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ABSTRACT
We present a local random graph transformation for weakly
connected multi-digraphs with regular out-degree which pro-
duces every such graph with equal probability. This opera-
tion, called Pointer-Push&Pull, changes only two neighbor-
ing edges. Such an operation is highly desirable for a peer-
to-peer network to establish and maintain well connected
expander graphs as reliable and robust network backbone.
The Pointer-Push&Pull operation can be used in parallel
without central coordination and each operation involves
only two peers which have to exchange two messages, each
carrying the information of one edge only.

We show that a series of random Pointer-Push&Pull op-
erations eventually leads to a uniform probability distribu-
tion over all weakly connected out-regular multi-digraphs.
Depending on the probabilities used in the operation this
uniform probability distribution either refers to the set of
all weakly connected out-regular multi-digraphs or to the
set of all weakly connected out-regular edge-labeled multi-
digraphs. In multi-digraphs multiple edges or self-loops may
occur. In an out-regular digraph each node has the same
number of outgoing edges.

For this, we investigate the Markov-Process defined by the
Pointer-Push&Pull operation over the set of all weakly con-
nected multi-digraphs. We show that a Pointer-Push&Pull
operation — although preserving weak connectivity only —
can reach every weakly connected multi-digraph. The main
argument follows from the symmetry of the Markov-Process
described by the Pointer-Push&Pull operation over the set
of all weakly connected out-regular multi-digraphs.

∗Partially supported by the DFG-Sonderforschungsbereich
376 and by the EU within 6th Framework Programme under
contract 001907 “Dynamically Evolving, Large Scale Infor-
mation Systems” (DELIS).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’06, July 30–August 2, 2006, Cambridge, Massachusetts, USA.
Copyright 2006 ACM 1-59593-262-3/06/0007 ...$5.00.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph Algorithms, Network Prob-
lems; E.1 [Data Structures]: Graphs and Networks; C.2.4
[Distributed Systems]; G.3 [Probability and Statis-
tics]: Markov Processes, Stochastic Processes

General Terms
Algorithms, Theory

Keywords
Peer-to-Peer Networks, Random Graphs, Expander Graphs,
Distributed Algorithms

1. INTRODUCTION
Peer-to-peer networks continue pervading the Internet.

Since the early start from the Napster network to the first
true peer-to-peer network Gnutella [5] numerous approaches
have been made both, theoretically and practically. In this
paper, we concentrate on two important features necessary
for successful peer-to-peer networks: Robust connectivity
and randomness.

As an example consider the Gnutella network [5], which
was the first peer-to-peer network using a random network
structure. Studies reveal that Gnutella is not a truly random
network, but a so-called Pareto (or power law) distributed
graph [7, 15]. Compared to a random network, the degree
distribution (i.e. the density function of neighbors) is skewed
and also the diameter of the network is larger than in ran-
dom networks with the same average out-degree. Gnutella
would have been a better network if the peers would have
been connected by a truly random network [11] (Clearly this
does not solve the problem of efficient search which is the
main problem of Gnutella [16]).

The idea of using random networks for peer-to-peer net-
works also appears in the peer-to-peer network design suite
JXTA of Sun Microsystems. JXTA aims at connecting all
peers by a random network to provide robustness, i.e. pre-
venting peers or groups of peers from being disconnected.
So, JXTA forms a design tool for peer-to-peer network appli-
cations like distributed search for web-sites [1]. The robust-
ness and reliability of such random backbones is affirmed
in [9, 10]. The usage of random networks can be further
motivated by results of graph theory, which show that ran-
dom graphs provide connectivity and expansion even for
very small degrees [18]. Informally, the expansion property
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Figure 1: The 1-Flipper operation.

means that all partitions of the set of nodes of a graph have
a number of edges on the cut which is proportional to the
smaller set of the partitions. Such expander graphs have a
lot of desirable properties, e.g. logarithmic diameter, large
conductance, and short mixing times of random walks [4].

According to [12], a graph transformation for the mainte-
nance of random graphs should fulfill the following require-
ments to be suitable for the adaption in peer-to-peer net-
works:

Soundness: No transformation maps to graphs which are
not in the domain space, e.g. the connectivity of the
graph has to be preserved.

Generality: The random transformation process does not
converge to a specific graph. All graphs are reachable
and in the limit all graphs occur with non-zero prob-
ability. This requirement can be tightened to uniform
generality where in the limit all graphs occur with the
same probability.

Feasibility: The graph transformation can be described
by a simple (distributed) routine. Its implementation
in a distributed network should be straightforward.

Convergence rate: Only a small number of transforma-
tions is necessary to achieve an approximation of the
ultimate distribution of all graphs.

Pandurangan, Rhagavan and Upfal [14] presented a first
approach to build low-diameter networks with expansion
property. Their approach ensures that the network is con-
nected and has logarithmic diameter with high probability.
An even simpler fully decentralized operation with guar-
anteed connectivity was presented with the 1-Flipper [12]
— a sound, general and feasible random transformation for
the domain of undirected connected regular graphs. The
1-Flipper essentially chooses a random path of length three
and flips the two outer edges if the upcoming edges do not
already exist (see Fig. 1). By definition the 1-Flipper op-
eration preserves connectivity and regularity. Furthermore,
the 1-Flipper, started with any regular connected undirected
graph, in the limit constructs all such graphs with the same
probability. Currently no tight bounds for the convergence
rate of this process are known. However, if one extends the
length of the path to k ∈ Θ(d2n2 log 1/ε) edges, it is shown
in [12] that the graph converges in O(dn) rounds to an ex-
pander graph (here n denotes the number of nodes and d
the degree of the graph). In a recent work [3] it is claimed
that the convergence rate of the 1-Flipper can be bounded
by a high degree polynomial. However, we conjecture that
the 1-Flipper operation converges in time O(dn log n).

