
A Self-Stabilizing Locality-Aware Peer-to-Peer
Network Combining Random Networks, Search

Trees, and DHTs
Thomas Janson

University of Freiburg, Germany
janson@informatik.uni-freiburg.de

Peter Mahlmann
University of Paderborn, Germany

mahlmann@upb.de

Christian Schindelhauer
University of Freiburg, Germany

schindel@informatik.uni-freiburg.de

Abstract—We present 3nuts, a self-stabilizing peer-to-peer
(p2p) network supporting range queries and adapting the overlay
structure to the underlying physical network. 3nuts combines
concepts of structured and unstructured p2p networks to over-
come their individual shortcomings while keeping their strengths.
This is achieved by combining self maintaining random networks
for robustness, a search tree to allow range queries, and DHTs
for load balancing. Simple handshake operations with provable
guarantees are used for maintenance and self-stabilization. Ef-
ficiency of load balancing, fast data access, and robustness are
proven by rigorous analysis.

Index Terms—p2p, random graphs, robustness, self-
stabilization, locality, search trees

I. INTRODUCTION

Peer-to-peer (p2p) networks have become very popular for
the exchange of resources (e.g. data). In contrast to client
server architectures, the nodes (peers) of a p2p network have
symmetrical functionality and each peer acts as server, client,
and router at the same time. This property bears the potential
of excellent failure resilience, since there is no single point of
failure and the impact of individual failures may be less than
in other architectures. Measurement studies of real world p2p
networks reveal that these underlie high churn rates [1]: Peers
frequently join and leave without prior notice. Thus, robustness
is a key to realize the actual potential of p2p in applications
and it is reasonable to choose a simple network structure that
is easy to maintain, keeps the network functional under churn,
and allows to recover quickly from degenerate states.

P2p networks can be divided into unstructured and struc-
tured networks according to their topology. Unstructured
networks are characterized by the lack of constraints on
data placement and topology. Each peer maintains its own
local index and may select arbitrary other peers as neighbors
resulting in a random graph like topology which is easy to
maintain and provably robust [2]. For data discovery each
local index has to be queried separately. So, complex queries
such as range queries can be implemented easily, but have to
be performed by broadcasts imposing a lot of network traffic
or by random walks [3] which reduce traffic, but massively
increase search latency. Structured networks overcome this
problem by strictly controlling data placement and evolution
of the topology. Often distributed hash tables (DHT) are used
for data placement [4], [5], [6]. DHTs map data and peers

into a virtual space M via hashing and assign data to the
peer which is closest in M , for example. So data stored at
the same peer is usually completely unrelated and queries are
limited to exact match queries. The topology is controlled to
allow efficient routing and often emulates well known static
networks (cf. Fig. 1). Generally, structured p2p networks are
considered to be harder to maintain under churn and less robust
than unstructured networks due to the extra overhead to control
topology and data placement [7]. DHTs constitute an important
step towards scalable p2p networks. Yet, scalability is bought
dearly by neglecting locality during data placement, resulting
in the limitation to exact match queries.

We combine concepts of unstructured and structured p2p
networks to overcome their individual shortcomings while
keeping their strengths. In 3nuts one of the most robust
backbone structures is combined with one of the most efficient
lookup methods: random networks and search trees. These
two structures complement each other excellently: Random
networks are provably robust, but lack efficient lookup algo-
rithms, and search trees efficiently support range queries, but
are not robust. Another design goal was to forgo the use of
heuristics wherever possible. So, 3nuts makes use of the simple
and efficient load balancing provided by DHTs and uses a
simple handshake operation [8] with provable guarantees for
self-stabilization. Notably, these handshake operations allow
to quickly recover from any degenerated state as long as the
network is still weakly connected. 3nuts efficiently supports
range queries and allows routing with small latency by adapt-
ing the overlay structure to the underlying physical network.

In Sec. II we describe three notions of locality relevant to
p2p networks and discuss relevant literature. In Sec. III we
describe 3nuts and its maintenance and in Sec. IV we underline
the practicability by experimental results derived by a fully
functional implementation, ready for practical use.

II. LOCALITY IN P2P NETWORKS

Network locality: While the typical measure to evaluate
routing algorithms is the hop number, this alone is not a good
measure if the goal is to provide short response times. The
reason for this is that a hop connecting peers in Italy and
China has higher latency than a hop connecting peers in the
same building. This leads to the definition of network locality.

Definition 1 A p2p network provides network locality if the
overlay structure is adapted to the physical network in order
to reduce routing latencies.

Network locality has been addressed early by the scientific
community and several p2p networks providing network lo-
cality have been proposed. Pastry [5], based on the seminal
work of Plaxton et al. [9], was among the first DHT based p2p
networks providing network locality innately. Other networks
have been extended to support network locality, e.g. [10]
extends Chord [4] in this regard. The crux in providing
network locality is to find latency wise close neighbors without
generating too much additional network traffic.

Information locality: As we have seen DHTs are limited to
exact match queries. So, data placement plays a key role when
it comes to supporting complex queries, e.g. range queries.

Definition 2 A p2p network provides information locality if
closely related data is stored on network-wise close peers.

The problem of supporting range queries in p2p networks has
been identified early by several researchers [11]. Ratnasamy
et al. proposed the trie based Prefix Hash Tree (PHT) [12],
where prefixes of a trie are hashed onto an arbitrary DHT
network. An advantage of their approach is that this way
the load balancing functionality of DHTs can still be used.
However, DHTs are inherently ill-suited for range queries and
thus it is hardly surprising that the lookup in PHT is not as
efficient as in DHTs, i.e. a lookup requires O(log2n) hops,
with n denoting the number of peers.

