
Read-Write-Codes
An Erasure Resilient Encoding System for
Flexible Reading and Writing in Storage

Networks

Mario Mense1 and Christian Schindelhauer2

1 Heinz Nixdorf Institute,
University of Paderborn, Germany

vodisek@upb.de
2 Computer Networks and Telematics,

University of Freiburg, Germany
schindel@informatik.uni-freiburg.de

Abstract. We introduce the Read-Write-Coding-System (RWC) – a
very flexible class of linear block codes that generate efficient and flexible
erasure codes for storage networks. In particular, given a message x of k
symbols and a codeword y of n symbols, an RW code defines additional
parameters k ≤ r, w ≤ n that offer enhanced possibilities to adjust the
fault-tolerance capability of the code. More precisely, an RWC provides
linear (n, k, d)-codes that have (a) minimum distance d = n−r+1 for any
two codewords, and (b) for each codeword there exists a codeword for
each other message with distance of at most w. Furthermore, depending
on the values r, w and the code alphabet, different block codes such as
parity codes (e.g. RAID 4/5) or Reed-Solomon (RS) codes (if r = k and
thus, w = n) can be generated. In storage networks in which I/O accesses
are very costly and redundancy is crucial, this flexibility has consider-
able advantages as r and w can optimally be adapted to read or write
intensive applications; only w symbols must be updated if the message
x changes completely, what is different from other codes which always
need to rewrite y completely as x changes. In this paper, we first state a
tight lower bound and basic conditions for all RW codes. Furthermore,
we introduce special RW codes in which all mentioned parameters are
adjustable even online, that is, those RW codes are adaptive to changing
demands. At last, we point out some useful properties regarding safety
and security of the stored data.

1 Introduction

An erasure (resilient) code maps a word x of k symbols drawn from an alphabet
Σ into a codeword y of n > k symbols from the same alphabet, and in the optimal
case, any k symbols from the n codeword symbols are sufficient to recover x. This
property has made erasure codes become very prominent in many application
areas [1, 7, 16]. In storage networks such as RAID-arrays [13, 14] and modern

storage area networks (SAN) [10] access to hard disks is comparably slow, and
thus, data is scattered into fixed sized blocks which are evenly distributed among
the storage devices to exploit access parallelism. If then some disks fail for reading
(erasures), in the optimal case, any k symbols from y are sufficient to recover
x, i.e. such codes can tolerate up to n − k erasures which may be caused by
failed, respectively temporarily not accessible disks. Since the number n of blocks
(symbols) in a codeword y is fixed (called data stripe) and all blocks in a stripe
are hosted by n different disk, linear block codes are mainly applied [13, 5, 14,
8]. More importantly, linear block codes are optimal codes, i.e. they only require
any k blocks from y to recover x what is important in a scenario that suffers
from expensive I/O operations.

However, most codes applied in RAID-like storage networks almost aim at
providing a (near-)optimal recovery behavior but what implies a serious draw-
back as any code that is able to reconstruct x from up to n− k erasures suffers
from a bad update behavior. In particular, if one information symbol changes
from xi to x′i, any codesymbol yi must also be modified. If then any of the disk
keeping yi is not accessible, there is no chance to store the modified codeword
appropriately (except merely the plain information word if a systematic code is
applied such as given, for example, with the RAID 4/5 encoding).

In order to face this negative update behavior that is inherent to usual linear
blocks codes and which turns to be pretty costly when such codes are applied in
RAID-like storage environments, we introduce the Read-Write-Coding-System
(RWC) – a very flexible framework for generating different linear block codes,
called Read-Write (RW) codes in the following, which feature enhanced update
properties for given codewords by simultaneously offering different degrees of
fault-tolerance. In contrast to common linear block codes, an RWC defines fur-
ther parameters k ≤ r, w ≤ n which offer enhanced possibilities to adjust the
redundancy, and thus, the fault-tolerance capability of an RW code. In the lan-
guage of coding theory, for any fixed r, an RWC provides linear (n, r, d)-codes
over some finite field Fq that have (a) minimum (Hamming) distance d = n−r+1
(thus, are MDS codes if r = k), and (b) for each codeword there exists a codeword
for each other message with distance of at most w, i.e. the two code words differ
in at most w symbols. More specific, an RWC generates appropriate sub-codes
of Reed-Solomon (RS) codes (see e.g. [9] for details on RS codes) of dimension r
and length n in which any two codewords have distance at least w. Depending
on the values r, w and the field Fq chosen, different block codes can be generated,
e.g. parity codes (if q = 2).

