Circuit Complexity:

from the Worst Case to the Average Case

(extended abstract)

Andreas Jakoby*

Riidiger Reischuk

Christian Schindelhauer

Technische Hochschule Darmstadtt

Abstract

In contrast to machine models like Turing machines
or random access machines, circuits are a rigid com-
putational model. The internal information flow of a
computation is fixed in advance, independent of the ac-
tual input. Therefore, in complexity theory only worst
case complexity measures have been used to analyse this
model. Concerning the circuit size this seems to be the
best one can do.

The delay between feeding the input bits into a circuit
and being able to read off the output bits at the output
gates is usually measured by the depth of the circuit.
One might try to take advantage of favourable cases in
which the output values are obtained much earlier. This
will be the case when critical paths, e.g. paths between
input and output gates of maximal length, have no in-
fluence on the final output.

Inspired by recent successful attempts to develop a
meaningful average case analysis for TM computations
[Levi86, Gure91l, BCGL92, ReSc93a], we follow the same
goal for the circuit model. For this purpose, a new com-
lexity measure for the internal delay is defined, called
time. This may be given implicitely or explicitely, where
in the latter case a gate has to signal that it is “ready”,
e.g. has computed the desired result. We show that
these models are basically equivalent by an efficient
universal construction that transforms circuits with im-
plicit time signals to those with explicit signals.

Based on the notion of time, two average case measures
for the circuit delay are defined. The analysis is not
restricted to uniform distributions over the input space,
instead a large class of distributions will be considered.

*supported by DFG Research Grant Re 672-2
' Institut fir Theoretische Informatik, Alexanderstrafie
10, 64283 Darmstadt, Germany
email: jakoby / reischuk / schindel @ iti.informatik.th-
darmstadt.de

For this purpose, a complexity notion is needed for dis-
tributions. We define a measure based on the circuit
model by considering the complexity of circuits with
uniform distributed random input bits that generate
such distributions.

Finally, this new approach is applied to concrete ex-
amples. We derive matching lower and upper bounds
for the average circuit delay for basic functions like the
OR, ADDITION, THRESHOLD and PARITY. It will be shown
that for PARITY the average delay remains logarithmic.
In many cases, however, an exponential speedup com-
pared to the worst case can be achieved. For exam-
ple, the average delay for n-Bit-ADDITION is of order
loglogn. The circuit designs to achieve these bounds
turn out to be very different from the standard ones for
optimal worst case results.

1 Introduction

For combinatorial circuits the depth is usually taken as
a measure for the computational delay. A close rela-
tionship between circuit depth and the time of several
parallel machine models has been shown. Note that
depth as well as the parallel time considered so far is a
worst case measure.

For sequential machines and algorithms a meaning-
ful concept of average case complexity has been pro-
posed recently, which differs from the simple approach
by taking the expectation [Levi86, Gure9l, BCGL92,
ReSc93a]. Distributional and average case complexity
classes based on the Turing machine model have been
defined and equipped with a notion of reducibility with
similar properties as for worst case classes. It was even
possible to obtain the same tight hierarchies as in the
worst case [ReSc93b].

Restricting an average case analysis to just the uniform
distribution is of limited value. But it has been ob-
served that one should not allow arbitrary distributions
since there exist distributions for which the average case
equals the worst case [LiVi92, Milt91]. Thus, when con-
sidering average case complexity classes one has to re-
strict the set of possible distributions somehow. For
this purpose, the notions of computable [Levi86], sam-
pleable [BCGLYI2], and rankable [ReSc93a] distributions
have been introduced, which set a time limit for a de-

terministic or probabilistic Turing machine to provide
information about the individual distribution.

Since circuit complexity is another fundamental concept
we like to investigate average case complexity also with
respect to this model. Immediately the question arises
whether this makes sense at all since the circuit model
is a rigid computational model, which in contrast to
machines with a flexible control structure cannot take
advantage in favourable situations in an obvious way.
Thus, the first thing to be done is to define a notion for
the average delay of circuits. For this purpose, we in-
troduce the new complexity measure time for the circuit
model.

