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Abstract

The peer-to-peer computing paradigm is an intriguing alternative to Google-style search
engines for querying and ranking Web content. In a network with many thousands or
millions of peers the storage and access load requirements per peer are much lighter
than for a centralized Google-like server farm; thus more powerful techniques from in-
formation retrieval, statistical learning, computational linguistics, and ontological rea-
soning can be employed on each peer’s local search engine for boosting the quality
of search results. In addition, peers can dynamically collaborate on advanced and par-
ticularly difficult queries. Moroever, a peer-to-peer setting is ideally suited to capture
local user behavior, like query logs and click streams, and disseminate and aggregate
this information in the network, at the discretion of the corresponding user, in order to
incorporate richer cognitive models.

This paper gives an overview of ongoing work in the EU Integrated Project DELIS
that aims to develop foundations for a peer-to-peer search engine with Google-or-better
scale, functionality, and quality, which will operate in a completely decentralized and
self-organizing manner. The paper presents the architecture of such a system and the
Minerva prototype testbed, and it discusses various core pieces of the approach: efficient
execution of top-k ranking queries, strategies for query routing when a search request
needs to be forwarded to other peers, maintaining a self-organizing semantic overlay
network, and exploiting and coping with user and community behavior.
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Telenor in Oslo, the University of Bologna, the Heinz-Nixdorf Institute in Paderborn, and the
University of Patras. The work presented in this paper is partially supported by the EU within the
6th Framework Programme under contract 001907 “Dynamically Evolving, Large Scale Infor-
mation Systems” (DELIS).



1 Motivation

The age of information explosion poses tremendous challenges regarding the intelligent
organization of data and the effective search of relevant information in business and in-
dustry (e.g., market analyses, logistic chains), society (e.g., health care), and virtually
all sciences that are more and more data-driven (e.g., gene expression data analyses and
other areas of bioinformatics). The problems arise in intranets of large organizations, in
federations of digital libraries and other information sources, and in the most humon-
gous and amorphous of all data collections, the World Wide Web and its underlying
numerous databases that reside behind portal pages. The Web bears the potential of be-
ing the world’s largest encyclopedia and knowledge base, that would be of great value
to all kinds of “knowledge workers” from students to Nobel laureates, but we are very
far from being able to exploit this potential.

Search-engine technologies provide support for organizing and querying informa-
tion; for simple mass-user queries that aim to find popular Web pages on pop stars,
soccer clubs, or the latest Hollywood movies, existing engines like Google are proba-
bly the best solution. But for advanced information demands search engines all too often
require excessive manual preprocessing, such as manually classifying documents into a
taxonomy for a good Web portal, or manual postprocessing such as browsing through
large result lists with too many irrelevant items or surfing in the vicinity of promis-
ing but not truly satisfactory approximate matches. The following are a few example
queries where current Web and intranet search engines fall short:

Q1: Which professors from Saarbruecken in Germany teach information retrieval and
participate in EU projects?

Q2: What are the most important research results on percolation theory?
Q3: Which drama has a scene in which a woman makes a prophecy to a Scottish noble-

man that he will become king?

Why are these queries difficult (too difficult for Google-style keyword search unless
one invests a huge amount of time to manually explore large result lists with mostly ir-
relevant and some mediocre matches)? For Q1 no single Web site is a good match; rather
one has to look at several pages together within some bounded context: the homepage
of a professor with his address, a page with course information linked to by the home-
page, and a research project page that is a few hyperlinks away from the homepage.
Q2 is not a query in the traditional sense, but requires gathering a substantial number
of key resources with valuable information on the given topic; it would be best served
by looking up a well maintained Yahoo-style topic directory, but highly specific expert
topics are not covered there. Q3 cannot be easily answered because a good match does
not necessarily contain the keywords ”woman”, ”prophecy”, ”nobleman”, etc., but may
rather say something like ”Third witch: All hail, Macbeth, thou shalt be king hereafter!”
and the same document may contain the text ”All hail, Macbeth! hail to thee, thane of
Glamis!”. So this query requires some background knowledge to recognize that a witch
is usually female in the literature, ”shalt be” refers to a prophecy, and ”thane” is a title
for a Scottish nobleman.



One of the major goals of theEU Integrated Project DELIS? is to develop founda-
tions for collaborative Web information search in an Internet-scalepeer-to-peer (P2P)
system[33]. This approach bears the potential of overcoming the shortcomings of to-
day’s Google-style search engine technology and successfully tackling the above kinds
of killer queries. In the DELIS approach every peer, e.g., the home PC of a scientist or
student, has a full-fledged search engine that indexes a small portion of the Web, accord-
ing to the interest profile of the user. Such an architecture has four major advantages
over a centralized server farm like Google:

1. As the data volume and the query load per peer are much lighter, the peer’s search
engine can employ much more advanced techniques for concept-based rather than
keyword-based search, leveraging background knowledge in the form of thesauri
and ontologies [23, 57, 62] and powerful mathematical and linguistic techniques
such as spectral analysis and named entity recognition [4, 5, 13, 17, 30, 34, 64].