The ensured degree of redundancy mixed up with the improved update be-
havior offered by an Read-Write code provides significant benefits for the ob-
served storage systems which, driven by the application’s read and write behav-
ior, on one hand, suffer from very costly I/O operations, and on the other hand,
have to ensure some defined level of fault-tolerance at any time. Clearly, a Read-
Write code provides best improvements for write-intensive applications because,
given an n-sized codeword y and parameters r, w, it can decode the information
from any r symbols of y whereas only any w symbols of y must be updated

2

Contents Code Line
x1 x2 y1 y2 y3 y4 v

0 0 0 0 0 0 0
0 0 1 1 1 1 1

0 1 0 1 0 1 0
0 1 1 0 1 0 1

1 0 0 0 1 1 0
1 0 1 1 0 0 1

1 1 0 1 1 0 0
1 1 1 0 0 1 1

Table 1. A (2, 3, 3, 4)2-Read-Write-Code
for contents x1, x2 and code y1, y2, y3, y4.
Every information vector has two possible
code words. Even if only three of the four
code words are available for reading and
writing, the system can perform read and
write operations (see Figure 1 for the en-
coding). Variable v is an internal variable
of our RW-code introduced in Chapter 5.

whenever the information word x changes completely (recall that we can choose
w < n). Again, this is different to other linear codes, like e.g. Reed-Solomon
codes, which always must rewrite the codeword y completely as x changes. This
novel redundancy property comes with cost of additional necessary disk space
for compensating the absence of writable disks, i.e. the data rate of RW-codes
decreases with increasing w.

For most applications it is necessary to read the data and then to update the
information such that the condition w ≥ r seems natural. Our encoding systems
allows the update without prior reading, i.e. the difference vector δ of the old
and new message is needed. E.g. if an empty file is overwritten with the first
data entries then only w disks need to be written. In such cases RW-codes with
w < r become interesting.

An example. Consider a RAID 4-parity code with n = 4 hard disks storing
a data file bit by bit, Σ = {0, 1}. We encode k = 3 bits x1, x2, x3 to symbols
y1 = x1, y2 = x2, y3 = x3 and y4 = x1+x2+x3, where addition denotes the XOR-
operation and the code symbols yi, 1 ≤ i ≤ 4, are stored separately on distinct
disks. The XOR-operation enables to recover the original three bits from any
combination of r = 3 hard disks, e.g. giving y2, y3, y4 we have x1 = y2 + y3 + y4,
x2 = y2, and x3 = y3. Thus, if any one disk is temporarily not available, reading
data is still possible. However then, writing data is not possible since a complete
change of the original information involves the change of the entire code; we
call this code consistency (this also holds for any other erasure code applied in
storage environments). The second example shows an RW-code. Again, consider
n = 4 hard disks with code bits y1, y2, y3, y4. Now, we encode k = 2 information
bits x1, x2 such that any r = 3 code bits yi, yj , yk can be used to recover the
original message, and furthermore, only any of such w = 3 code bits yi′ , yj′ , yk′

need to be changed to encode a completely new information. For instance, start
with the codeword (0, 1, 1, ?). According to Table 1, the information is (1, 1) and
therefore the complete code is (0, 1, 1, 0). Now, we want to encode (0, 1) without
changing the second entry. For this, we choose line 0 for information (0, 1) and
get code (0, 1, 0, 1).

3

Moreover, RW codes can exploit system information about existing erasures,
which are caused by failed or blocked disks and that have rather long-term
character in a SAN, for encoding and decoding. For instance, consider a codeword
y with symbols stored on n disks from which b ≤ n − w disks are unreachable
(e.g. failed or blocked). Then, using an RW code, y can still be updated to
the codeword y′ in a code consistent manner. Furthermore, if then some of the
formerly blocked disks become available again while some other b′ ≤ n− r disks
turn to be unreachable, we can still recover the new information word x′ by
simply selecting any r of the remaining n−b′ accessible disks. Therefore, as long
as sufficient disks are accessible, an RW code provides code consistent operations
by circumventing blocked disks.

At last, some RW codes offer the possibility to change any of the parameters
k, r, w and n during runtime, that is, a (k, r, w, n)-RW code can be changed to
(nearly) any choice of (k′, r′, w′, n′) giving such codes the ability to adapt to
changing system conditions.

2 Related Work

The most popular codes used are parity-based schemes, like RAID [13] or EVEN-
ODD [4] that have low storage consumption which is given by a factor (k +1)/k
and (k+2)/k, respectively, and that base on simple but efficient XOR-operations.
Unfortunately, parity codes are able to tolerate only one or two erasures at a
time, what is often not sufficient, even in large SANs. Therefore, since in large
SANs an increased fault-tolerance is often the major focus, a code should be used
that provides a high minimum distance between any two codewords. Codes pro-
viding this feature are called MDS codes (Maximum Distance Separable), which
ensure distance d(Y) = n − k + 1 for any two codewords [8, 9]. Nevertheless,
many variants of MDS codes, like MDS array codes [3] or X-codes [2] also suf-
fer from high rates. Alternatively, Hamming codes have good rate but distance
of at most 3, and Reed-Muller codes have high distance but bad rate (c.f. [9]).
Therefore, Reed-Solomon (RS) codes have become very popular in distributed
storage systems [15, 11] and disk arrays [6, 14] since they combine a good rate
of (n − k)/k with distance d(Y) = n − k + 1. Unfortunately, as RS codes are
MDS codes, they also suffer from an undesired update overhead because if x is
modified, all blocks of y must be rewritten, what is dismal in a SAN suffering
from expensive I/O accesses.