For the use in peer-to-peer networks, the 1-Flipper can be
improved. First, the 1-Flipper involves the active participa-
tion of four peers. Second, the maintenance of undirected,
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Figure 2: The Pointer-Push&Pull operation.

or to be more precise bi-directed, graphs is costly and not
necessary. In practice digraphs are completely sufficient.
Peers do not need to know who is pointing towards them
as long as the network is connected and robust. Note, that
there are several peer-to-peer networks which use digraphs,
see [17, 8, 13, 6] for example.

In this paper we concentrate on random graph transforma-
tions for weakly connected multi-digraphs and present the
Pointer-Push&Pull operation. Its main advantage is sim-
plicity: For a local update operation only two peers need
to exchange two messages. Using Markov theory, we show
that Pointer-Push&Pull operations will eventually generate
all weakly connected out-regular multi-digraphs with the
same probability. Interestingly this is not the case if Pointer-
Push&Pull is applied to out-regular simple digraphs. Then
we show that a slight change of the probability distribu-
tion for the choice of edges gives another terminal distri-
bution over multi-digraphs with simple digraphs occurring
with higher probability.

At last we discuss how to implement Pointer-Push&Pull
in a distributed network and solve the problems arising by
concurrent operations. Based on the Pointer-Push&Pull op-
eration a prototypical peer-to-peer network has been imple-
mented. This implementation as well as numerous simula-
tions let us conjecture that the convergence rate towards the
uniform probability distribution over all connected graphs is
fast, i.e. we conjecture O(dn log n) parallel operations. How-
ever, the question regarding convergence speed is open.

1.1 Notations
We now introduce some notations which are used through-

out this paper. By log n = log2 n we denote the dual loga-
rithm function. The term “with high probability” (w.h.p.)
describes a probability p ≥ 1 − n−c and “asymptotically
almost surely” (a.a.s.) is a probability p ≥ 1 − o(1). Fur-
thermore, we use the following definitions for several classes
of directed graphs, which we will refer to as digraphs from
now on.

Definition 1 (Simple Digraph)
A simple digraph G = (V, E) is defined by a node set V =
{1, . . . , n} and a set of directed edges E = {(u, v) : u, v ∈
V, u 6= v}.

A digraph is strongly connected if for all pairs of nodes
there exists a directed path in E and weakly connected if
there exists a path neglecting the direction of the edges for
each pair of nodes. For v ∈ V we define N+(v) = {w :
(v, w) ∈ E} and N−(v) = {u : (u, v) ∈ E} to refer to
the successor and predecessor nodes of v in G. A digraph
is called d-regular if ∀v ∈ V : |N−(v)| = |N+(v)| = d.
Furthermore, we say a digraph is d-out-regular if ∀v ∈ V :
|N+(v)| = d.
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Figure 3: The Pointer-Push operation.

The usage of a multiset for the set of edges in digraphs will
allow us to define a more general model of digrahs. There-
fore, we give a formal definition of multisets.

Definition 2 (Multiset)
A set E and a function #E : E → N0, specifying the multi-
plicity of its elements, define a multiset. For e ∈ E we write
e ∈k E if #E(e) = k. This implies e ∈0 E for all e 6∈ E. The
cardinality of a multiset E is defined as |E| =

P
e∈E #E(e).

For the subtraction on multisets we define E′ = E \ e
such that #E′(e) = #E(e) − 1 if #E(e) > 0 and #E′(e) =
#E(e) = 0 otherwise. The union of sets is defined analo-
gously, i.e. #E′(e) = #E(e)+1. On basis of simple digraphs
and multisets we can now define the more general model of
multi-digraphs.

Definition 3 (Multi-Digraph)
A multi-digraph G = (V, E, #E) is defined by a node set
V = {1, . . . , n} and a multiset of directed edges E = {(u, v) :
u, v ∈ V } with #E specifying the multiplicity of the edges.

In a multi-digraph self-loops (u, u) and multiple occur-
rence of edges are explicitly allowed, e.g. an edge (u, v) may
occur twice. Analogous to simple digraphs, a multi-digraph
is called d-regular if ∀u ∈ V :

P
v∈V,(u,v)∈E #E((u, v)) =P

v∈V,(v,u)∈E #E((v, u)) = d and called d-out-regular if ∀u ∈
V :

P
v∈V,(u,v)∈E #E((u, v)) = d. Note, that if no slopes oc-

cur and the multiplicity of all edges is at most one then
a multi-digraph describes a simple digraph. So, simple di-
graphs form a subset of multi-digraphs. As in case of sim-
ple digraphs we define the neighborhood of a node v ∈ V
as N+(v) = {w : (v, w) ∈ E}. Note that N+(v) is not
a multi-set and therefore the |N+(v)| < d is possible in a
d-out-regular multi-digraph.

The operations we introduce in the following sections are
so called graph transformations, i.e. they transform a graph
of a specific domain to another graph of that domain. We
now give a formal definition of a graph transformation.