2. Peers can collaborate for finding better answers to difficult queries: if one peer
does not have a good result locally it can contact a small number of judiciously
chosen peers who are considered “knowledgeable” on the query topic [6, 38, 48].
This approach should often be able to exploit the small-world phenomenon on the
Web: knowledgable peers are only a short distance away.

3. A P2P system can gather and analyze bookmarks, query histories, user click streams,
and other data about user and community behavior; the implicit and explicit assess-
ments and recommendations derived from this input can be leveraged for better
search results [20, 39, 65]. In contrast to a central server, the P2P approach pro-
vides each user with direct, fine-grained control over which aspects of her behavior
may be collected and forwarded to other peers.

4. A politically important issue is that a P2P search engine is less susceptible to ma-
nipulation, censorship, and the bias induced by purchased advertisements.

This paper addresses some of the foundational issues that need to be solved in order
to achieve the elusive goal of intelligent, efficient, and self-organizing P2P Web search.
It gives an overview of various research contributions made by the DELIS project: mod-
els, algorithms, strategies, and experimental analyses, from a complex systems view-
point. The paper is organized as follows. Section 2 presents a reference architecture,
discusses its complex systems aspects, and outlines a prototype implementation coined
Minerva. Section 3 presents new methods for efficiently processing top-k queries, that
is, search requests that produce ranked result lists, in descending order of statistically
estimated relevance, and may stop early after the top-k result items. Section 4 discusses
various approaches to the problem of query routing, that is, the decision about select-
ing a small number of peers to which a user’s query should be forwarded for obtaining
richer search results with good benefit/cost ratio. Section 5 deals with the diversity of
peer behaviors: how to exploit user profiling information for better search results and
how to handle altruistic vs. selfish peers. We conclude with an outlook on future chal-
lenges.

?Dynamically Evolving Large-Scale Information Systems



2 P2P Web Search as a Complex System

The DELIS project is aiming at a P2P system where each peer has a full-fledged Web
search engine, including a crawler and an index manager. The crawler may be themat-
ically focused or crawl results may be postprocessed so that the local index contents
reflects the corresponding user’s interest profile. With such a highly specialized and
personalized “power search engine” most queries should be executed locally, but once
in a while the user may not be satisfied with the local results and would then want to
contact other peers. A “good” peer to which the user’s query should be forwarded would
have thematically relevant index contents, which could be measured by statistical no-
tions of similarity between peers. Both query routing and the formation of “statistically
semantic” overlay networks could greatly benefit from collective human inputs in ad-
dition to standard statistics about terms, links, etc.: knowing the bookmarks and query
logs of thousands of users would be a great resource to build on. Note that this notion
of Web search includes ranked retrieval and thus is fundamentally much more diffi-
cult than Gnutella-style file sharing or simple key lookups via distributed hash tables.
Further note that, although query routing in P2P Web search resembles earlier work on
metasearch engines and distributed information retrieval [44], it is much more challeng-
ing because of the large scale and the high dynamics of the envisioned P2P system with
thousands or millions of computers and users.

A system architecture for the envisioned solution is depicted in Figure 1. This archi-
tecture is currently prototyped, as an experimental platform within the DELIS project,
under the nameMinerva [6, 7].?? Throughout this paper, we will often to refer to the
Minerva system whenever it is necessary to refer to a concrete architecture.

query peer P0
local index X0

book-
marks
B0

term g: 13, 11, 45, .term a: 17, 11, 92, ...
term f: 43, 65, 92, ...

peer lists (directory)

term g: 13, 11, 45, .

term c: 13, 92, 45, ...
url x: 37, 44, 12, ...

url y: 75, 43, 12, ...

url z: 54, 128, 7, ...

? ?

?

Fig. 1.System Architecture for P2P Web Search

??Minerva is the Roman goddess of science, wisdom, and learning, and is also the icon of the
Max Planck Society.



In this setting, each peer runs a full-fledged, possibly personalized, search engine,
fully equipped with a crawler, index manager, and a query processor to search the local
index and information content. Peers are connected by an overlay network, for example,
a distributed hash table (DHT); in Minerva a Chord-based DHT is used [59]. Such
overlay networks and the resulting neighborhood structures ensure [37, 53, 59]

1. short routing paths (by a very small graph diameter and appropriate routing tables),
usually O(log n) where n is the number of peers, and

2. low memory overhead per peer, usually by bounding the size of the routing tables,
3. unlimited scalability, so that the aggregated performance capacity increases linearly

with the number of peers in the network,
4. self-organization in the presence of churn, i.e., the high dynamics of peers that join

and leave the network without notice and at possibly very high rates, and
5. self-healing capabilities in the presence of peer failures.