Thus, due to their beneficial properties, applying RW-codes in a SAN seems
quite self-evident. From now on, we call a (k, r, w, n)b-Read-Write code a coding
system with a k-symbol message and an n-symbol code with symbols drawn
from a b-symbol alphabet, and a parameter r for recovering the message and w
for modification with k ≤ r, w ≤ n. In the next section, we state the operations
of the RWC formally. After that, we prove general bounds for the parameters
of RW codes and present a general scheme to generate (k, r, w, n)b-RW codes as
long as k + n ≤ r + w holds for an appropriate choice of b. Then, we introduce
adaptive RW codes called Chameleon codes, where any of the given parameters

4

can be subject to changes. At last, notice that the following description is given
in more operation-based terms rather than conceptual since RW codes base on
the same well-studied algebraic principles as RS codes.

3 The Operational Model

Read-Write codes encode information words into codewords. The information is
given by a k-tuple over some finite alphabet Σ, and since Read-Write codes are
linear block codes, the codeword is an n-tuple over the same alphabet Σ, k < n.
Now, for what follows, let b = |Σ| and P(M) denotes the power set of some set
M . Moreover, let P`(M) := {S ∈ P(M) | |S| = `}.

Then, the following operations are provided by a (k, r, w, n)b Read-Write-
Coding-System (RWC):

1. Initial state x0 ∈ Σk, y0 ∈ Σn

This is the initial state of the system with information x0 and codeword y0.
This state is crucial because all further operations ensuring the beneficial
features of an RW code depend on this initial state.

2. Read function f : Pr([n])×Σr → Σk

This function reconstructs the information by reading r symbols of the code-
word whose positions are known. The first parameter shows the positions
(indices) of the symbols in the code, and the second parameter gives the
corresponding code symbols. The outcome is the decoded information.

3a. Write function g :
Pr([n])×Σr ×Σk ×Pw([n]) → Σw

This function adapts the codeword to a changed information by changing
w symbols of the codeword at w given positions. The first two parameters
describe the reading of the original information. Then, we have the new
information as a parameter, and the last parameter indicates which code
symbols to change in the codeword. The outcome are the values of the new
w code symbols.

3b. Differential write function δ : Pw([n])×Σk → Σw

This is a restricted alternative to the write function whose parameters are
the positions S of symbols available for writing as well as the difference of
the original information x and the new information x′ but without reading
the w code entries. The outcome is the difference of the available old and
the new codeword symbols. Thus, for two functions ∆1 : Σk×Σk → Σk and
∆2 : Σw ×Σw → Σw and w given positions ν1, . . . , νw ∈ [n] from y, we can
describe the write function g above by the differential write function as

(y′ν1
, . . . , y′νw

) = ∆2((yν1 , . . . , yνw), δ(S, ∆1(x, x′))).

while the original write function needs to read at positions ρ1, . . . , ρw ∈ [n]
and produces the same result by the following.

(y′ν1
, . . . , y′νw

) = g({ρ1, . . . , ρr}, (yρ1 , . . . , yρr), x
′, {ν1, . . . , νw})

5

All RW codes presented here have such differential write functions where
∆1,∆2 denote the bit-wise XOR-operations. The goal is that e.g. a controller
in a storage device i can, by itself, update its kept block yi by simply adding
(XOR) the received difference γ of yi and y′i, i.e. y′i = yi + γ, if, for example,
the device is blocked between reading the old and writing the modified block.

For a tuple y = (y1, . . . , yn) and a subset S ∈ P`([n]), let Choose(S, y)
be the tuple (yi1 , yi2 , . . . , yi`

) where i1, . . . , i` are the ordered elements of S.
Furthermore, for an `-tuple d, let Subst(S, y, d) be the tuple where according
to S each indexed element yi1 , yi2 , . . . , yi`

of y is replaced by the element taken
from d such that Choose(S,Subst(S, y, d)) = d and all other elements in y
remain unchanged in the outcome.
Now, for S′ ∈ Pr([n]), define the read operation

Read(S′, y) := f(S′,Choose(S′, y))

and for S ∈ Pw([n]) and x′ ∈ Σk, the write operation

Write(S, S′, y, x′) := Subst(S, y, g(S′,Read(S′, y), x′, S)).

Since any Read-Write code needs to start at some initial state, we define the set of
possible codewords Y as the transitive closure of the function y 7→ Write(S, S′, y, x′)
starting with y = y0 and allowing all values S, S′, x. Then, an RW code is correct
if the following statements are satisfied.