Definition 4 (Graph Transformation)
A graph transformation is a random transition between the
graphs of a specific domain G, e.g. multi-digraphs. A graph
G ∈ G is mapped to a set of other graphs in G such thatX

G′∈G

P[G→ G′] = 1,

where G → G′ denotes that G is transformed to G′. A
graph transformation describes a Markov chain, where the
set of states equals the set of graphs in G, i.e. each G ∈
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Figure 4: The Pointer-Pull operation.

G represents a state of the Markov chain. The transition
matrix of the Markov chain is given by the transformation
probabilities P [G→ G′] for all pairs G, G′ ∈ G.

2. THE POINTER-PUSH&PULL
GRAPH TRANSFORMATION

Our goal is to design a graph transformation for connected
digraphs which is sound, general and feasible. Since the
model of multi-digraphs is less restrictive than the model
of simple digraphs, we will first consider multi-digraphs and
then show that our results can not be transfered to simple
digraphs.

2.1 Multi-Digraphs
We start with some fundamental considerations about

transformations of multi-digraphs. Considering a node v1

of a multi-digraph G, there are basically two possibilities to
change G:

• Pointer-Push — change the outgoing edges of the node,
i.e. do a random walk v1, v2, v3 in G and replace
(v1, v2) with (v1, v3) (see Figure 3).

• Pointer-Pull — change the ingoing edges of the node,
i.e. do a random walk v1, v2, v3, v4 in G and replace
(v3, v4) with (v3, v1) (see Figure 4).

However, neither the Pointer-Push nor the Pointer-Pull
operation meet our requirements for random graph trans-
formations. Due to space restrictions we do not present the
complete analysis of these operations here.

For the Pointer-Push operation it turns out that it is
sound and feasible but not general, i.e. the graph will con-
verge to a set of connected stars in the limit. This is be-
cause there is a non zero probability to generate a sink in
the graph, i.e. a node with all edges pointing to itself. Once
a node points to such a sink there is no possibility to remove
this edge with a Pointer-Push operation anymore.

The situation of the Pointer-Pull operation is similar. The
Pointer-Pull operation is not able to preserve connectivity
in a graph and therefore is not sound. To see this, note that
there is a non-zero probability for a node to create self-loops.
Once all edges of a node are pointing to itself this node is
disconnected from the rest of the graph. Without global
knowledge such a situation is irrevocable and therefore the
graph will consist only of disconnected nodes in the long
run. A more detailed analysis of the Pointer-Push and the
Pointer-Pull operation is presented in Appendix A.

We now show that a combination of these basic graph
transformations, called Pointer-Push&Pull operation, over-
comes the shortcomings of the Pointer-Push respectively
Pointer-Pull operation. It is defined as follows.



Definition 5 (Pointer-Push&Pull Operation)
Let G = (V, E, #E) be a d-out-regular multi-digraph and let
nodes v1, v2, v3 ∈ V form a directed path P = (v1, v2, v3) in
G. Then, the Pointer-Push&Pull operation PPP transforms
graph G to graph PPP (G) = (V, E′, #E′) with

E′ = (E \ {(v1, v2), (v2, v3)}) ∪ {(v1, v3), (v2, v1)} .

The Pointer-Push&Pull operation is illustrated in Figure
2. Note, that a Pointer-Push&Pull operation can be divided
to a Pointer-Push operation and a Pointer-Pull operation.
We start our analysis of this graph transformation with the
following lemma.

Lemma 1 The Pointer-Push&Pull operation is sound for
the domain of weakly connected out-regular multi-digraphs.

Proof. We have to show that the Pointer-Push&Pull op-
eration preserves connectivity and out-degree of all nodes.
For connectivity note that all participating nodes stay con-
nected, what implies at least weak connectivity for the graph.
Concerning the out-degree node v1 as well as v2 just replace
one of their outgoing edges and therefore their outdegrees
remain unchanged.

Algorithm 1 Random Pointer-Push&Pull

v1 ← random node ∈ V

if random event with p = |N+(v1)|
d

occurs then
v2 ← random node ∈ N+(v1)

if random event with p = |N+(v2)|
d

occurs then
v3 ← random node ∈ N+(v2)
E ← (E \ {(v1, v2), (v2, v3)}) ∪ {(v1, v3), (v2, v1)}

Algorithm 1 shows a randomized Pointer-Push&Pull op-
eration. This random Pointer-Push&Pull operation chooses
its starting node uniformly at random, then performs a
random walk of length two with some probability. Recall
that due to multi-edges |N+(v)| may be less than d in d-
out-regular multi-digraphs. Therefore, a random Pointer-
Push&Pull operation may cancel with a probability propor-
tional to the number of multi-edges of v1 and v2. This spe-
cific definition of the random Pointer-Push&Pull operation
is motivated by the following lemma.

Lemma 2 The random Pointer-Push&Pull operation is sym-
metric for out-regular multi-digraphs, i.e. for two out-regular
multi-digraphs G, G′ the probability to transfom G to G′ by
a random Pointer-Push&Pull operation is the same as to
transform G′ to G by a random Pointer-Push&Pull opera-
tion, i.e.

P [G
PP→ G′] = P [G′ PP→ G],

where G
PP→ G′ denotes that G can be transformed to G′ with

a single Pointer-Push&Pull operation.