The skip list based Skip Graphs [13] belongs to the most
prominent p2p networks supporting range queries efficiently.
Yet, range query support in Skip Graphs is bought dearly
by the loss of load balancing: Resources, e.g. data files,
are managed by the peer hosting that resource respectively.
Consequently, a peer hosting k resources has to maintain k
nodes in Skip Graph. So, in a Skip Graph with n peers and m
resources (m � n) a peer has to maintain O(k logm) links,
whereas the number of links to be maintained in DHT based
networks typically is O(log n) [4] or constant [6] per peer,
and thus independent of the number of resources.

Several tree based p2p networks supporting range queries
and load balancing at the same time have been proposed. We
briefly discuss P-Grid [14] and DPTree [15]. P-Grid abstracts
a binary trie structure defined by the data available in the
network. Each peer is responsible for a particular prefix of
the trie and maintains links to random peers of every subtree
neighboring its own prefix. However, it is not clear if the links
to subtrees selected in P-Grid are truly random and the load
balancing mechanism used in P-Grid is based on heuristics.
Without a central load balancing instance assigning prefixes to
the peers, peers have to determine their prefix in a distributed
manner. This can result in complex dependencies between all
peers and the fact that P-Grid needs an extra bootstrapping
mechanism for an initial network state underlines its complex-
ity. DPTree [15] is inspired by balanced tree indexes. The tree
structure is decoupled from the actual structure of the overlay

by using a Skip Graph as overlay structure and choosing peer
identifiers such that these represent paths from the root to
leaves of the tree. Load balancing is done with a wavelet
based mechanism to choose peer identifiers. Peers noticing
to be overloaded may shed part of their load to neighboring
peers. It may be criticized that the robustness under network
dynamics is not verified and that the costs of rebuilding the
tree upon structural changes remain unclear.

So, there exist numerous p2p networks that overcome the
limitation of DHTs to exact match queries. Yet, the networks
mentioned above either do not provide load balancing at all
[13] or make use of complex heuristics [14], [15], which are
in stark contrast to the simple and efficient load balancing pro-
vided by DHTs and often make a formal analysis impossible.
The important thing to note here is that these networks —
although they allow to process range queries efficiently — are
not superior to DHTs in every respect.

Interest locality: In the Web certain data is intrinsically
local, e.g. most of all greek web-sites are created in Greece
and accessed from computers in Greece. Hence, it makes sense
to store such data on peers located in Greece.

Definition 3 A p2p network provides interest locality if peers
can choose to provide lookup service and data storage for
certain data. If peers choose to provide certain data, then the
network allows efficient lookup to data relevant to a peer.

Interest locality is rarely addressed in p2p networks. An
exception is SkipNet [16] which is closely related to Skip
Graphs [13]. So, SkipNet shares some shortcomings with Skip
Graphs, i.e. the lack of load balancing. In fact the authors
present a way to provide a constrained form of load balancing
in SkipNet, but we will focus on interest locality. In SkipNet
peers may choose arbitrary name id’s. If all peers of a domain
(e.g. ’.ch’) choose their name id to begin with their domain,
then peers of the same domain will be neighbors in the id
space. Using the domain as prefix for data as well allows to
control data placement. Since the routing algorithm ensures
that a query that has reached the target domain will never
leave it again, SkipNet provides a form of interest locality.
This, however, comes at the price of diminishing information
locality: To retrieve all documents relevant to a query each
domain has to be queried separately. So, there is a trade-off
between information locality and interest locality in SkipNet.

Fig. 1 gives an overview of p2p networks and the supported
types of locality. In the bottom line many networks supporting
either network, information, or interest locality have been
proposed. To the best of our knowledge 3nuts is the first
network providing all three types of locality at the same time.

III. THE 3NUTS P2P NETWORK

In 3nuts the peers build a distributed version of the prefix
tree (trie) defined by the data available in the network. To make
the distributed prefix tree robust, its nodes are replaced by
random networks. The root of the tree is replaced by a random
network containing all peers and forms a reliable backbone.

network topology network information interest
locality locality locality

Gnutella random graph no yes no
Chord [4] hypercube no no no
Distance Halv.[6] de Bruijn no no no
Pastry [5] mesh of trees yes no no
Skip Graphs [13] skip list/rings no yes no
PHT [12] DHT/trie no yes no
DPTree [15] Skip Graph no yes no
P-Grid [14] mesh of trees no yes no
SkipNet [16] skip list/rings no yes yes
3nuts tree / random yes yes yes

Fig. 1. Overview of p2p networks and provided types of locality.

1

0

11*10*

0

010* 011*

00*

local index

0

1

10
p1

p1

p5

p4 p3

p2 p4

p1 p2 p4

p2 p4

p3

p3 p5

p5

p2

1

Fig. 2. Global view of a distributed prefix tree with 5 peers.

Then, peers are recursively assigned to subtrees using a DHT
based load balancing mechanism until there is only a single
peer left in every subtree (see Fig. 2 for a distributed prefix
tree with 5 peers). So, each peer is assigned to a path from
the root to a leaf of the distributed prefix tree. Every peer
is responsible to manage the data with the prefix given by
its path. 3nuts also allows to store data in internal nodes and
each internal node of the tree has a particular peer which is
responsible for managing data and creating new subtrees, etc.