Peers analyze their local information content and prepare compact statistical syn-
opses that capture the relevance for specific query terms (i.e., keywords, stemmed
words, or concepts onto which words are mapped), the richness, authority, and freshness
of the content, the behavioral characteristics of the peer including the corresponding
user’s thematic interests, the peer’s quality-of-service properties, etc. These synopses
are posted into the overlay network: disseminated to specifically chosen (e.g., by the
DHT hash function) peers, often in a redundant manner with judiciously chosen repli-
cas on different peers, such that the overall network forms a conceptually integrated but
physically massively distributed directory for metadata and statistical summaries. In the
Minerva architecture shown in Figure 1, each peer posts the terms that are statistically
most characteristic for its local content and the URLs of its bookmarks that reflect the
user’s interests. The peer or the peers that are responsible for maintaining the directory
entry for a given term or URL maintain ranked lists of peers that have good information
about the term or have bookmarked the URL, respectively. The decentralized directory
can be efficiently queried by all peers.

A user query is normally executed on the local index first, thus avoiding network
costs unless involving other peers is justified by unsatisfactory local results. In the latter
case, a query routing decision is made about which other peers should be contacted in
order to evaluate the query. Clearly this is the technically interesting case, which would
typically arise with advanced information demands of “power users” like scientists,
students, or journalists. For dynamically selecting target peers, the originating peer can
inquire the directory and base its decision on the statistical summaries that have previ-
ously been posted. The originator may additionally use further information about the
candidate peers’ content, trustworthiness, and behavior that it has locally cached from
previous interactions and observations. Once the target peers for executing the query
are determined, the query is processed using a top-k algorithm, either by a) running the
complete query on each selected peer and merging the search results, or by b) decom-
posing the query into individual subqueries, like one subquery per term, and using a
network-conscious distributed top-k algorithm, where the extra difficulty is to reconcile
the network costs (i.e., bandwidth consumption and latency) and the processing costs
of the involved peers (i.e., CPU time, disk accesses, memory consumption).



We see that this system architecture has all the characteristics and poses the chal-
lenges of a complex system [2, 3]. Its individual components, the local search engines
or the DHT in isolation, are reasonably well understood, but the interplay of all compo-
nents within a network of many thousands or millions of peers creates extra complexity
that we cannot yet master. The autonomy of peers and the diversity of different be-
havioral patterns can be understood only by analyzing and controlling the system at
different levels, ranging from the underlying physical network and the virtual overlay
network layers to the level of intelligent search, query routing, and collaboration strate-
gies of the individual peers. For cost-efficient solutions it is crucial to consider benefit
and cost factors at all these levels. Finally, a deep understanding mandates studying
such complex systems at different scales in terms of time and space, for example, the
short-term interactions of a peer with its immediate neighborhood, triggered by query
routing and query execution, on one hand, and the long-term, long-range evolution of
the entire system, to organize itself into effective and robust semantic overlay structures,
on the other hand.

3 Efficient Top-k Query Processing

3.1 State of the Art

Top-k query processing is a fundamental cornerstone for similarity search on multi-
media data, ranked retrieval on text and semi-structured documents in digital libraries
and on the Web, network and stream monitoring, collaborative recommendation and
preference queries, and ranking of query results on structured data sources in general. It
aggregates scores for different search terms or attribute values using a monotonic aggre-
gation function such as weighted summation, and returns the top-ranked data items as
the query result. Scores are usually precomputed features of different aspects of a data
item, e.g., color distributions in images, access frequencies in Web server logs, or word
occurrence statistics in text documents [40, 12]. The state-of-the-art algorithm for top-k
queries on multiple index lists, each sorted in descending order of relevance scores, is
theThreshold Algorithm, TA for short [21, 26]. It is applicable to both structured data
such as product catalogs and text documents such as Web data. In the latter case, the
fact that TA performs random accesses on very long, disk-resident index lists (e.g., all
URLs or document ids for a frequently occurring word), with only short prefixes of the
lists in memory, makes TA much less attractive, however.

In such a situtation, the TA variant with sorted access only, coined NRA (no ran-
dom accesses), stream-combine, or TA-sorted in the literature, is the method of choice
[21]. TA-sorted works by maintaining lower bounds and upper bounds for the scores
of the top-k candidates that are kept in a priority queue in memory while scanning the
index lists. The algorithm can safely stop when the lower bound for the score of the
rank-k result is at least as high as the highest upper bound for the scores of the candi-
dates that are not among the current top-k. TA-sorted has been shown to be theoretically
instance-optimal when the number of index lists is a (small) constant [21, 26, 47]. Un-
fortunately, the performance of TA-sorted tends to degrade when operating on a large
number of index lists, which happens when user queries are automatically expanded
based on ontologies, user profiles, or relevance feedback.