Proof. Let P = (u, v, w) be the path of the Pointer-
Push&Pull operation transforming G to G′. To transform
G′ back to G we need to apply a Pointer-Push&Pull opera-
tion PPP ′ with P ′ = (v, u, w). Note, that PPP ′ is the only
possiblity to transform G′ back to G with a single opera-
tion. As noted above, the random Pointer-Push&Pull op-
eration chooses its starting node uniformly at random and

then chooses a neighboring node for two times with proba-

bility p = 1/d each. This implies P [G
PP→ G′] = P [G′ PP→

G] = 1/(nd2).

The following lemma names the set of graphs which can be
reached by applying random Pointer-Push&Pull operations
to an arbitrary starting graph repeatedly.

Lemma 3 A series of random Pointer-Push&Pull opera-
tions can transform a graph to any other graph within the
domain of out-regular weakly connected multi-digraphs.

Proof. We show that any weakly connected d-out-regular
multi-digraph G = (V, E, #E) with V = {v1, . . . , vn} can be
transformed to a canonical graph GC = (V, EC , #EC ) with

EC = {(v1, v1), (v2, v1), . . . , (vn, v1)} ,

and ∀e ∈ EC : #EC (e) = d, i.e. all edges are pointing to
v1. Then, the theorem follows since each Pointer-Push&Pull
operation is reversible so that two arbitrary graphs can be
transformed to each other using GC as an intermediate state.
We start with an arbitrary weakly connected d-out-regular
multi-digraph G and increase the indegree of v1 iteratively.
This can be done by repeatedly applying the at each time
first applicable of the following six transformations:

Case 1: v1 has at least one edge (v1, vj) with j 6= 1

Case 1.1: vj has an edge (vj , vk) with k 6= 1 and
k 6= j. Apply a Pointer-Push&Pull operation to
the path P = (v1, vj , vk) (see Figure 5(a)).

Case 1.2: vj has an edge (vj , v1). Apply a Pointer-
Push&Pull operation with P = (v1, vj , v1) (see
Figure 5(b)).

Case 1.3: vj has an edge (vj , vj). Apply a Pointer-
Push&Pull operation with P = (v1, vj , vj) (see
Figure 5(c)).

Case 2: v1 has no edge (v1, vj) with j 6= 1 and therefore
has an edge (v1, v1)

Case 2.1: There is a node vj pointing to v1 and
a node vk, with k 6= j, pointing to vj . Apply
Pointer-Push&Pull operations to the paths P1 =
(vj , v1, v1), P2 = (vk, vj , v1), P3 = (v1, vj , vk),
and P4 = (v1, vk, v1) (see Figure 6).

Case 2.2: There is a node vj pointing both to v1

and vk, k 6= 1. Furthermore, vk points to a node
vl with l 6= 1. If we apply a Pointer-Push&Pull
operation to the path P1 = (vj , vk, vl), then we
reach the start configuration of case 2.1 and can
continue with the operations described there (see
Figure 7).

Case 2.3: There is a node vj pointing to v1 and
itself. Apply Pointer-Push&Pull operations to
the paths P1 = (vj , v1, v1), P2 = (v1, vj , vj), and
P3 = (v1, vj , v1) (see Figure 8).

Following this scheme, the starting graph G will be trans-
formed to GC in the limit. To see this, note that GC is the
only possible graph with indegree dn for node v1. Further-
more, the six cases cover all possible arrangements of edges,
so that always one of the cases can be applied unless GC is
reached already.
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As a side effect, the proof of Lemma 3 delivers an upper
bound: Starting with an arbitrary d-out-regular weakly con-
nected multi-digraph, at most 10nd Pointer-Push&Pull op-
erations are needed to reach any other d-out-regular weakly
connected multi-digraph.

Combining our results, we are now able to show that
the Pointer-Push&Pull operation provides uniform gener-
ality within the domain of d-out-regular weakly connected
multi-digraphs.

Theorem 1 Let G′ be an arbitrary d-out-regular weakly con-
nected multi-digraph with n nodes. Then, applying random
Pointer-Push&Pull operations repeatedly to G′ will construct
every d-out-regular weakly connected multi-digraph with the
same probability in the limit, i.e.

lim
t→∞

P [G′ t→ G] =
1

|MDGn,d|
,

where MDGn,d denotes the set of all d-out-regular weakly
connected multi-digraphs with n nodes.

Proof. Consider the Markov chain over the set of d-out-
regular weakly connected multi-digraphs described by the
random Pointer-Push&Pull operation. Lemma 2 implies
that the transition matrix of the Markov chain is symmetric
and therefore doubly stochastic. Lemma 3 shows that every
state of the Markov chain is reachable. Furthermore, there
is a non-zero probability to transform a graph to itself. This
implies that some diagonal entries of the transition matrix
are non-zero. Using these three properties of the transition
matrix the theorem follows by applying essential results of
Markov theory.

2.2 Edge Labeled Multi-Digraphs
We have seen that the Pointer-Push&Pull operation gen-

erates out-regular weakly connected multi-digraphs with uni-
form probability. We now show that a slight change of the
probability distribution for the choice of edges gives another
terminal distribution over multi-digraphs with simple di-
graphs occurring with higher probability. To achieve this,
we modify the Pointer-Push&Pull operation to work with
out-regular edge labeled multi-digraphs, which we formally
define as follows.