Before we describe the assignment of peers to subtrees, the
maintenance of random networks, and routing we introduce
some notations. Let p1, . . . , pn be the set of peers and let T
denote the distributed prefix tree with nodes v1, v2, Note
that each vi represents a particular prefix and has a random
network associated to it. By Tvi we denote the subtree rooted
at vi and by |Tvi | the number of peers assigned to Tvi . We
define the load w(Tvi) ∈ N of subtree Tvi to be the number of
data elements in T with prefix vi. By “with high probability”
(w.h.p.) we denote a probability > 1− n−c for a constant c.

A. Peer Assignment, Load-balancing, and Responsibilities

The recursive assignment of peers to subtrees is done
using distributed heterogeneous hash tables (DHHT) [17], an
extended form of distributed hash tables (DHT) to support
non-uniform weights. We give a brief description of DHTs
and then describe the weighting extension, with focus on our
application. Recall that we assign peers to subtrees (respec-
tively data) while the usual approach is just the other way
around. This allows to preserve a given ordering of data and
thus overcome the limitation of DHTs to exact match queries.

We exemplify the peer assignment in an arbitrary node v
of the distributed prefix tree with child nodes v1, . . . , vk. Let

subtrees

peers

0 1

p2 p3 p1 p4

v1v2 v3M

height

Fig. 3. Assigning peers to subtrees v1, v2, and v3 using a DHHT. A smaller
slope of functions means higher weight, i.e. w(Tv1) > w(Tv2) > w(Tv3).

p1, . . . , pm be the peers that have been assigned to v. DHTs
use a “two-sided” hashing into a continuous range M = [0, 1)
to assign peers to the subtrees rooted at v1, . . . , vk. Peers and
subtrees are mapped randomly into M by hash functions h1
respectively h2. Then, peers are assigned to the subtree which
is closest to them in descending direction in M . So far all peers
and subtrees are handled as if they are uniform. While this is
reasonable for peers, it is likely that some subtrees hold more
data than others and thus generate a higher load to the peers
assigned to these subtrees. So, when assigning peers uniformly
to subtrees, the load is not spread evenly among the peers. To
take different weights of subtrees into account and make the
number of peers assigned to a subtree Tvj reflect its weight
w(Tvj), the scheme is extended as follows: Let p′i = h1(pi)
and v′j = h2(vj) denote the position of peer pi, respectively
node vj , in M . Then, we define a scaled distance function

Lw (pi, vj) =
− ln

((
1−

(
p′i − v′j

))
mod 1

)
w(Tvj)

,

with x mod 1 := x − bxc. Now peer pi is assigned to the
subtree rooted at the node vj minimizing the term Lw(pi, vj)
(see Fig. 3). For peer pi and node vj we also refer to the value
of this function as height.

If we extend this scheme to use double hashing, peer pi is
mapped into M using p′i = h1(pi) as before, but each subtree
rooted at vj , 1 ≤ j ≤ k, has an individual hash function hvj . A
peer then calculates its heights for each vj at position hvj

(p′i)
and is assigned to the subtree minimizing the height. Using
DHHTs with double hashing the following theorem is a direct
consequence of Theorem 10 in [17].

Theorem 1 Assigning peers to subtrees using the DHHT
scheme in combination with double hashing it holds w.h.p. that

Pr[pi is assigned to vj] =
w(Tvj)∑k
l=1 w(Tvl)

.

Hence, peers are assigned to subtrees with probabilities pro-
portional to the weights of the subtrees. The runtime of the
assignment using double hashing is linear in k, i.e. the number
of subtrees. However, in our scenario k is a small constant.

Every node of the distributed prefix tree has a designated
responsible peer which has to manage references to data
stored in the node, create new subtrees when peers or data
are inserted, and delete empty subtrees. The responsible peer

for a node v is the peer that has been assigned to v with the
lowest height. This choice is reasonable since this peer will be
the last peer to leave the subtree Tv if w(Tv) decreases or the
load of subtrees rooted at v’s siblings increases. Furthermore,
the selected peers are chosen truly random and thus the
responsibility for internal nodes is spread evenly among peers.

When assigning peers to subtrees, it is possible that no peer
is assigned to a subtree Tv and thus no peer is responsible
to manage the data in Tv . This will principally happen if
w(Tv) is small or Tv is a leaf of the tree. If there is such
a vacant subtree Tv , then a peer is selected to be responsible
for Tv by a mechanism called shanghaiing1: The peer that has
the lowest height for Tv is selected to be shanghaied. In the
scenario of Fig. 3 p4 would get shanghaied to be responsible
for subtree v3. This choice is reasonable since p4 will be
the first to be assigned regularly to Tv3 if w(Tv3) increases.
A shanghaied peer is responsible for Tv until another peer
is assigned regularly to Tv or a peer with lower height is
shanghaied.