3.2 The Prob-sorted Algorithm

Statistics about the score distributions in the various index lists and some probabilistic
reasoning help to overcome this efficiency problem and gain performance. In TA-sorted
a top-k candidated that has already been seen in the index lists inE(d) ⊆ [1..m],
achieving scoresj(d) in list j (0 < sj(d) ≤ 1), and has unknown scores in the index
lists [1..m]− E(d), satisfies:

lowerb(d) =
∑

j∈E(d)

sj(d) ≤ s(d) ≤
∑

j∈E(d)

sj(d) +
∑

j /∈E(d)

highj = upperb(d)

wheres(d) denotes the total, but not yet known, score thatd achieves by summing
up the scores from all index lists in whichd occurs,lowerb(d) andupperb(d) are the
lower and upper bounds ofd’s score, andhighj is the score that was last seen in the
scan of index listj, upper-bounding the score that any candidate may obtain in listj.
A candidated remains a candidate as long asupperb(d) > lowerb(rank-k) where
rank-k is the candidate that currently has rankk with regard to the candidates’ lower
bounds (i.e., the worst one among the current top-k). Assuming thatd can achieve a
scorehighj in all lists in which it has not yet been encountered is conservative and,
almost always, overly conservative. Rather we could treat these unknown scores as
random variablesSj (j /∈ E(d)), and estimate the probability thatd’s total score can
exceedlowerb(rank-k). Thend is discarded from the candidate list if

P [lowerb(d) +
∑

j /∈E(d)

Sj > lowerb(rank-k)] < δ

with some pruning thresholdδ. Technically, this score prediction requires computing
the convolution of the score distributions in the yet to be scanned parts of the index lists.
This can be implemented, for example, using histograms, fitting appropriate parametric
distributions such as Poisson mixes, or using Laplace transforms of the underlying score
distributions and Chernoff-Hoeffding bounds for the tail of the convolution. Figure 2
illustrates the probabilistic score predictor for early candidate pruning.
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Fig. 2.Probabilistic score predictor for early candidate pruning



This probabilistic interpretation makes some small, but precisely quantifiable, po-
tential error in that it could dismiss some candidates too early. Thus, the top-k result
computed this way is only approximate. However, the loss in precision and recall, rel-
ative to the exact top-k result using the same index lists, is stochastically bounded and
can be set according to the application’s needs. A value ofδ = 0.1 seems to be accept-
able in most situations. Details of thisProb-sortedmethod can be found in [61]. Experi-
ments with various benchmark and other test corpora (see, e.g., http://trec.nist.gov) have
shown that such a probabilistic top-k method gains about a factor of ten (and sometimes
more) in run-time compared to a highly tuned version of TA-sorted [61, 62].

In combination with ontology-based query relaxation, for example, expanding a
phrase query like∼“top-k query” into (“top-k query” or “ranked retrieval” or “score
aggregation”), the Prob-sorted method can add index lists dynamically and incremen-
tally, rather than having to expand the query upfront based on thresholds. To this end,
the algorithm considers a statistically computed ontological similaritysim(i, j) be-
tween concepti from the original query and conceptj in the relaxed query, and multi-
plies it with thehighj value of index listj to obtain an upper bound for the score (and
characterize the score distribution) that a candidate can obtain from the relaxationj.
This information is dynamically combined with the probabilistic prediction of the other
unknown scores and their sum. The incremental algorithm outperforms the traditional
techniques for query expansion by a factor of 3 to 50 in run-time; at the same time, it
avoids the danger of topic drifts caused by over-expansion and eliminates the need for
tuning expansion thresholds [62]. The Prob-sorted algorithm has been implemented in
the Minerva testbed for P2P Web search that is being developed within DELIS [6, 7].

3.3 Distributed Top-k Algorithms for P2P Systems

Minerva can run distributed versions of both TA-sorted and the Prob-sorted algorithm.
A query is collaboratively processed by a set of peers each of which holds one or more
index lists for the search terms or attribute values in a query. The query-initiating peer
serves as a per-query coordinator and aggregates information about top-k candidates.
While such algorithms are efficient in terms of the peers’ local resource consumption,
they do not pay sufficient attention to the communication costs of the computation.

A new family of algorithms, coined KLEE [43], has been developed to address the
networking costs of top-k query algorithms. KLEE aims to minimize network latency,
network bandwidth consumption, and the local work of the participating peers. To this
end, it proceeds in a fixed number of phases to ensure bounded latency. In this regard,
we follow the recent work of [11], but we differ significantly in the phases themselves
and introduce various novel considerations.

The first phase of KLEE gathers an initial set of top-k candidates from the peers’
index lists and derives a crude threshold for the final top-k result. Along with the can-
didates, peers send summary information in the form of score-distribution histograms
and Bloom filters for data items that locally fall into high-score histogram cells. In
the second phase the coordinator performs a benefit/cost estimation for a possible addi-
tional message round that would collect further Bloom-filter information to improve the
knowledge about top-k candidates. In the optional third phase this information is sent
to the coordinator, which in turn prepares a refined list of candidates. In the last phase



the peers are requested to send the missing scores for all data items in the candidate list
above some lower bound of relevant scores. Because of the approximate nature of his-
tograms and Bloom filters, KLEE computes an approximate top-k results, but similarly
to the Prob-sorted algorithm describe above, the loss in precision and recall is small and
controllable.