1. Correctness of the initial state:

∀S ∈ Pr([n]) : Read(S, y0) = x0 .

2. Consistency of read operation:

∀S, S′ ∈ Pr([n]) ∀y ∈ Y : Read(S, y) = Read(S′, y) .

3. Correctness of write operation:

∀S∈Pw([n]),∀S′∈Pr([n]),∀y∈Y,∀x∈Σk :Read(S′,Write(S, S′, y, x))=x .

4 Lower Bounds

The example of a (2, 3, 3, 4)2-RW code in the previous section stores two sym-
bols of information in a four symbol code (c.f. Table 1). Unfortunately, this
storage overhead of a factor two is unavoidable, as the following theorem shows
(moreover, this implies that e.g. no (3, 3, 3, 4)b-RWC exists).

Theorem 1. For r +w < k +n or r, w < k and any base b, there does not exist
any (k, r, w, n)b-RWC.

6

Proof: Consider a write operation and a subsequent read operation where the
index set W of the write operation (|W | = w) and the index set R of the read
operation (|R| = r) have an intersection: W ∩ R = S with |S| = r + w − n.
Then, there are bk possible change vectors with symbols in S that need to be
encoded by the write operation since this is the only base of information for the
subsequent read operation. This holds because all further R \ S code symbols
remain unchanged. Now, assume that |S| < k. Then, at most bk−1 possible
changes can be encoded, and therefore, the read operation will produce faulty
outputs for some write operations. Thus, r + w − n ≥ k and the claim follows.

If r < k, only br different messages can be distinguished while bk different
messages exist. Then, from the pigeonhole principle, it follows that such a code
does not exist. For the case w < k, this is analogous. �

Thus, in the best case (k, r, w, n)b-RW codes have parameters r +w = k +n.
We call such RWC codes perfect. Unfortunately, such perfect codes do not always
exist as the following lemma shows.

Lemma 1. There is no (1, 2, 2, 3)2-RWC.

Proof: Consider a read operation on the code bits y1, y2 and a write operation
on y2, y3. Then, y2 is the only intersecting bit which must be inverted in case
of an information bit flip. The same holds for bit y3 when considering a read
operation on y1, y3 and a write operation on y2, y3. Thus, together, both y2 and
y3 have to be inverted if the information bit x1 flips. Now, consider a sequence of
three write operations on bits (1, 2), (2, 3), (1, 3) each inverting the information
bit x1. After these operations, all code bits have been inverted twice bringing
it back to the original state. In contrast, the information bit has been inverted
thrice and is thus inverted. Therefore, all read operations lead to wrong results.
�

However, if we allow a larger symbol alphabet, we can find an RW code.

Lemma 2. There exists a (1, 2, 2, 3)3-RWC.

Proof: See Table 2 for an example. The correctness is straight-forward. �
Clearly, concerning operational complexity, b = 2 (i.e. F2) is the best choice

for codes applied in SANs because XOR-based I/O operations can often effi-
ciently be realized in hardware. However, as common RAID 4/5 schemes as well
as parity-based Reed-Solomon codes correspond to an (n, n, n + 1, n + 1)2-RW
code, n ≥ 1, the following lemma shows that there is no parity-based placement
scheme offering better update properties.

Lemma 3. For n ≥ 1, there is no (n, n, n, n + 1)2-RW code.

Proof: The proof follows directly from Theorem 1. �

5 Encoding and Decoding

We show that perfect RW codes always exist if the symbol alphabet is large
enough, and as being closely related to Reed-Solomon codes, RW codes can also

7

Contents Code Line
x y1 y2 y3 v

0 0 0 0 0
0 1 1 1 1
0 2 2 2 2

1 0 1 2 0
1 1 2 0 1
1 2 0 1 2

2 0 2 1 0
2 1 0 2 1
2 2 1 0 2

Table 2. A (1, 2, 2, 3)3-Read-Write code for
an information word x and codeword y con-
sisting of symbols y1, y2, y3. For every infor-
mation, there are three possible codewords,
and if only any two of them three are avail-
able for reading and writing, the system can
perform read and write operations (see Fig-
ure 2 in the next section for the encoding

be constructed by matrix operations over finite fields. More formally, for given
information tuples x = (x1, . . . , xk) ∈ Σk whose underlying alphabet Σ is a
sufficiently large finite field Fq (and thus, x is a k-dimensional vector in the
vector space Fk

q) and additional parameters k ≤ r, w ≤ n, we examine special
subcodes of larger Reed-Solomon codes that have dimension r and length n and
in which for each codeword y = (y1, . . . , yn) ∈ Σn there exists a codeword for
each other message with distance of at most w.