B. Maintaining Random Networks

All peers that have been assigned to a subtree are connected
by a random network, i.e. each node vi of the distributed
prefix tree is represented by a random network. Here, we
use d-out-regular multi-digraphs and maintain these using
the Pointer-Push&Pull (PP) operation [8]. PP is a simple
handshake operation that is initiated by each peer periodically
and transforms the network as described in Alg. 1. Note that a

Algorithm 1 Pointer-Push&Pull (peer p1)
1: p2 ← random peer neighboring p1
2: p3 ← random peer neighboring p2
3: replace p2 with p3 in p1’s list of neighbors
4: replace p3 with p1 in p2’s list of neighbors

PP operation involves only two messages between two peers,
carrying the information of one edge only. Thus PP can be
used to replace the mandatory heartbeat (ping) messages used
to verify the availability of neighbors in dynamic networks.
Consequently, PP operations do not induce additional traffic
to the network. In [8] it is shown that PP operations guaran-
tee connectivity and generate (provably robust) truly random
digraphs when applied repeatedly, as stated in Thm. 2.

Theorem 2 [8] Let G∗0 be a d-out-regular connected edge
labeled multi-digraph with n nodes. Then, applying random
PP operations repeatedly will construct every graph of this
domain with the same probability in the limit, i.e.

lim
t→∞

P
[
G∗0

t→ G∗
]
=

1

|MDG∗n,d|
,

where t is the number of operations and MDG∗n,d the set of
all d-out-regular connected edge labeled multi-digraphs.

1Inspired by the english slang term, describing the common act of forcibly
conscripting someone to serve a term working on a ship, usually after having
been rendered senseless by alcohol or drugs, during the 19th century.

010*

p2

p2

p2

p2 p4

p1

p5

1

0

0

10

1 branch link
to peer p5

Fig. 4. The local view of peer p2. Branch links are depicted by dashed lines.

An important consequence of Thm. 2 is that a peer will see
every other peer participating in the same random network,
i.e. subtree, over time. Hence, PP operations constitute an
excellent tool to spread information about the tree structure,
etc. among peers without inducing additional traffic to the
network. The latter is the main reason for us to prefer multi-
digraphs over the more common domain of regular graphs.

C. A Peer’s Local View

Since a peer is assigned to a path in the distributed prefix
tree it only has a local view of the network. We refer to the
nodes a peer has been assigned to (regularly or shanghaied) as
trunk nodes. For each trunk node a peer maintains a trunk node
table with information about node id, weight, subtrees, and
references to data in case of the responsible peer. Furthermore,
the trunk node table contains the following lists:

a) Responsibility list: A list of the r peers with the
highest responsibility, i.e. those that have been assigned to the
node with lowest height in the parent node (see Sec. III-A).

b) Random neighbors: A list of d neighboring peers in
the random network corresponding to this node of the tree.
The list is used to perform PP operations and thus the entries
are guaranteed to be truly random by Thm. 2.

c) Branch links (random and local): A peer maintains
branch links to some peers of every subtree neighboring its
own trunk nodes. Here, we distinguish random and local
branch links. The former point to truly random peers of a
subtree. A single list entry contains the id and weight of
the subtree, and the address of the corresponding peer. Local
branch links are similar to random branch links with the
exception that these do point to latency wise close peers of
a subtree. Fig. 4 shows the local view with trunk nodes and
branch links of peer p2 (cf. Fig. 2 for the global view).

To join the network, a peer contacts an arbitrary peer p of
the network and proceeds as described in Alg. 2. The joining
peer copies p’s trunk node table for the root of the distributed
prefix tree and then, based on the subtrees and weights given
in this table, chooses a subtree using the DHHT scheme. Using
the list of branch links it is ensured that a peer p′ of this subtree
can be contacted. Then, the same procedure is continued in
the root node of the chosen subtree with peer p′ and so on
until the joining peer is the only one assigned to a subtree.

Algorithm 2 Join(peer p)
1: v ← root of tree
2: initialize trunk node table for v by copying p’s table
3: while number of peers in v > 1 do
4: v ← root of subtree determined using DHHT
5: p′ ← peer participating in v
6: contact p′ in v and initialize trunk node table for v
7: by copying table of p′

D. Self-Stabilization with Pointer-Push&Pull Operations

To cope with churn, failing peers, load changes, and changes
in the tree structure it is crucial to have a simple and efficient
protocol to maintain and stabilize the network. For this,
3nuts makes use of the excellent communication properties
of random networks and the properties of the PP operation.
Whenever two peers communicate during a PP operation their
responsibility list, branch link list, and weights of the subtrees
are piggy-backed to the messages and used to update their
trunk node tables as described below. Notably, the following
update procedure, based on local handshake operations only,
guarantees to restabilize the network from any degenerate state
as long as it is at least weakly connected.

A peer p1 that has communicated with a peer p2 in node
v will update its trunk node table as follows. Let Tv′ be
the subtree of Tv that p2 has been assigned to. The random
branch link corresponding to Tv′ is set to point to p2. This
way branch links are continuously replaced with peers that
are ensured to be reachable. Entries for subtrees not existent
in the branch link list of p1 are inserted and entries that
have been identified to be dead during PP operations or
routing are replaced. The combination of update procedure
and PP guarantees that random branch links point to truly
random peers and that over time all peers participating in Tv
are contacted. Moreover, latencies are measured during PP
operations. When the latency from p1 to p2 is lower than the
latency of the current local branch link to Tv′ , then the link
is replaced with p2. From Thm. 2 we know that every peer
participating in Tv will be met over time and thus for every
subtree the latency wise closest peer will be identified.

Furthermore, weights of subtrees are updated and entries
of the responsibility list are replaced when peers with higher
responsibility are found in p2’s list or added if p1’s list has
less than r entries. When changes to the weights or branch
link list have been made, p1 recalculates its assignment to the
subtrees and changes its path, if necessary.