KLEE has been implemented in the Minerva testbed and intensively evaluated on
various real-life datasets and query benchmarks. It outperforms both the distributed
version of TA-sorted with batching and the TPUT method of [11] by one to two orders
of magnitude when three or more peers participate in a query. This impressive perfor-
mance gain is achieved by reducing both the network bandwidth consumption and the
local work at the index-scanning peers. Precision and recall are 80 percent or higher,
and the score and rank error measures indicate that the approximate top-k resuls are as
good as the exact ones from a user acceptance viewpoint. This demonstrates the advan-
tages of KLEE’s design for flexible control over different cost and query-result quality
metrics, with excellent performance in terms of the quality/cost ratio.

4 Self-Organizing Query Routing

4.1 State of the Art

Query routing is a core piece of a P2P search engine. It aims to select the most promising
peers among a large set of candidates, for executing a given query posed by one of the
peers. This problem is also known as database selection or resource selection in the
information retrieval (IR) literature. However, collaborative P2P search is substantially
more challenging than the traditional setup for distributed IR over a small federation
of sources such as digital libraries, as these prior approaches mediate only a small and
rather static set of underlying nodes, as opposed to the large scale and high dynamics
of a P2P system.

The literature on P2P request routing has mostly focused on simple key lookups.
Even techniques that consider multi-dimensional keyword queries and the prior work
on the formation of “semantic overlay networks” (e.g., [1, 19, 16]) disregard the need for
ranked retrieval based on relevance scoring (as opposed to Boolean retrieval where data
items either satisfy search conditions or not but are not further discriminated regarding
their relevance). On the other hand, prior research on distributed information retrieval
and metasearch engines [44] has addressed the ranking of data sources and also the
reconciliation of search results from different sources. relevant, too. GlOSS [24] and
CORI [10] are the most prominent distributed IR systems, but neither of them aimed
at very-large-scale, highly dynamic, self-organizing P2P environments (which were not
an issue at the time these systems were developed).

Recent approaches to query routing [38, 48] consider larger federations of data
sources, but they use computationally intensive techniques based on statistical language
models for assessing a peer’s quality with regard to a given query. It is an open issue to
what extent such techniques scale and can copy with high dynamics.



4.2 Dynamic Peer Selection

The rationale for the query routing strategy developed in DELIS is based on the follow-
ing three observations [6, 7]:

1. The query initiator should prefer peers that havesimilar interest profilesand are
thus likely to hold thematically relevant information in their indexes.

2. On the other hand, the query should be forwarded to peers that offercomplementary
results. If the remote peer returns more or less the same high-quality results that the
query initiator already obtained from its own local index, then the whole approach
of collaborative P2P search would be pointless.

3. Finally, all parties have to be cautious that theexecution costof communicating
with other peers and involving them in query processing is tightly controlled and
incurs acceptable overhead.

We address the first two points by defining thebenefitthat a remote peer offers for
the given query to be proportional to the thematicsimilarity of that peer and the query
initiator and inversely proportional to theoverlapbetween the two peers in terms of
their local index contents. To limit the overhead of estimating these measures, we use
the Kullback-Leibler divergence [18, 63] between the bookmark documents of the two
peers as a basis for estimating benefit. Here we view the index contents of a peer as
being generated by the peer’s bookmarks, which served as seeds for the peer’s Web
crawls and possibly also as training data for a thematically focused crawler [12, 56].
For overlap we consider a large sample of a peer’s locally indexed documents, and
we represent the set of these documents using a compact Bloom filter for information
exchange among peers [7]. Then benefit is defined as the quotient of similarity and over-
lap. An additional aspect of benefit that we are currently exploring is to incorporate also
measures of reputation (authority) and trust, both of which could be implemented using
PageRank-style Eigenvector computations [9, 25, 32, 35]. The difficulty is to compute
such a measures in a fully decentralized way, without having to build a global graph
structure, capturing links, recommendations, or opinions, on a central site. Promising
techniques along these lines have been developed in [49].

We reconcile the notion of benefit with the third of the above observations by con-
sidering thebenefit/cost ratioof peers, where cost is estimated based on tracking the
utilization and resulting response time of different peers.

The outlined strategy as well as various alternative strategies from the prior liter-
ature have been implemented in theMinerva testbed[6, 7]. Experimental studies on
benchmark datasets show that the estimation of overlap makes query routing very cost-
efficient, reducing the number of peers that need to be contacted while at the same time
ensuring very high recall and precision.