For what follows, we consider the information vector x = (x1, . . . , xk) ∈ Fk
q ,

the corresponding codeword y = (y1, . . . yn) ∈ Fn
q , and for any modification in

x, let δ = ∆x be the information change vector. Moreover, let v = (v1, . . . , v`)
denote the vector of internal slack variables with ` = n − w = r − k and which
carry no particular information. Then, the aforementioned operations are real-
ized by the following linear mapping using an appropriate n×r generator matrix
M with Mi,j ∈ Fq; the sub-matrix (Mi,j)i∈[n],j∈{k+1,...,r} is called the variable
matrix. In particular, an RW code relies on the following matrix approach:

M1,1 M1,2 · · · M1,r

M2,1 M2,2 · · · M2,r

...
...

...
Mn,1 Mn,2 · · · Mn,r

x1...
xk

v1...
vl

 =

y1

y2

...
yn

Operations

– Initialization:
We start with an arbitrary given information vector x0 = (x1, . . . , xk), for
which the variables (v1, . . . , v`) can be set to arbitrary values (if one wants
to benefit from the security features of this coding system (see section 6),
these slack variables must be chosen uniformly at random). Then, compute
the codeword y0 = (y1, . . . , yn) using the matrix approach above.

8

– Read: Given r code entries from y, compute x
We rearrange the rows of M and the rows of y such that the first r entries
of y are available for reading. Let y′ and M ′ denote these rearranged vector
and matrix. The first r rows of M ′ describe the r × r matrix M ′′ that we
assume to be invertible. Then, the information vector x (and the variable
vector v) is obtained by: (x | v)T = (M ′′)−1y .

– Differential write: Given the information change vector δ and w code
entries from y, compute the difference vector γ for the w code entries. Recall
that y is updated by γ without first reading the information of y at the w
code positions.
The new information vector x′ is given by x′i = xi + δ. This notation al-
lows to change the vector x′ without reading its entries. Clearly, only the
choices w < r make sense. Now, due to the matrix approach, given the
new k-dimensional information vector x′, the task is to find another (r − k)-
dimensional vector ρ with v′ = v + ρ such that the new codeword y′ =
M (x′ | v′)T = M (x + δ | v + ρ)T is a vector of weight at most w. Since we
only consider at most w positions of y′, we may, without loss of generality, as-
sume that the last n−w positions are zero, so that M (x′ | v′)T = (y′w | 0)T ,
with y′w of length w, and the vector 0 = (0, . . . , 0)T is of length n−w. Clearly,
we must rearrange the rows of the matrix M due to the vector (y′w | 0)T . Af-
ter that, we partition M according to the lengths of the sub-vectors involved,
and obtain (

M←↑
)
x′ +

(
M↑→

)
v′ = y′w(

M←↓
)
x′ +

(
M↓→

)
v′ = 0 .

An important precondition of the write operation is the invertibility of
the submatrix M↓→. The code symbol vector is then updated by the w-
dimensional vector γ = ((M←↑)− (M↑→)(M↓→)−1(M←↓)) δ, such that the
new w codeword y′ is derived from the former code symbols at the w given
positions by simple addition, that is, y′ = y + γ.

In fact, the (2, 3, 3, 4)2-RWC in Table 1 can be generated by this matrix based
approach whose encoding is given in Figure 1 (compare also the (1, 2, 2, 3)3-RWC
in Table 2 and Fig. 2).

Definition 1. An n × k-matrix A over any base b with n ≥ k is row-wise in-
vertible if each k × k matrix constructed by combining k distinct rows of A has
full rank (and therefore is invertible).

Theorem 2. The matrix based RWC is correct and well-defined if the n × r
generator matrix M as well as the n × (r − k) variable sub-matrix M ′ is row-
wise invertible.

Proof: Follows from the definition of row-wise invertibility and the description
of the operations. To prove the correctness of the coding system we show that
after each operation the matrix based mapping is valid. This is straight-forward

9

0BB@
0 0 1
0 1 1
1 0 1
1 1 1

1CCA
0@ x1

x2

v1

1A =

0BB@
y1

y2

y3

y4

1CCA
Readable x1 x2

code symbols

y1, y2, y3 y1 + y3 y1 + y2

y1, y2, y4 y2 + y4 y1 + y2

y1, y3, y4 y1 + y3 y3 + y4

y2, y3, y4 y2 + y4 y3 + y4

Write (x′
1, x

′
2) = (x1 + δ1, x2 + δ2)

code y′
1 = y1+ y′

2 = y2+ y′
3 = y3+ y′

4 = y4+

1, 2, 3 δ1 + δ2 δ1 δ2 0

1, 2, 4 δ1 δ1 + δ2 0 δ2

1, 3, 4 δ2 0 δ1 + δ2 δ1

2, 3, 4 0 δ2 δ1 δ1 + δ2

Fig. 1. A (2, 3, 3, 4)2-Read-Write-Code over the alphabet F2 = {0, 1} modulo 2.