Definition 6 (Edge Labeled Multi-Digraph)
An edge labeled d-out-regular multi-digraph G∗ = (V, E∗)
is defined by a node set V = {1, . . . , n} and an edge set
E∗ = {(u, v, i) : u, v ∈ V, i ∈ {1, . . . , d}}, where i specifies
the label of an edge. Here, we restrict to the labels 1, . . . , d
and unique labels for each outgoing edge of a node, i.e. ∀u ∈
V,∀i ∈ {1, . . . , d} : ∃v ∈ V : (u, v, i) ∈ E∗.

In d-out-regular edge labeled multi-digraphs we use the
notation N+(v, i), i ∈ {1, . . . , d}, v ∈ V to refer to v’s
neighbor due to the i-th labeled edge. In addition we use
E−(v) = {(w, v, i) ∈ E∗} to refer to the set of v’s in-
going edges. Recall that N+(v, i) = N+(v, j), i 6= j is
possible in a multi-digraph. Algorithm 2 shows the ran-
dom Pointer-Push&Pull operation, modified for edge labeled
multi-digraphs. For the sake of clarity and to simplify no-
tation, we will refer to this algorithm as labeled-Pointer-
Push&Pull and use unlabeled-Pointer-Push&Pull to refer to
the previous section Pointer-Push&Pull algorithm.

Algorithm 2 Random labeled-Pointer-Push&Pull

v1 ← random node ∈ V
i← random number ∈ {1, ..., d}
v2 ← N+(v1, i)
j ← random number ∈ {1, ..., d}
v3 ← N+(v2, j)
E∗ ← (E∗ \ {(v1, v2, i), (v2, v3, j)})

∪{(v1, v3, i), (v2, v1, j)}

The proof for preserving connectivity and out-degrees of
the unlabeled-Pointer-Push&Pull can be transfered directly
to the labeled-Pointer-Push&Pull operation. We now show
that the labeled-Pointer-Push&Pull operation is symmetric
within the domain of out-regular weakly connected edge la-
beled multi-digraphs.

Lemma 4 The labeled-Pointer-Push&Pull operation PP∗
is symmetric within the domain of out-regular weakly con-
nected edge labeled multi-digraphs. That is, for two arbitrary
graphs G∗

1, G
∗
2 of this domain

P [G∗
1
PP∗→ G∗

2] = P [G∗
2
PP∗→ G∗

1].

Proof. According to Algorithm 2 G∗
1 and G∗

2 differ in
exactly two edges. More precisely G∗

1 has edges (v1, v2, i),
(v2, v3, j) and G∗

2 has edges (v1, v3, i), (v2, v1, j). The only
way to transform G∗

2 back to G∗
1 with a single operation

is a labeled-Pointer-Push&Pull operation using the edges
(v2, v1, j) and (v1, v3, i). Now observe that the starting node
of the labeled-Pointer-Push&Pull operation is chosen uni-
formly at random, i.e. with p = 1/n. So, the algorithm does
a random walk by choosing two edges uniformly at random,

implying P [G∗
1
PP∗→ G∗

2] = P [G∗
2
PP∗→ G∗

1] = 1/(nd2).

Similar as in case of the unlabeled-Pointer-Push&Pull op-
eration, every out-regular weakly connected edge labeled
multi-digraph can be reached by a series of labeled-Pointer-
Push&Pull operations. This can be shown by transferring
the proof of Lemma 3 to edge labeled multi-digraphs. To
see this, note that using the proof of Lemma 3 any starting
graph will be transformed to the canonical graph GC — re-
gardless of its labeling. Furthermore, the labeling in GC can
be neglected, since all edges point to the same node. There-
fore, the proof also holds for the labeled-Pointer-Push&Pull
operation.

Finally, these results lead to the following theorem show-
ing that the labeled-Pointer-Push&Pull operation provides
uniform generality within the domain of out-regular weakly
connected edge labeled multi-digraph.

Theorem 2 Let G∗
0 be an d-out-regular weakly connected

edge labeled multi-digraph with n nodes. Then, applying
random labeled-Pointer-Push&Pull operations repeatedly to
the graph will construct every d-out-regular weakly connected
edge labeled multi-digraph with the same probability in the
limit, i.e.

lim
t→∞

P [G∗
0

t→ G∗] =
1

|MDG∗n,d|
,

where MDG∗n,d denotes the set of all d-out-regular weakly
connected edge labeled multi-digraphs.
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Figure 9: A Markov chain modeling the change of a node’s indegree.

Proof. The proof is essentially the same as the proof
of Theorem 1. The transition matrix of the Markov chain
described by the labeled-Pointer-Push&Pull operation over
all G∗ ∈ MDG∗n,d is doubly stochastic and every state is
reachable. Furthermore the labeled-Pointer-Push&Pull op-
eration does not change the edge set if the operation chooses
a self-loop for two times, implying non-zero diagonal entries.
Therefore, the theorem follows by essential results of Markov
theory.

At first glance this result does not seem to be more power-
ful than the uniform generation of d-out-regular weakly con-
nected multi-digraphs, shown by Theorem 1. Note however,
that each d-out-regular edge labeled multi-digraph can be
transformed to a d-out-regular (unlabeled) multi-digraph G.
For this, the set of triples in E∗ is transformed to a multi-set
by omitting the labels, i.e. the third element of each triple.
This leads to the following definition of an equivalence class.

Definition 7 (Equivalence Class)
The set of d-out-regular edge labeled multi-digraphs describ-
ing a d-out-regular (unlabeled) multi-digraph G, when omit-
ting the edge labels, is called equivalence class of G: [G].