4.3 Semantic Overlay Networks

The query routing decisions are made at the run-time of queries, so the overhead for
statistical similarity and overlap comparisons may adversely affect the user-perceived
query response times. To ensure that routing decisions have acceptably low overhead,
various kinds of precomputations can be employed and leveraged. In essence they all



lead to some form of “semantic overlay network” in addition or on top of the DHT-
based overlay network that connects all peers. In the semantic overlay network, SON
for short, only peers are directly connected as neighbors that have high likelihood of
being beneficial to each other’s queries. In principle, one could think of the SON as the
result of running a content-similarity-based clustering algorithm on the peers, but this
approach would be static and would not self-adjust the resulting neighborhood structure
to the dynamics of a P2P system. In DELIS we rather pursue three other approaches,
which are better geared for a decentralized large-scale setting with high dynamics:

– benefit-based ranking of postings in the DHT-based directory,
– opportunistic caching at every peer,
– proactive dissemination based one epidemic spreading methods, and
– dynamically self-organizing SONs based on random graphs with benefit-driven

bias.

The directory-based approach[59, 6] is closest to the architecture outline before.
In addition to posting terms, term-frequency and other statistical measures, and book-
marked or otherwise important URLs to the directory, the peer that is responsible for
some of a term or URL simply computes a global ranking of the best peers for the
term or URL. At query-routing time, when the directory peer is inquired by the query
originator, only a small number of best candidate peers is returned, thus ensuring low
overhead. The directory should be continuously updated, at an acceptable background-
activity rate, to avoid degradation by stale statistics.

In thecaching approach[50] every peer maintains a history of its interactions with
other peers. This includes statistical similarity, overlap, and execution-cost informa-
tion inquired for query routing, actual query results for peers that were involved in
query execution, additional content statistics that such peers may have piggybacked on
their replies, and also information about queries posed by other peers when the given
peer conversely processes remotely issued queries. All this information would simply
be collected in a local cache, with appropriate invalidation, update, and replacement
strategies when cached entries become stale or the cache becomes full. This enables
a peer to build up its own, possibly personalized or otherwise biased, statistical view
of interesting other peers. On this basis, a peer could effectively determine a short list
of most interesting peers and consider them as virtual neighbors in an addition overlay
structure. Note that piggybacking, adding a small amount of extra data to the payload
of a network message that needs to be sent anyway, is a well established technique in
distributed computing and particularly intriguing in the P2P setting. It may even include
peers that are involved in lower-level network routing, e.g., the small number of peers
that lie on the IP-layer path from a sending to a receiving peer in the DHT overlay. This
way, peers may learn about frequent queries by other peers even if they never become
involved in the actual query execution. Obviously, these techniques should be controlled
by the degree to which peers are willing to share such information.

In addition to merely caching useful information when the opportunity arises, we
can employ aproactive disseminationscheme. Typically, this will be based on the epi-
demic spreading paradigm [8, 31]. A peer chooses a small number of random peers and
sends them a compact synopsis of statistical information about itself, and possibly also
about its subjective view of the global-network statistics. Such a dissemination step is



transitively repeated. The rate of these background messages can be controlled so as
to limit its network bandwidth consumption. Note that this approach resembles the re-
quest forwarding scheme in unstructured Gnutella-style P2P networks, which is widely
considered inefficient in terms of networking costs. A major difference in the DELIS
approach, however, is that we advocate such techniques only for statistical summaries
and other metadata, as opposed to actual queries, query results, or primary data. Thus,
we can much more easily throttle the message rate for this kind of network traffic and
limit the overhead to an acceptable level, whereas Gnutella-style approaches rely on
message flooding as its only mechanism for on-demand request processing.

Finally, the last approach that we investigate, and currently favor, for the Minerva
system is to dynamically maintain aSON based on a random but biased graph. The
maintenance of this graph can actually exploit any of the above approaches for propa-
gating statistical summaries in the network. We assume that a peer maintains a list of
other interesting peers, its current“friends” (in addition to the DHT-provided connec-
tivity). For simplicity, we assume that this is a fixed-size list (alternatively, a variable
but bounded number of friends may be maintained). The friends should always be those
peers, known to the given peer, that are predicted to provide the highest benefit to the
given peer’s (future) queries. As mentioned before, benefit is measured as a quotient of
estimated thematic similarity and estimated overlap.? ? ? When the given peer interacts
with other peers and learns about their potential benefit, it can consider replacing one
of its current friends by the newly met peers. In addition, the peer may consider “blind
dates” with randomly chosen peers, to obtain a broader perspective and avoid getting
stuck in a local or thematically narrow neighborhood. When a friend is replaced, this
amounts to re-wiring the graph on which the SON is based. The whole approach is fully
self-organizing as it does not require any centralized coordination or explicit control by
humans, and every peer can use its own strategy and bias for meeting other peers and
considering them as new friends.

The DELIS project investigates various specific methods along the above lines, and
aims to compare the current DHT-based implementation of Minerva with alternative
P2P networks. One of the novel approaches is calledPeanuts[42] and combines a
random-graph-based, robust backbone structure with search trees.