0@ 0 1
1 1
2 1

1A „
x
v

«
=

0@ y1

y2

y3

1A
Readable

code symbols x

y1, y2 2y1 + y2

y1, y3 y1 + 2y3

y2, y3 2y2 + y3

x′ = x + δ
Writable symbols y′

1 = y′
2 = y′

3 =

y1, y2 δ + y1 2δ + y2 y3

y1, y3 2δ + y1 y2 δ + y3

y2, y3 y1 δ + y2 2δ + y3

Fig. 2. A (1, 2, 2, 3)3-Read-Write-Code over the field F3 = {0, 1, 2} modulo 3.

for the initialization and read operations. It remains to prove the correctness of
the write operation.

Again, consider the additive vector (ρ1, . . . , ρ`) denoting the change of the
variable vector v and the vector (γ1, . . . , γw). With this and the information
change vector δ, we obtain x′ = x+ δ, v′ = v +ρ and y′ = y +γ. The correctness
of the write operation then follows by combining:

M

(
x′

v′

)
= M

(
x + δ
v + ρ

)
= M

(
x
v

)
+ M

(
δ
ρ

)
=

y1

...
yw

yw+1

...
yn

+

γ1

...
γw

0
...
0

10

This equation is equivalent to the following.

(M←↑)δ + (M↑→)ρ = γ

(M↓→)ρ + (M←↓)δ = 0 .

Since δ is given, the variable vector ρ can be computed as

ρ =
(
M↓→

)−1 (
−M←↓

)
δ ,

and γ by the last upper equation. If ρ is known, then the product M · (δ | ρ)T

(reduced to the first w rows) gives the difference vector γ which provides the
new code entries of y′ by y′ = y + γ. �

Theorem 3. For any k ≤ r, w ≤ n with r+w = k+n there exists an (k, r, w, n)b-
RWC for an appropriate base b. Furthermore, this coding system can be computed
in polynomial time.

Proof: Follows from the following lemma and the fact that we use standard
Gaussian elimination for recovery. �

Lemma 4. For each n ≥ k and basis b ≥ 2dlog2 n+1e, there is a row-wise-
invertible n × k-matrix over the finite field Fb. Furthermore, each submatrix
is also row-wise invertible.

Proof:
Define an n× k Vandermonde like matrix V for non-zero distinct elements

(c1, . . . , cn) ∈ F[2dlog2 n+1e].

V =

c1
1 c2

1 . . . ck
1

c1
2 c2

2 . . . ck
2

c1
3 c2

3 . . . ck
3

...
. . .

...
c1
n c2

n . . . ck
n

Then, erase any n − k rows resulting in an k × k matrix V ′. This submatrix is
also a Vandermonde-matrix. Since all Vandermonde-matrices are invertible, the
lemma follows. �

6 Security and Redundancy

Depending on the usage of additional slack variables, in this section, we show
that Read-Write codes furthermore offer useful properties concerning data avail-
ability and security. Consider, for instance, the very extreme scenario of a com-
bination of hard disks of n portable (laptop) computers in an office. If then a
(k, r, w, n)b-RWC is used for encoding for at most n laptops, it is sufficient if at
least max{r, w} computers are accessible at the office at any time for data access

11

and changes. If merely r computers are connected, at least the read operations
can be performed. Now, what happens if computer hard disks are broken or in-
formation on some hard disks has changed ? Then, the inherent redundancy of
the (k, r, w, k)b-RWC allows to point out the number of wrong data and repair
it (to some extent).

A different problem occurs if computers are stolen by some adversary to
achieve knowledge about company data. The good news is that, for every matrix
based RWC, it holds that one can give away any n − w hard disks without
revealing any information to the adversary. If the slack variables are chosen
uniformly at random from Σ, the attacker will receive hard disks with perfect
random sequences, absolutely useless without the other hard disks. As a surplus,
this redundantizes the need for complex encryption algorithms.

Theorem 4. Every (k, r, w, n)b-RWC system can detect and repair ` faulty code
symbols if n!(r+`)!

(n−`)!r! < 1
2 . Additionally, it can reconstruct n− r missing code sym-

bols.

Proof: If n − r code symbols are missing, then by the definition of a RWC
system the complete information can be recovered from any r code symbols.
Furthermore, if then ` out of these r code symbols are faulty, we simply test
any combination of the

(
n
r

)
combinations of r code symbols and take a majority

vote over the information vector. In this vote, at least
(
n−`

r

)
produce the correct

result. This results in a majority if
(
n−`

r

)
> 1

2

(
n
r

)
which, by transformation, is

equivalent to n!(r+`)!
(n−`)!r! < 1

2 . �
If the coded symbols are stored on distinct storage devices, with an (k, r, w, n)-

RWC the loss of at most n − max{r, w} device can be tolerated. For instance,
if these storage devices were stolen, then the following theorem shows that the
thief cannot reveal any information whatsoever from the encoded information:
the attacker sees only a completely random sequence vector.