The update procedure described above guarantees the net-
work to reach a stable state as long as all random networks
representing nodes of the distributed prefix tree are connected.
Although PP operations guarantee connectivity, random net-
works may be disconnected by peers failing simultaneously.
First of all note that it is difficult to detect if a random network
has been partitioned into two connected components G1 and
G2 without global knowledge. Even if there were a simple
and distributed way to detect this, rejoining G1 and G2 bears
the danger of disconnecting other parts of the network since

one edge of G1 has to be changed to point to G2. This
however may disconnect G1. Multi-digraphs offer a solution
to this dilemma: self-loops, which may be removed without
risking connectivity. So, random networks in 3nuts are rejoined
’proactively’ as follows. Once again consider peers p1 and p2
that communicated during a PP operation in node v and let
T ′v be the subtree of Tv that p1 has been assigned to. If p1 has
a self-loop in the random network representing v′ then with
probability 1

2 the self-loop is replaced with the branch link to
Tv′ in p2’s trunk node table.

Using the maintenance protocol with the extension to rejoin
random networks, 3nuts is able to recover from any degenerate
state as long as the random network representing the root
node is connected. Unfortunately, we are not able to give
a formal proof for the number of PP operations necessary
to re-stabilize a network. The exchange of information using
PP operations is closely related to randomized rumor spread-
ing [18]. A major difference making a formal analysis difficult
is that in our case the underlying network is not a complete
graph and changes over time. Yet, if we assume the network
to be truly random we expect the dissemination of information
by PP to behave comparably as in [18], where O(n ln lnn)
messages are needed to spread a rumor among n nodes w.h.p.

E. Routing

The lookup algorithm is given by Alg. 3. It is started at an
arbitrary peer p and the only parameter is the identifier key of
a data element, which describes a path in the distributed prefix
tree T . To reach the node v storing key, p follows the path key
in its local view of T until a leaf node is reached. This leaf
node can be a branch link or a trunk node. In the former case
the lookup is forwarded to the corresponding branch link. In
the latter case the lookup is forwarded to the peer responsible
for the trunk node (since most data resides in leaves, it is likely
that the responsible peer is reached directly).

Algorithm 3 Lookup(key) at peer p
1: if p has branch link to a peer p′ sharing longer prefix with key

then forward Lookup(key) to p′

2: else
3: v ← last node of path key in local view of p
4: p′ ← peer responsible for v
5: if p = p′ then return p
6: else forward Lookup(key) to p′

Theorem 3 In a 3nuts network with n peers the number of
hops for a lookup operation is bounded by O(log n) w.h.p.

Proof: We bound the number of hops needed to
reach a subtree containing at most n

2 peers. Let P =
(v1, . . . , vi, vj , . . . , vk) be the path starting at the root of T
leading to the target node vk. We choose vi and vj such that
|Tvi
| ≥ n

2 and |Tvj
| ≤ n

2 , i.e. Tvi is the smallest subtree rooted
on P containing at least n

2 peers.
The lookup starts at an arbitrary peer p in v1. Let p′ be the

peer reached by the first hop. Since |Tvi | ≥ n
2 and branch links

point to truly random peers, p′ will lie in Tvi with probability
of at least 1

2 . If p′ does not lie in Tvi , the same argumentation
holds for the next hop from p′. So, we reach Tvi with one hop
with probability ≥ 1

2 , with two hops with probability ≥ 2−2,
and with k hops with probability ≥ 2−k. Thus, we have

E [#hops to reach peer in Tvi] ≤
k=n

2−1∑
k=1

k2−k ≤ 2 .

Since Tvi is the smallest subtree with |Tvi | ≥ n
2 , once we

reached a node in Tvi one more hop is sufficient to reach Tvj
with |Tvj | ≤ n

2 . So, in expectation at most 3 hops are needed
to halve the number of peers. Due to the recursive structure
of 3nuts the same line of arguments holds for subtree Tvj .
This implies that after log n iterations respectively an expected
number of 3 log n hops, the lookup has reached vk.

It remains to show that O(log n) hops are sufficient to reach
vk with high probability. We have seen that

Pr[#peers is halved within three hops] ≥ 1

2
+

1

4
=

3

4
.

Dividing the lookup into sequences of three hops allows us
to reduce the analysis to a sequence of mutually independent
random variables X1, X2, . . . , Xc logn taking values 0 and 1

with Pr[Xi = 1] = 3
4 and X =

∑c logn
i=1 Xi. The expected

number of successful steps is given by E[X] = 3
4c log n.

Choosing δ = 1− 4
3c and applying Chernoff bounds we have

Pr[X ≤ log n] = Pr[X ≤ (1− δ)E[X]] ≤ e−
1
2 (1−

4
3c)

2
E[X]

≤ n−
121
600 c ≤ n−c

′
.

So, the probability to be successful less than log n times is
polynomially small in n. This implies that the lookup needs
at most 3c log n hops w.h.p. if we choose c ≥ 5.

It is important that the bound given by Thm. 3 holds
regardless of the structure of the distributed prefix tree T since
real world data will not be uniformly distributed. The reason
that Thm. 3 holds for skewed data distributions is that branch
links point to random peers of subtrees. Due to the properties
of the PP operation (see Thm. 2) and the way branch links
are maintained (see Sec. III-C), we can guarantee these to
be truly random. Actually branch links are not only random
but continually change (recall that whenever peers p and p′

communicate during a PP operation p will set the branch link
corresponding to the subtree p′ has been assigned to, to point
to p′). This feature implies that routing paths are continually
changing when random branch links are used for routing and
thus the routing load will be spread evenly among peers. A
typical measure with respect to routing load is the congestion.