The backbone network is simple and very reliable under churn. A random network
has several advantages compared to deterministic structured networks. Above all, the
costs for maintaining the network are low since there is no predetermined neighbor-
hood. In [41] we introduce a simple scheme to maintain such random networks. The
main component of this scheme is a periodically performed local link exchange pro-
cedure. This so-called 1-Flipper operation continuously and randomly permutes the
d-regular undirected network. Unless nodes disappear from the network this so-called
1-Flipper operation guarantees connectivity and upholds an infinite series of truly ran-
dom networks chosen uniformly from the set of alld-regular connected graphs. Such a
random graph guarantees the expansion property asymptotically almost surely, i.e. with
probability converging to1. Networks with high expansion have small (logarithmic)
diameter and high connectivity.

? ? ?It is straightforward to incorporate also further measures like estimated execution cost, rep-
utation, trust, etc.



Upon the backbone we superimpose a search tree, supporting range queries, neigh-
borhood search, and prefix lookups. We aim to keep the maintenance of the network
structure as local as possible, relying on periodic handshakes as non-local operations.
The search keys can capture semantic information like topics in a topic directory. There-
fore the trees may be highly unbalanced, and load balancing is necessary. For the prob-
lem of weight balancing, [55] introduced weighted consistent hashing. Peers are re-
cursively assigned to branches of the search tree according to the load information
available. When the load changes because new data arrives, old data is deleted, tree
branches are addedm or branches are pruned, each peer can determine whether it needs
to be rebalanced. One of the many benefits of this approach is that if the original load
is restored then all peers return to their previous positions within the search tree. Thus,
weighted consistent hashing nicely supports local caching of distributed data.

Another interesting task is to detect social and unsocial behavior in P2P networks.
This is inspired by “social tagging”, mimicking evolution in social and biological net-
works [28]. Here the metaphor is that a peer that meets another “good” peer should
be interested in adopting some of the good peers’ friends. In the implementation, this
behavior amounts to re-wiring the SON by replacing peers in a peer’s friends list by
friends of a beneficial peer, with some degree of randomization.

These methods are currently being implemented in the Minerva testbed for future
experimentation with self-organizing SONs, as a boosting technique for highly efficient
query routing.

5 Coping with User and Community Behavior

5.1 Exploiting Query-Log and Click-Stream Information

Information about user behavior is a rich source to build on. This could include rela-
tively static properties like bookmarks or embedded hyperlinks pointing to high-quality
Web pages, but also dynamic properties inferred from query logs and click streams.
For example, Google’s PageRank views a Web page as more important if it has many
incoming links and the sources of these links are themselves high authorities. This ra-
tionale can be carried over to analyzing and exploiting entire surf trails and query logs
of individual users or an entire user community. These trails, which can be gathered
from browser histories, local proxies, or Web servers, capture implicit user judgements.
For example, suppose a user clicks on a specific subset of the top 10 results returned
by a search engine for a query with several keywords, based on having seen the sum-
maries of these pages. This implicit form of relevance feedback establishes a strong
correlation between the query and the clicked-on pages. Further suppose that the user
refines a query by adding or replacing keywords, e.g., to eliminate ambiguities in the
previous query. Again, this establishes correlations between the new keywords and the
subsequently clicked-on pages, but also, albeit possibly to a lesser extent, between the
original query and the eventually relevant pages.

Observing and exploiting such user behavior could be a key element in adding more
“semantic” or “cognitive” quality to a search engine. The literature contains interesting
work in this direction (e.g., [20, 65]), but is rather preliminary at this point. Perhaps, the



difficulties in obtaining comprehensive query logs and surf trails outside of big service
providers is a limiting factor in this line of experimental research. Our recent work [39]
generalizes the notion of a “random surfer” into a “random expert user” by enhanc-
ing the underlying Markov chain to incorporate also query nodes and transitions from
queries to query refinements as well as clicked-on documents. Transition probabilities
are derived from the statistical analysis of query logs and click streams. The result-
ing Markov chain converges to stationary authority scores that reflect not only the link
structure but also the implicit feedback and collective human input of a search engine’s
users.

5.2 Tracking Egoistic versus Altruistic Peers

A Real-world Perspective. Our starting position is that our world consists of altruists,
selfish people, and of others with behavior ranging in between, with a non-negligible
percentage of the last category showing altruistic behavior if given the incentives to
do so. Within the world of P2P networks this fact has been clearly manifested and
documented: take as example the “free riders” phenomenon [54], first measured in the
Gnutella network.

The bad news is that the great majority of Gnutella peers were proven to be free
riders (more than 70%). And this is indeed very bad news for DHT-style overlays, since
the great majority of peers may be joining the network and leaving very soon thereafter.
The good news are that a non-negligible percentage of the peers were proven to be
altruistic. In Mojonation more than 1-2% of all users stayed connected almost all the
time. In Gnutella, 1% (10%) of peers served about 40% (90%) of the total requests
[54], and the longer a node has been up, the more likely it is to remain up. Note that the
flooding-based routing algorithm in Gnutella-like networks acts as a counter-incentive
to acting altruistically, by swamping good peers with requests. We conjecture that, by
giving incentives and taking away such counter-incentives, more network nodes will be
willing to act altruistically.