Theorem 5. Every matrix based (k, r, w, n)b-RWC with k + n = r + w can be
used such that every choice of n−w coded symbols does not reveal any information
about the original information vector.

Proof: Choose random vectors v1, . . . , v` for the initialization. Then, there is an
isomorphism between these slack variables and the stolen coded symbols leading
b` possibilities for the stolen coded symbol to be changed. If more symbols are
added, this starts to reveal some information. �

7 Adaptive Read-Write Codes

In a SAN, adding and removing hard disks are the most delicate maneuvers, and
provided that the size of the underlying symbol alphabet is chosen appropriately,
we show in the following that perfect RW codes exist which allow to seamlessly
continue all operations without forcing the system to be in some intermediate
and, more importantly, invalid state. For instance, assume 10 disk in a SAN using

12

an (8, 9, 9, 10)-RW code. Then, for better space utilization, the system adminis-
trator wants to switch to a (4, 7, 7, 10)-RW code. In a usual encoding, all disks
have to be available for such a switch. In this section, we show that there exist
some special RW codes, called Chameleon codes, that allow to switch while only
9 disks are accessible for read and write. If the 10th disk returns after computing
the re-encoding of all data on the 9 disks, it can immediately participate in the
new (4, 7, 7, 10)-RW code. Moreover, if the 10th disk is permanently lost, it can
be reconstructed from the new (4, 7, 7, 10)-RW code. In particular, a Chameleon
code is a set of RW-codes (k, r, w, n)b with fixed alphabet, and, unlike the initial
codes, has a switch function. If the code is switched, all parameters k, r, w, n can
be subject to change. Regarding the codeword y, not all of the code symbols
have to be read or changed.

Theorem 6. For a sufficiently large constant M , there is an (M, b)-Chameleon-
RWC with b ≥ 2dlog2 M+1e. In this system, it is possible to switch at any time
from a (k, r, w, n)b-RWC to any (k′, r′, w′, n′)b-RWC provided that n, n′ ≤ M
and k′+ n′ = r′+ w′ only by reading any set of r encoded symbols and changing
any set of w′ encoded symbols.

Proof: First, we select a base b ≥ 2dlog2 M+1e and take the Vandermonde Matrix
based approach as shown in Section 5. We change the main equation to the
following.

c1
1 c2

1 · · · cM
1

c1
2 c2

2 · · · cM
2

...
...

...
c1
M c2

M · · · cM
M

x1...
xk

v1...
vr−k

0...
0

=

y1

...
yn

z1

...
zM−n

Again, x1, . . . , xk are the content symbols, v1, · · · , vr−k are the slack variables
and y1, . . . yn are the code symbols. The variables z1, . . . , zM−n can be ignored
for the beginning; they are neither contents, slack nor code symbols and can be
generated from the content and slack symbols at any time. The initial vector
as well as the read and write function are chosen as in the matrix based ap-
proach. Then, the switch operation, that is, switching from a (k, r, w, n)-RWC
to a (k′, r′, w′, n′)-RWC, works as follows.

First, we read r code symbols at given positions and decode the vectors x and
v according to the matrix based approach. Then, we adapt the size of the former
code to the new code size. If n′ > n, we compute the corresponding variables
zi from x and v. If n′ < n, we rename n− n′ code variables to z-variables, and
thus, reduce the code size. If r′ > r, the content/slack-variable vector (x | v)T is
extended by (r′ − r) 0-entries. We assume that new contents are written during
the switch-operation (especially, if k 6= k′). For this, let v′1, . . . , v

′
r′−k′ be the

new set of slack variables. Furthermore, we suppose at most w′ code symbols
(positions) available for writing.

13

We start by erasing the rows n′ + 1, . . . ,M in y and in the Vandermonde
matrix since they are of no interest for this operation. Then, like in Section 5,
we rearrange the residual matrix and the residual code vector such that the first
w positions are the writable variables. We additionally rearrange the columns
of the Vandermonde matrix and the contents/slack vector such that the new
slack variables are on the rightmost columns, respectively lowermost lines. This
results in the generator matrix M ′ (c.f. Section 5), and the original vector x
is rearranged up to the lowest r′ − k′ entries (possibly containing a mixture of
old contents, old slack variables, and 0-entries). Let x′ be the vector of the new
contents (adequately rearranged), and let v′ be the new slack vector with r′−k′

entries. If r′ ≥ r, x has k′ entries, and otherwise, x (x′) has r − r′ additional
entries resulting from former slack or content variables that must to be set to 0.