Now, we can transfer Theorem 2 to the domain of unla-
beled multi-digraphs using equivalence classes.

Theorem 3 Let G be a d-out-regular weakly connected multi-
digraph with n nodes. Then, applying random labeled-Pointer-
Push&Pull operations to the graph repeatedly will construct
every d-out-regular weakly connected multi-digraph G with
probability ∼ 1

|[G]| .

It remains to analyze the size of the equivalence classes,
i.e. how many ways are there to label the edges of a d-
out-regular multi-digraph with labels chosen according to
Defintion 6. Straight forward combinatorics leads to the
following sizes for equivalence classes in dependency of the
number of multi edges in a graph.

Lemma 5 Let G be a d-out-regular multi-digraph. Then,
the size of the equivalence class of G is given by

|[G]| =
Y

u∈V (G)

d!

M0(u)!
Qd

i=1(i!)
Mi(u)

,

with M0(u) denoting the number of slopes, M1(u) denoting
the number of single edges, M2(u) denoting the number of
double edges, etc.

In other words, Lemma 5 shows: The lower the number
of multi-edges in G is, the larger is the cardinality of its

equivalence class [G]. This again implies that the labeled-
Pointer-Push&Pull operation will generate a particular sim-
ple digraph with higher probability than a particular multi-
digraph. Therefore, and because there is no additional over-
head compared to the unlabeled-Pointer-Push&Pull opera-
tion, the labeled-Pointer-Push&Pull operation will be prefer-
able in the majority of cases.

By definition the Pointer-Push&Pull operations guaran-
tee out-regularity only. In many applications it is desirable
to have regular digraphs. Therefore we now analyze the in-
degree distribution of the evolving graphs. On the one hand
a node v increases its indegree by one if chosen as starting
node.1 This occurs with probability p = 1/n. On the other
hand v’s indegree is decreased only if v is chosen as second
node of a Pointer-Push&Pull operation. This happens with
probability proportional to v’s indegree, i.e. |E−(v)|p/d .
Knowing this, the change of v’s indegree can be modeled
by a Markov chain with states 0, . . . , nd − d representing
the current indegree and transition probabilities as shown in
Figure 9. Analyzing the stationary probability distribution
of this Markov chain leads to an almost Poisson distribution
with expectation d.

Lemma 6 Starting with an arbitrary d-out-regular weakly
connected edge labeled multi-digraph with n nodes and ap-
plying labeled-Pointer-Push&Pull operations repeatedly the
indegrees of the nodes will be almost Poisson distributed, i.e.
a node will have indegree k with probability

pk =
dk

k!

 
nd−dX
i=0

di

i!

!−1

.

2.3 Simple Digraphs
Although the labeled-Pointer-Push&Pull operation gen-

erates simple digraphs with higher probability than the un-
labeled-Pointer-Push&Pull operation, the following theorem
shows that simple digraphs are still outnumbered.

Theorem 4 The fraction p∗ of d-out-regular edge labeled
simple digraphs with n nodes in all d-out-regular edge labeled
multi-digraphs with n nodes is bounded by

e
− d2

1− d
n ≤ p∗ ≤ e−d .

1Actually v’s indegree will not increase if the first edge cho-
sen is a self-loop. However the expected overall number of
self-loops in a d-out-regular multi-digraph is constant, or to
be more specific d. So, we neglect the constant number of
affected nodes in our analysis and assume that the node has
no self-loops during the graph transformations.



Proof. In a d-out-regular edge labeled simple digraph
neither self-loops nor multi edges occur. This implies that
there are (n−1)!/(n−d−1)! possibilities for a nodes neigh-
borhood while there are nd possibilities if self-loops and
multi-edges are allowed. This gives an upper bound of„

(n− 1)!

(n− d− 1)!nd

«n

≤ (n− 1)dn

ndn

=

„
1− 1

n

«dn

≤ e−d .

For the lower bound of d-out-regular edge-labeled simple

multi-digraphs, observe that (n−1)!
(n−d−1)!

≥ (n− d)d. This im-

plies „
(n− 1)!

(n− d− 1)!nd

«n

≥ (n− d)dn

ndn

=

„
1− d

n

«dn

=

„
1− d

n

«( n−d
d

) d2n
n−d

≥ e−
d2n
n−d ,

and thus proves the theorem.

Given a node the probability of being the source of only
simple edges (not multiple edges or self-loops) is quite high,
i.e. at least 1 − d

n−d−1
(which suffices practical needs).

Whereas, if we consider the complete graph, the fraction of
simple digraphs created by the labeled-Pointer-Push&Pull
operation is rather small, i.e. decreasing exponentially with
the degree. Since multiple edges are an unnecessary waste
of resources one might want to generate simple digraphs
only. A straight forward solution is to modify the labeled- or
unlabeled-Pointer-Push&Pull operation such that it is only
applied if the resulting digraph is simple. We call this mod-
ified graph transformation simple-Pointer-Push&Pull. Un-
fortunately, the simple-Pointer-Push&Pull operation is not
general for the domain of simple digraphs. To see this con-
sider any symmetric digraph, i.e. a digraph where for each
edge (u, v) also the edge (v, u) is in the edge set. In such
digraphs no simple-Pointer-Push&Pull operation can be ap-
plied, since each operation would either create a multi-edge
or a self-loop and therefore leave the domain of simple di-
graphs. The only way to reach all simple digraphs using
Pointer-Push&Pull operations is to allow the multiple oc-
currence of edges, i.e. the use of multi-digraphs.