Definition 4 The congestion of a peer is the probability that it
is active in the routing of a random lookup operation started at
a random peer. The congestion of the network is the maximum
congestion over all its peers.

Assuming that the network is in a stable state and branch
links are truly random the following theorem holds.

Theorem 4 The congestion of 3nuts is bounded by O(logn
n).

Proof: From Thm. 3 we know that the number of hops
is bounded by k ≤ c log n. Let Tv1 , . . . , Tvk be the subtrees
reached during these k hops. Now consider an arbitrary peer
pj . Note that pj can only get active once during a lookup. To
become active during the i-th hop pj must have been assigned
to Tvi and must have been chosen as branch link by the peer
reached by the previous hop. The probability that pj has been
assigned to Tvi is |Tvi |/n. If the network is in a stable state,
the probability for a peer assigned to Tvi to become active
during the i-th hop is 1/|Tvi |. Thus we have

Pr[pj is active during hop i] =
|Tvi |
n

1

|Tvi |
=

1

n
.

Consequently, the probability for pj to become active during
the whole lookup is given by k

n = c logn
n .

Alg. 3 can be easily extended to perform range queries. To
search for all data in a range [x, y] the longest common prefix
z of x and y is calculated. Then, the query is routed to the node
v of the prefix tree representing z. Note that Tv is the smallest
subtree containing all data in the range [x, y]. Starting from
v, the query is forwarded to all subtrees holding data in the
range [x, y] in parallel until the leaf nodes of Tv are reached.
Peers receiving the lookup message send their list of data to
the peer that originated the lookup respectively forward the
lookup to the responsible peer in case of internal nodes of Tv .

F. Locality in 3nuts

Since the peers build a distributed prefix tree closely related
data elements are stored on network-wise close peers.

Theorem 5 Let d be the distance of two data elements x and
y in the tree metric. Then, x and y can be reached within d
hops from one another.

Proof: Let v be the node of T representing the longest
common prefix of x and y. Note that v is present in the local
view of the peer p that is responsible for x since v is a prefix
of x. So, no hops are needed to reach node v from p. From
node v at most d hops are needed to reach y since each hop
will advance at least one level in T and the distance between
v and y is bounded by d. Recall that in any case the maximum
hop number is bounded by O(log n) w.h.p.

Recalling the types of locality introduced in Sec. II, Thm. 5
implies that 3nuts provides information locality and we have
already seen that range queries can be processed efficiently.

3nuts provides network locality through the list of local
branch links in the trunk node tables, which point to latency
wise close peers of neighboring subtrees and may be used for
routing instead of random branch links. Initially, a local branch
link list is a copy of the random branch link. The quality
of local branch links is then improved via PP operations as
described in Sec. III-C. Most importantly the update procedure
does not induce additional traffic but guarantees to find the
closest peer for every subtree. In Sec. IV we compare latencies
when routing with random and local branch links.

3nuts provides interest locality by allowing peers to volun-
teer for the responsibility of nodes of the distributed prefix
tree T . Volunteering does not relieve a peer from participating
in the regular assignment using DHHTs and thus induces
additional workload to a peer. Yet, a peer p volunteering for the
responsibility of a node v will drastically decrease its access
times to parts of T that are close to v. Peer p will actively
participate in the path starting at the root of T leading to v.
For nodes of this path that are not coincident with the path p
has been assigned to, p has to maintain additional trunk nodes.

IV. EXPERIMENTAL EVALUATION

To verify the practicability of 3nuts we used a prototype
implementation in Java, ready for practical use and available at
http://3nuts.upb.de. For the experiments the degree of random
networks was set to d = 3 and if not stated otherwise,
the network consisted of n = 214 peers. Each peer stored
five data elements giving a total of 81, 920 data elements.
Measurements have been performed multiple times and curves
represent the mean. If no error bars are given the variance
is negligible. Most measurements have been performed with
several types of data to verify the impacts of data distribution
and degree of the distributed prefix tree. These are:

Binary tree (uniform): A binary tree with data elements
representing binary strings of length 40, chosen u.a.r.

Binary tree (Zipf): A binary tree of data elements represent-
ing binary strings of length 52, chosen according to a Zipf
distribution as follows. The leaf nodes of a complete binary
tree of depth 20 have been assigned probabilities following a
Zipf distribution with exponent 1. Data elements are placed by
choosing a prefix of length 20 according to these probabilities
and concatenating a binary random string of length 32.

Dictionary: A tree generated by choosing data uniformly at
random from a list of English words (we used the word list
of ispell). The dictionary tree has degree up to 26.

Routing Fig. 5 shows the average number of hops needed
by the lookup for different data distributions and networks
up to 214 peers. A single measurement for a fixed network
size and data distribution was done by performing 106 random
lookups chosen from all possible combinations of peers and
data. The curves representing the binary trees are almost
equal, implying that the DHHT based load balancing performs
excellently and the scalability is not affected by non-uniform
data distributions. In case of the dictionary tree fewer hops are
needed since the tree has substantially higher degree and thus
lower depth than the binary trees.