We first consider the case r′ ≥ r. The number of entries in x is k′. Then,
we can perform an RWC write operation changing w′ code symbols. Let `′ =
r′−k′ = n′−w′ and partition M ′ like in Section 5. That is, let M←↑ be a w′×k′-
sub-matrix of M ′, M↑→ a w′ × k′-sub-matrix, M←↓ an `′ × n′-sub-matrix and
M↓→ an invertible `′×`′-sub-matrix of M ′. Again, according to the matrix based
approach, the new (rearranged) code vector y′ is obtained by

y′ = y +
[
(M←↑)− (M↑→)(M↓→)−1(M←↓)

]
· (x′ − x) (1)

using the old (rearranged) writable symbol vector y. The proof of correctness is
analogous to Section 5.

Now, consider the case r′ < r. Then, the number of entries in x and x′ is
k̃ = k′ + r − r′. Again, let x′ be the new (adequately rearranged) vector con-
taining the k̃ new symbols, and v′ is the new slack variable vector with r′ − k′

entries. Note that x′ − x can be computed at this stage. We now perform a
slightly adapted matrix based RWC write operation that changes w′ code sym-
bols. Clearly, compared to the previous case, that matrix consists of additional
r−r′ columns but what does not cause any problem since we only have to adapt
the sub-matrices. Furthermore, let `′ = r′ − k′ = n′ − w′ and w̃ = w + r − r′.
Then, let M←↑ be a w̃ × k̃-sub-matrix of M ′, M↑→ a w̃ × `′-sub-matrix, M←↓

an `′ × k̃-sub-matrix and M↓→ an invertible `′ × `′-sub-matrix of M ′. As usual,
y denotes the old and y′ the new writeable symbols. Then, applying the defined
matrices, the new vector y′ is obtained as given with Equation 1, and again, the
proof is analogous to the proof given in Section 5. �

8 Conclusions

The Read-Write codes, presented here, provide linear block codes that, in con-
trast to commonly applied strategies, such as parity schemes or RS codes, feature
advanced possibilities to update any codeword, and to adjust the redundancy
and thus, the fault-tolerance capability of the code. In general, RW codes seem
to be well-designed to any setting in which I/O operations are very costly, that
feature high frequencies of write operations, and that are of dynamic behavior,
like modern storage area networks. Further results and applications of RW codes
can be found in [12].

14

References

1. M. Adler, Y. Bartal, J. W. Byers, M. Luby, and D. Raz. A modular analysis
of network transmission protocols. In Israel Symposium on Theory of Computing
Systems, pages 54–62, 1997.

2. M. K. Aguilera, R. Janakiraman, and L. Xu. Reliable and secure distributed
storage using erasure codes.

3. M. Blaum, J. Brady, F. Bruck, and H. van Tilborg. Array codes. In Handbook of
Coding Theory, volume 2, chapter 22. V.S. Pless and W.C. Huffman, 1999.

4. M. Blaum, J. Brady, J. Bruck, and J. Menon. Evenodd: an optimal scheme for
tolerating double disk failures in raid architectures. In ISCA ’94: Proceedings of
the 21st annual international symposium on Computer architecture, pages 245–254,
Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

5. M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardy. The EVENODD code
and its generalization: An efficient scheme for tolerating multiple disk failures in
RAID architectures. In H. Jin, T. Cortes, and R. Buyya, editors, High Performance
Mass Storage and Parallel I/O: Technologies and Applications, chapter 14, pages
187–208. IEEE Computer Society Press and Wiley, New York, NY, 2001.

6. W. A. Burkhard and J. Menon. Disk array storage system reliability. In Symposium
on Fault-Tolerant Computing, pages 432–441, 1993.

7. J. Byers, M. Luby, and M. Mitzenmacher. A digital fountain approach to asyn-
chronous reliable multicast. IEEE Journal on Selected Areas in Communications,
20(8), Oct, 2002.

8. N. S. F.J. Mac Williams. The Theory of Error Correcting Codes. North-Holland
Mathematical Library, 1977.

9. C. Huffmann and V. Pless. Fundamentals of Error-Correcting Codes. Cambridge
University Press, Cambridge, UK, 2003.

10. A. J.Tate, R.Kanth. Introduction to Storage Area Networks. Technical report,
IBM, May 2005.

11. J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architec-
ture for global-scale persistent storage. In Proceedings of ACM ASPLOS. ACM,
November 2000.

12. M. Mense. On Fault-Tolerant Data Placement in Storage Networks. PhD thesis,
University of Paderborn, January 2009.

13. D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant Arrays
of Inexpensive Disks (RAID). In Proceedings of the 1988 ACM Conference on
Management of Data (SIGMOD), pages 109–116, June 1988.

14. J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like
systems. Software, Practice and Experience, 27(9):995–1012, 1997.

15. S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J. Kubia-
towicz. Maintenance-free global data storage, 2001.

16. L. Rizzo. Effective erasure codes for reliable computer communication protocols.
ACM Computer Communication Review, 27(2):24–36, Apr. 1997.

15