3. POINTER-PUSH&PULL IN
PEER-TO-PEER NETWORKS

The labeled- and unlabeled-Pointer-Push&Pull operations
are in particular useful for the maintenance of distributed
random networks, as they are used in peer-to-peer networks
for example. Applying Pointer-Push&Pull operations en-
sures that the network stays truly random, even if peers
join, leave, or fail in non-random fashion.

The Pointer-Push&Pull operation directly competes with
the 1-Flipper operation we introduced in [12]. Both graph
transformations are able to maintain truly random networks,

yet in different domains. The 1-Flipper (see Figure 1) op-
eration maintains (undirected) connected regular graphs,
whereas the Pointer-Push&Pull operation maintains out-
regular weakly connected multi-digraphs. While the do-
main of the 1-Flipper may be the traditional one for ran-
dom networks, there is a strong argument in favor of the
Pointer-Push&Pull operation and the use multi-digraphs: a
Pointer-Push&Pull operation needs only two nodes to com-
municate per operation, while the 1-Flipper operation needs
four nodes to communicate with each other. This implies
lower network overhead and improved locality for each op-
eration.

We will now discuss how to implement Pointer-Push&Pull
operations in a distributed network without central coordi-
nation. A Pointer-Push&Pull operation on the path P =
(v1, v2, v3) consists of the following sequential steps:

Step 1 v1 requests a random neighbor from v2

Step 2 v2 replaces v3 by v1 in its neighborhood list and
sends the ID of v3 to v1

Step 3 v1 receives the ID of v3 from v2 and replaces v2 by
v3 in its neighborhood list

These three steps involve only two network operations be-
tween v1 and v2. This shows, that a Pointer-Push&Pull op-
eration does not introduce additional overhead compared to
periodical verification of the neighborhood, which is manda-
tory in dynamic networks.

In the previous section we have shown that a single Pointer-
Push&Pull operation never disconnects a network. How-
ever, things are different when there are concurrent Pointer-
Push&Pull operations with intersecting paths. They bear
the risk of disconnecting a network. To see this, consider
a directed path (s, t, u, v) in the network and two concur-
rent Pointer-Push&Pull operations PPP and PPP ′ with
P = (s, t, u) and P ′ = (t, u, v). Now consider the follow-
ing situation. PPP ′ has removed edge (u, v) and created
edge (u, t). At this point of time PPP starts and finishes
before PPP ′ continues, i.e. PPP creates edges (s, u), (t, s)
and removes edges (s, t), (t, u). Then, PPP ′ can not be
finished since PPP ′ will try to remove edge (t, u) which no
longer exists. Even worse, the resulting network is possibly
disconnected since there is no path between u and v.

Fortunately, there is a simple solution to this problem.
To prevent the interference of Pointer-Push&Pull operations
the first edge of each operation is locked for the use by fur-
ther operations. This implies that this edge can not be used
by multiple Pointer-Push&Pull operations at the same time.
The second edge of a Pointer-Push&Pull operation does not
need to be locked, since it will be replaced immediately with-
out any delay due to network communication.

If a Pointer-Push&Pull operation choses an edge, which is
currently locked, then there are two possible solutions. First,
the Pointer-Push&Pull operation can of course be canceled.
This is unproblematic since no changes have been made to
the network graph, yet. Another option is to wait for the
lock to disappear. This is reasonable since an operation will
usually need few milliseconds. Furthermore, the number of
intersecting operations will be low if the interval in which a
node starts Pointer-Push&Pull operations is chosen reason-
ably.



4. CONCLUSIONS AND OPEN PROBLEMS
In this paper, we have presented a random graph trans-

formation approach for maintaining a stable backbone for
peer-to-peer networks: The Pointer-Push&Pull-operation.
This simple operation involving only two peers at a time
is able to establish and maintain a stable network: Every
d-out-regular weakly connected multi-digraph occurs with
same probability. Such a random graph is an expander
graph a.a.s. for a generalized notion of expansion for multi-
digraphs. Therefore small diameter and high connectivity is
guaranteed. An interesting feature is that this scheme recov-
ers from any worst case situation. The operation itself ex-
changes only two messages between the peers. It can be im-
plemented with minimal effort and does not need any global
knowledge of the network so that the Pointer-Push&Pull
operation can be used in parallel at all peers.

All findings in this paper are proved using Markov theory.
In our view this is the only reasonable way as graph trans-
formations like the Pointer-Pull operation perform very well
in simulations of large networks, yet eventually disconnect
the network as we have proven here. This work improves our
results presented in [12], where we presented the 1-Flipper
operation for undirected connected regular graphs, in two
ways. The Pointer-Push&Pull operation is far simpler than
the 1-Flipper and multi-digraphs are easier to maintain than
undirected graphs.

The convergence rate of the Pointer-Push&Pull operation
is still unknown. In case of the 1-Flipper, there is a recent
paper [3] claiming that the convergence rate can be bounded
by a high degree polynomial, i.e. roughly d56n53. Yet, we
strongly believe that this bound is far from the true behavior
of the 1-Flipper operation.