To evaluate the benefit of using local instead of random
branch links we used GT-ITM [19] to model the underlying
physical network. Fig. 6 shows the average latencies for the
three tree types when using random respectively local branch
links. The average latency measured with random links in
binary trees exceeds the one measured for the dictionary tree
by a factor of 1.8. This is explained by the larger number
of hops needed in the comparatively deep binary trees. When
using local branch links, latencies are reduced significantly
for all tree types. Notably, average latencies measured for

dictionary and binary trees then only differ by a factor of
1.1, i.e. the binary trees benefit more from the use of local
links. This is explained by the fact that the last few hops are
by far the most “expensive” ones since the number of peers to
choose from decreases with each hop, i.e. it is more unlikely
that latency wise close peers can be found.

Load Balancing Fig. 7 shows the distribution of data load.
Since the DHHT based load balancing makes use of pseudo-
random hash functions there are some peers exceeding the
average load of 5. Anyhow, 90% of the peers have at most
twice the average load. While having peers exceeding the
average load is not optimal, one has to recall the simplicity of
the DHHT scheme: The decisions a peer makes when choosing
its path are completely independent of the decisions made by
other peers. So, a peer usually does not have to change its
path when further peers join. Coping with not 100% fair load
balancing is the price to pay for this simplicity. Yet, simplicity
can be crucial to keep the network stable under churn.

 0

 2

 4

 6

 8

 10

20 22 24 26 28 210 212 214

#h
op

s

#peers

log(n)
dictionary

binary tree (Zipf)
binary tree (uniform)

 0

 2

 4

 6

 8

 10

20 22 24 26 28 210 212 214

#h
op

s

#peers

log(n)
dictionary

binary tree (Zipf)
binary tree (uniform)

Fig. 5. Average number of hops
needed by the lookup operation for
different sized networks.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

dict. bin.(Zipf)bin.(unif.)

av
er

ag
e

la
te

nc
y

[m
s]

random links
local links

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

dict. bin.(Zipf)bin.(unif.)

av
er

ag
e

la
te

nc
y

[m
s]

random links
local links

Fig. 6. Average latency of lookups:
random branch links vs. local branch
links.

Degree A peer’s degree, i.e. the number of neighbors,
depends on the degree and depth of the distributed prefix
tree: high degree involves a large number of branch links and
high depth involves a larger number of trunk nodes. Fig. 8
shows the sum of branch links and neighbors in the random
networks per peer. For the uniform binary tree the average
degree is 42 (12 branch links plus 30 random links in trunk
nodes). The Zipf distributed tree leads to slightly increased
degree. This is explained by the higher depth of the resulting
distributed prefix tree. In case of the dictionary tree the high
fan out imposes a large number of branch links. Surely, a
peer’s degree in a standard DHT network [4] is lower. Yet,
considering the additional features of 3nuts, e.g. information
and network locality, self-stabilization by local handshake
operations, the “costs” for these features, i.e. the increased
degree, are negligible. Moreover, links in 3nuts are very easy
to maintain: While links in most p2p networks have to point
to one particular peer, a link in 3nuts may always point to a
random peer out of a large set of candidates.

Self-Stabilization To verify robustness and self-stabilization
a network of 104 peers was generated and 25% of the peers
were removed simultaneously. Fig. 9 shows the evolution
of data availability which was checked by performing 106

random lookups. A lookup was considered as failed whenever
an invalid branch link was encountered. Trunk node tables

http://3nuts.upb.de

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

#p
ee

rs

#data elements

binary tree (unif.)
binary tree (Zipf)

dictionary

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

#p
ee

rs

#data elements

binary tree (unif.)
binary tree (Zipf)

dictionary

Fig. 7. Load balancing: number of
data elements per peer (average load
is 5).

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250

#p
ee

rs

degree

binary tree (unif.)
binary tree (Zipf)

dictionary

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250

#p
ee

rs

degree

binary tree (unif.)
binary tree (Zipf)

dictionary

Fig. 8. Degree distribution: number
of branch links and random neighbors
per peer.

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 0 10 20 30 40 50 60 70 80

fra
ct

io
n

of
 d

at
a

av
ai

la
bl

e

#PP operations per peer

binary tree(unif.)
dictionary

binary tree (Zipf) 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 0 10 20 30 40 50 60 70 80

fra
ct

io
n

of
 d

at
a

av
ai

la
bl

e

#PP operations per peer

binary tree(unif.)
dictionary

binary tree (Zipf)

Fig. 9. Evolution of data availability
after failure of 25% of peers.

 0

 10000

 20000

 30000

 40000

 50000

 0 100 200 300 400 500

es
tim

at
ed

 tr
ee

 w
ei

gh
t

#PP operations per peer

max
avg
min 0

 10000

 20000

 30000

 40000

 50000

 0 100 200 300 400 500

es
tim

at
ed

 tr
ee

 w
ei

gh
t

#PP operations per peer

max
avg
min

Fig. 10. Evolution of estimated tree
weight when inserting 104 peers.

were only repaired by PP operations. The different tree types
behave almost equal. Right after the removal of peers about
75% of the data remaining in the network is still available
and after 30 to 50 PP operations per peer, data availability
of 99% is reached. In a final experiment we generated a
network of 104 peers and 50, 000 data elements. All peers
joined simultaneously, so this experiment can be considered
as an extreme example of churn. Note that at the beginning
of this experiment the distributed prefix tree is just the root
node and peers are only connected by the random network
representing the root. Fig.10 shows the evolution of the weight
of the tree estimated by the peers. About 300 PP operations
per peer are sufficient for the peers to find their position in
the tree and get a coherent view of the distributed prefix tree.