A Research Perspective.In DHT-structured P2P networks with extremely high dy-
namics (i.e., a large fraction of peers joining and leaving at very high rates), routing
performance is susceptible to degradation. [36, 51] have studied how to still guarantee
in highly-dynamic casesO(logN) routing performance by increasing redundancy and
running more sophisticated forms of stabilization “rounds”. However, these approaches
come with considerable overhead, and they largely ignore an optimization potential that
lies in the widely varying reliability and performance capacity of the peers. On the other
hand, when considering the unstructured P2P research efforts, one also notices a lack
of considerable attention on research exploiting the heterogeneities among peer nodes
[54].

But heterogeneity means more than a mere distinction between powerful and weak
nodes; there is also heterogeneity with respect to their behavior, being altruistic or self-
ish. For example, there will be powerful nodes that will not be acting altruistically. It is
reasonable to expect that altruistic nodes will tend to have greater (processing, memory,



and bandwidth) capabilities, willing to share them (when not in use) with others (prac-
tically at very small extra costs, given the flat-rate resource pricing) . This expectation
has been validated in [66].

Our Approach. The aforementioned related work has led to a more critical attitude to
DHT-based structured overlay networks and a preference towards unstructured Gnutella-
style overlays [14]. Conversely, we follow a different path; we add further structure to
DHTs, leveraging altruistic peers. In this way, we can deliver performance and robust-
ness guarantees for the steady-state case and, more importantly, also for the high-churn
cases. Our paradigm is based on monitoring and identifying behavioral patterns of vari-
ous peers. At the base of this approach there is an accounting and auditing layer, coined
SeAl, that identifies and validates selfish versus altruistic peers [45], giving peers incen-
tives to behave altruistically, while guarding against misbehaving peers. This infrastruc-
ture can in turn serve as a basis upon which a number of key services can be provided
over complex systems, most importantly enhanced routing methods that combine short
latency and high throughput with robustness regarding churn [46].

5.3 Emerging Incentives

Recent work on P2P systems has indicated the potential value of incentive mechanisms
[15, 22], particularly link-based incentive approaches for promoting cooperation and
reducing the impact of malicious or selfish nodes [60].

Essentially, nodes in the network dynamically change their neighbor lists - the nodes
they link to directly - based on some evaluation of the performance they receive from
those neighbors. The idea is that bad nodes get pushed to the periphery of the network
as links are broken and hence have only a small impact on the functioning of the net-
work as a whole. However, this kind of approach imposes some node-level overheads,
requires the design of an appropriate incentive structure for each application domain,
and requires interactions to occur over an extended period with the same neighbors.

More recently, new work within the DELIS project has applied ideas derived from
Computational Social Science [27, 52, 58] in order to circumvent some of these prob-
lems by producing light-weight algorithms that dynamically emerge incentive structures
through a form of evolution in the network. This novel approach, called the SLAC al-
gorithm (Selfish Link-based Algorithm for Cooperation) [28], is simple yet powerful.
Nodes move in the network by copying the neighbor lists and behaviors of nodes that
are obtaining better levels of performance, the idea being that nodes want to move in
the network to locations that support better levels of performance than their current
position.

Experiments with this approach show that initially random or disconnected net-
works can be made to quickly self-organize into clusters or “tribes” that have desir-
able properties. Firstly, selfish and malicious nodes are quickly isolated because they
destabilize the tribes they inhabit; secondly, tribes that have complementary skills or
capacities can be made to emerge.

The SLAC algorithm appears particularly suitable for P2P applications because it
is light-weight (making few computational or communication demands), it is scalable



(in fact the larger the population the better it works), and it is robust and decentralized
(requiring no central control or servers). In the context of a P2P search engine, the
desirable properties of SLAC can be applied to reduce the effect of malicious and selfish
nodes and to structure the dynamics of a semantic overlay network.

6 Conclusion

Aiming for a post-Google Web search engine based on the P2P paradigm is a very
ambitious goal. How can complex systems research contribute to this endeavor that
the DELIS project has embarked on? Collaboration among peers requires strategies for
routing queries to other peers and for exchanging metadata, statistics, and background
knowledge to form an evolving “semantic overlay network”. Understanding the dy-
namics and behavior of such a network requires analyses at different levels and scales
of the overall network, and thus falls right in the core of complex systems methodol-
ogy. To be practically viable, a P2P approach needs good incentive mechanisms to limit
the influence of egoistic or malicious peers. Successfully addressing this difficult issue
requires combining expertise and methods from multiple scientific fields like game the-
ory, sociology and evolutionary biology, statistical dynamics, and algorithmics, in order
to master both the descriptional and the computational complexity. Finally, construct-
ing and maintaining the rich statistical, ontological, and cognitive models that should
drive the information dissemination and query processing strategies of a P2P search
engine requires a deep and unified understanding of the interrelationships and dynamic
interactions among these different building blocks.

The DELIS project is pursuing these challenging research avenues for laying the
foundations of next-generation information search spread across a self-organizing net-
work of millions of peers.
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