There is also another graph transformation which is re-
lated to the 1-Flipper operation. Cooper, Dyer, and Green-
hill [2] showed polynomial convergence speed for the Switch
operation on regular graphs. A switch operation chooses two
edges {i, j}, {k, l} uniformly at random, then chooses a per-
fect matching of {i, j, k, l} and replaces {i, j}, {k, l} with the
edges describing the matching if the resulting graph stays
simple. Whereas the 1-Flipper chooses a random path of
three edges only and flips the two outer edges if the re-
sulting graph stays simple. Cooper et al. give an upper
bound of d17n7 log(dnε−1) for the convergence rate of the
switch operation. However, they guess that O(n log n) op-
erations suffice, for constant degree, but this seems beyond
the reach of known proof techniques. O(n log n) is also what
we conjecture for the Pointer-Push&Pull and the 1-Flipper
operations based on experiments. Simulations and a real-
world software implementation indicate quick convergence
to the steady state probability distribution for the Pointer-
Push&Pull operation.

In this paper we have only discussed multi-digraphs since
it turns out that the Pointer-Push&Pull oepration is unable
to maintain simple digraphs. Yet, it is not clear if there
exists a similar operation for simple digraphs suitable for
peer-to-peer networks.
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APPENDIX
A. THE POINTER-PUSH AND THE

POINTER-PULL OPERATION
The Pointer-Push operation is a simple graph transfor-

mation defined on a path of two edges applicable to multi-
digraphs.

Definition 8 (Pointer-Push Operation)
Consider a multi-digraph G = (V, E, #E) and nodes v1, v2,
v3 ∈ V forming a directed path P = (v1, v2, v3) in G. Then,
the Pointer-Push operation PUSHP transforms graph G to
a graph PUSHP (G) = (V, E′, #E′) with

E′ = (E \ (v1, v2)) ∪ (v1, v3).

Figure 3 illustrates the Pointer-Push operation. A random-
ized version of the Pointer-Push operation is given by Algo-
rithm 3.

Algorithm 3 Random Pointer-Push

Choose random node v1 ∈ V
v2 ← random node ∈ N+(v1)
v3 ← random node ∈ N+(v2)
E ← (E \ (v1, v2)) ∪ (v1, v3)

The following Lemma shows that the Pointer-Push oper-
ation is sound.

Lemma 7 Applying random Pointer-Push operations to a
connected muldi-digraph G will preserve connectivity of G.
Furthermore the outdegree of each node in G will stay the
same.

Proof. Concerning the outdegree note, that one of the
outgoing edges of v1 is deleted and one new edge starting at
v1 is created. Connectivity is preserved because all partic-
ipating nodes of a Pointer-Push operation stay connected.
However, the resulting graph may be weakly connected.

For the asymptotic behavior of the random Pointer-Push
operation the following theorem holds.

Theorem 5 A series of random Pointer-Push operations
will transform any connected multi-digraph into a connected
set of stars in the limit with probability 1.

Proof. When applying random Pointer-Push operations
there is a non-zero probability that a node creates self edges.
Eventually, all outgoing edges of a node will point to itself
and therefore this node will be a sink. Every time the second
node of a Pointer-Push operation is such a sink s ∈ V , the
third node will also be s. Therefore, the random Pointer-
Push operation will create edges pointing to the sink what
in turn further increases the probability of random Pointer-
Push operations to end in a sink. Note, that there is no way
to remove edges pointing to a sink. So, in the long run the
graph will consist of at least one sink and all other nodes
pointing directly to sinks.

Intuitively, nodes with higher indegree are prone to receive
even higher indegree. The above theorem shows, that this
causes the Pointer-Push operation to not provide generality.

We can overcome the problem of further increasing the
indegree of nodes which already have high indegree with the
following graph transformation, called Pointer-Pull opera-
tion.

Definition 9 (Pointer-Pull Operation)
Consider a multi-digraph G = (V, E, #E) and nodes v1, v2,
v3, v4 ∈ V forming a directed path P = (v1, v2, v3, v4) in G.
Then, the Pointer-Pull operation PULLP transforms graph
G to a graph PULLP (G) = (V, E′, #′

E) with

E′ = (E \ (v3, v4)) ∪ (v3, v1).

The Pointer-Pull operation is illustrated in Figure 4 and a
randomized version is given by Algorithm 4.

Algorithm 4 Random Pointer-Pull

Choose random node v1 ∈ V
v2 ← random node ∈ N+(v1)
v3 ← random node ∈ N+(v2)
v4 ← random node ∈ N+(v3)
E ← (E \ (v3, v4)) ∪ (v3, v1)

As in case of the Pointer-Push operation, the Pointer-Pull
operation does not change the outdegree of any node. The
intuition, in contrast to the Pointer-Push operation, is that
applying random Pointer-Pull operations may balance the
indegree of the nodes. This is because the starting node v1

of each operation will increase its indegree by one and v1

is chosen uniformly at random. Furthermore, nodes with
high indegree have a higher probability to be endpoint of a
Pointer-Pull operation and therefore, higher probability to
get their indegree decreased. Even if this is the case, the
following theorem shows a major drawback of the Pointer-
Pull operation.

Theorem 6 Starting with an arbitrary multi-digraph G with
n nodes, random Pointer-Pull operations disconnect G into
n components of single nodes with slopes in the limit.

Proof. From every digraph, this terminal graph is reach-
able by a series of random Pointer-Pull operations. Fur-
thermore, applying random Pointer-Pull operations to the
terminal graph will transform the terminal graph to itself.
So, in the limit the Markov chain described by the random
Pointer-Pull operation converges to this terminal graph.