V. CONCLUDING REMARKS

3nuts combines random networks, prefix trees, and DHTs,
to overcome their individual shortcomings. To the best of our
knowledge 3nuts is the first p2p network providing interest,
network, and information locality at the same time. The
practicability of 3nuts has been affirmed by a prototypical
implementation ready for practical use, experimental evalua-
tion, and verification on a mathematical level where possible.
3nuts has been designed around the PP operation, whose
properties make it an excellent maintenance operation for
dynamic networks. Replacing the heartbeat (ping) messages
between peers, PP operations are used to:
• maintain truly random networks to replace nodes of the

data tree and thus make the network robust,
• exchange information among peers, give peers a coherent

view of the tree structure and stabilize the network,
• maintain branch links and guarantee them to be truly

random, thus allow efficient routing,
• and measure round trip times (RTT) to adapt the overlay

to the underlying physical network.
A possible drawback is the potentially high degree, which

can be caused by highly skewed data distributions resulting.
Yet, maintenance of links is comparably cheap in 3nuts and
higher degree implies higher robustness. If necessary, the
degree can be reduced by using radix or balanced trees.

REFERENCES

[1] R. Bhagwan, S. Savage, and G. Voelker, “Understanding availability,”
in IPTPS ’03: Proc. of the 2nd Int. Workshop on p2p Systems, 2003.

[2] P. Mahlmann and C. Schindelhauer, “Peer-to-peer networks based on
random transformations of connected regular undirected graphs,” in
SPAA ’05: Proc. of the 17th ACM Symp. on Parallelism in Algorithms
and Architectures, 2005, pp. 155–164.

[3] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” in ICS ’02: Proc. of the 16th Int.
Conference on Supercomputing. ACM Press, 2002, pp. 84–95.

[4] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. of SIGCOMM’01, ser. Computer Communication Review,
R. Guerin, Ed., vol. 31, 4. ACM Press, Aug. 27–31 2001, pp. 149–160.

[5] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms (Middle-
ware), Nov. 2001, pp. 329–350.

[6] M. Naor and U. Wieder, “Novel architectures for p2p applications: The
continuous-discrete approach,” ACM Trans. Algorithms, vol. 3, no. 3,
p. 34, 2007.

[7] S. Schmid and R. Wattenhofer, “Structuring unstructured peer-to-peer
networks,” in HiPC’07: Proceedings of the 14th international conference
on High performance computing. Springer, 2007, pp. 432–442.

[8] P. Mahlmann and C. Schindelhauer, “Distributed random digraph trans-
formations for peer-to-peer networks,” in SPAA ’06: Proc. of the 18th
ACM Symposium on Parallelism in Algorithms and Architectures, 2006.

[9] C. G. Plaxton, R. Rajaraman, and A. Richa, “Accessing nearby copies
of replicated objects in a distributed environment,” in SPAA’97: Proc.
of the 9th ACM Symp. on Parallel Algorithms and Architectures, 1997.

[10] A. Montresor, M. Jelasity, and O. Babaoglu, “Chord on demand,” in
P2P ’05: Proc. of the 5th IEEE Int. Conf. on Peer-to-Peer Computing,
2005, pp. 87–94.

[11] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and
I. Stoica, “Complex queries in dht-based peer-to-peer networks,” in
IPTPS ’01: Revised Papers from the First International Workshop on
Peer-to-Peer Systems. Springer-Verlag, 2002, pp. 242–259.

[12] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker,
“Prefix hash tree,” in PODC ’04: Proc. of the 23rd ACM Symp. on
Principles of Distributed Computing. ACM, 2004, pp. 368–368.

[13] J. Aspnes and G. Shah, “Skip graphs,” ACM Transactions on Algorithms,
vol. 3, no. 4, p. 37, 2007.

[14] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt, “P-Grid: a self-organizing structured p2p
system.” SIGMOD Record, vol. 32, no. 3, pp. 29–33, 2003.

[15] M. Li, W.-c. Lee, and A. Sivasubramaniam, “DPTree: A balanced tree
based indexing framework for peer-to-peer systems,” in ICNP ’06: Proc.
of the Int. Conf. on Network Protocols. IEEE, 2006, pp. 12–21.

[16] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman,
“Skipnet: A scalable overlay network with practical locality properties,”
in USENIX Symposium on Internet Technologies and Systems, 2003.

[17] C. Schindelhauer and G. Schomaker, “Weighted distributed hash tables,”
in SPAA ’05: Proceedings of the seventeenth annual ACM Symposium
on Parallelism in Algorithms and Architectures, 2005, pp. 218–227.

[18] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking, “Randomized
rumor spreading,” in FOCS ’00: Proc. of the 41st Symp. on Foundations
of Computer Science, 2000, p. 565.

[19] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-
network,” in INFOCOM ’96: Proc. of 15th Joint Conf. of the IEEE
Computer Societies, vol. 2, 1996, pp. 594–602.

	Introduction
	Locality in P2P Networks
	The 3nuts P2P Network
	Peer Assignment, Load-balancing, and Responsibilities
	Maintaining Random Networks
	A Peer's Local View
	Self-Stabilization with Pointer-Push&Pull Operations
	Routing
	Locality in 3nuts

	Experimental Evaluation
	Concluding Remarks
	References

