 3rdf nodes responsible for
an index key and processing queries, that refer to that key,
simply measure what are the most frequent next index keys in
the queries. On the basis of the query measurement and the
knowledge about extra network maintenance costs for routing
shortcuts, we can determine which routing shortcuts to create.

Another interesting aspect is that we can also balance
faster routing shortcuts and fewer shortcuts with less routing
structure. If we know, for instance, that many queries which
start with the key ’rdf:type’ are followed by a key ’ub:name’
or ’ub:email’, we can choose between placing two shortcuts
from the peer being responsible for ’rdf:type’ to ’ub:name’
and ’ub:email’ or just one shortcut to the prefix ’ub:’.

V. CONCLUSIONS

We have presented 3rdf, a distributed system for storing
and querying RDF data on top of the 3nuts p2p network. We
showed how the network, information, and interest locality
provided by the 3nuts network can be exploited to improve the
performance in terms of query response time and bandwidth
usage. In addition, we studied how the evaluation of the
BASIC graph patterns in current distributed RDF systems can

be extended for other graph patterns, such as OPTIONAL and
UNION graph patterns, in the 3rdf system.

In future work, we would like to run some benchmarks on
our 3rdf system and compare the performance of our system
with comparable systems. We intend to improve the query
performance with more sophisticated algorithms by exploiting
parallelism and reducing traffic for intermediate results.

REFERENCES

[1] C. Gutierrez, C. Hurtado, and A. O. Mendelzon, “Foundations of seman-
tic web databases,” in Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, ser.
PODS ’04. New York, NY, USA: ACM, 2004, pp. 95–106.

[2] J. Broekstra, A. Kampman, and F. van Harmelen, “Sesame: A generic
architecture for storing and querying rdf and rdf schema,” in Proceedings
of the First Internation Semantic Web Conference, July 2002, pp. 54–68.

[3] K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds, and J. Database, “Effi-
cient rdf storage and retrieval in jena2,” in EXPLOITING HYPERLINKS
349, 2003, pp. 35–43.

[4] S. Harris and N. Gibbins, “3store: Efficient bulk rdf storage,” in
Proceedings of the 1st International Workshop on Practical and Scalable
Semantic Systems PSSS’03, 2003.

[5] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing,
ser. STOC ’97. New York, NY, USA: ACM, 1997, pp. 654–663.

[6] M. Cai and M. Frank, “Rdfpeers: a scalable distributed rdf repository
based on a structured peer-to-peer network,” in Proceedings of the 13th
international conference on World Wide Web, ser. WWW ’04. New
York, NY, USA: ACM, 2004, pp. 650–657.

[7] E. Liarou, S. Idreos, and M. Koubarakis, “Evaluating conjunctive triple
pattern queries over large structured overlay networks,” in International
Semantic Web Conference, 2006, pp. 399–413.

[8] Z. Kaoudi, I. Miliaraki, and M. Koubarakis, “Rdfs reasoning and query
answering on top of dhts,” in Proceedings of the 7th International
Conference on The Semantic Web, 2008, pp. 499–516.

[9] Z. Kaoudi, K. Kyzirakos, and M. Koubarakis, “Sparql query optimiza-
tion on top of dhts,” in Proceedings of the 9th international semantic
web conference on The semantic web - Vol. Part I, 2010, pp. 418–435.

[10] D. Battré, F. Heine, A. Höing, and O. Kao, “On triple dissemination,
forward-chaining, and load balancing in dht based rdf stores,” in
Proceedings of the 2005/2006 international conference on Databases,
information systems, and peer-to-peer computing, 2007, pp. 343–354.

[11] F. Heine, “Scalable p2p based rdf querying,” in Proceedings of the 1st
international conference on Scalable information systems, ser. InfoScale
’06. New York, NY, USA: ACM, 2006.

[12] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and T. V. Pelt, “Gridvine:
Building internet-scale semantic overlay networks,” in In International
Semantic Web Conference, 2004, pp. 107–121.

[13] K. Aberer, “P-grid: A self-organizing access structure for p2p infor-
mation systems,” in Proceedings of the 9th International Conference
on Cooperative Information Systems, ser. CooplS ’01. London, UK:
Springer-Verlag, 2001, pp. 179–194.

[14] T. Janson, P. Mahlmann, and C. Schindelhauer, “A self-stabilizing
locality-aware peer-to-peer network combining random networks, search
trees, and dhts,” in ICPADS, 2010, pp. 123–130.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
SIGCOMM Comput. Commun. Rev., vol. 31, pp. 149–160, August 2001.

[16] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, 2001, pp. 329–350.

[17] J. M. Hellerstein, “Toward network data independence,” SIGMOD Rec.,
vol. 32, pp. 34–40, September 2003.

[18] “Sparql query language for rdf.” [Online]. Available: http://www.w3.
org/TR/rdf-sparql-query/

[19] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of
sparql,” ACM Trans. Database Syst., vol. 34, pp. 16:1–16:45, September
2009.