1.1 An Implicit Definition of Time

Definition 1 Let B]" denote the set of Boolean func-
tions f:4{0,1}" — {0,1}™ and B, = B.. D, denotes
the set of all probability distribuiions u on {0,1}". The
uniform distribuiion on {0,1}" that gives equal prob-
ability to each of the 2™ possible input vectors is de-
noted by pt™ . For p € D, Supp(p) is the set of
all vectors © € {0,1}™ with a nonzero probability u(z).
Let us call a distribution in D, strictly positive if
Supp(p) = {0, 1}™.

Circuits may be defined over an arbitrary finite basis.
Let Cir(f) denote the set of all circuits over the given
basis that compute f. For a circuit in Cir,(f) it is
only required that its results equal f(z) for input vectors
z € Supp(u).

Information can be propagated faster in a circuit if, for
example, one of the inputs of an OR-gate is already avail-
able and has the value 1. Then its output is determined
as 1 independent of the value of the other input. More
formally, we define a function time : {0,1}* — IN for
each gate v of a circuit C. It specifies for each input =
the step when v can compute its result res,(a) using
the values of its predecessors.

Definition 2 Let C be a circuit and v be a gate of C.
For input gates and constant gates v set time,(z) := 0.
For an internal nonconstant gate v with k direct prede-
cessors vy, ..., v define time,(®) = 1 4+ min{t|
the values res,,(z) with time, (z) < t uniquely deter-
mine res,(z)}. For the circuit C itself with output gates
Y1,-- ., Ym we define the global time function by

timecg(x) := max timey(z) .
K3

For example, the delay of an OR-gate v with predeces-
sors vy,vy is given by

max{time,, (z), time,,(z)}
if resy, (z) = resy,(z) = 0,
min{time,,(z) | res(v;) = 1}
else.

time,(z) (= 1+

2

This model specifies the delay, how long an internal gate
has to wait to be able to compute its value, only implic-
itly. A gate does not signal the fact that it has finished

to its successors or to the outside world. We will call
such circuits implicitly timed circuits, IT-circuits.

When considering explicit examples, we will choose the
standard basis of AND, OR and NOT gates. Although for
a PARITY-gate there is no improvement of the average
delay compared to the worst case — one always needs
both inputs to determine the value of the gate — any
basis must contain gates with a speedup for the average
case. In fact, a basis independence property similar to
the worst case can be shown:

Theorem 1 For any pair of finite basis By, By there
erists a constant k with the following property: For
every circutt Cy built from gates of By there ezists
an equivalent circuit Cy over Bg, thal means resc, =
resc, , with

timec, < k-timec, .

Proof: 1t suffices to show that an arbitrary basis B;
can be simulated with constant delay by the standard
basis and that the standard basis can be simulated with
constant delay by an arbitrary basis Bs.

The first property can be seen as follows: For a Boolean
function f corresponding to a gate in B; compute each
prime implicant by a tree of A-gates and take the con-
junction over all prime implicants (by a tree of V-gates)
to get a circuit Cy. Do the same for the negation of f
and negate the output of this circuit Cf' Combine the
output of C;¢ and the negation of Cy by an V-gate to

get a circuit Hy over the standard basis that computes
f-

Whenever a partial input assignment uniquely deter-
mines the value of f — either as 0 or as 1, let us first
assume as 1 — there is a prime implicant of f for which
all variables are defined. Thus the corresponding A-
tree evaluates to 1. This implies that the V-tree for the
prime implicants of f evaluates early to 1 and therefore
also the final V-gate.

In the other case, when the value of f is 0 one of the
prime implicants p of f induces a 1 at the output of
Cf' Thus one of the inputs of the final V-gate is set
to 0. In order for this gate to compute its value earlier
we need a 0 at the other input, too. This holds because
each prime implicant of f must contain a variable of
p in negated form. Thus each A-tree can be evaluted
early to 0 and therefore also the V-tree of all prime im-
plicants of f. Thus whenever a partial input assignment
determines the value of f the circuit H; generates an
output. Replacing each gate of type f by Hj the delay
of this circuit over the standard basis increases at most
by a constant factor, which is bounded by the maximal
depth of such a circuit Hy.

Now consider a basis By that has to simulate the stan-
dard basis. The 16 Boolean functions f of 2 inputs
can be subdivided into 3 different types: the AND-type
(f(z1,22) = (2§ A 1:5)7 for some a, B,y € {0,1}), the
PARITY-type (f(z1,22) = 21 Q3 ® @ with a € {0,1}),
and the elementary functions (0, 1, z1, z2, %1, %z2).

B, must contain a function b : {0,1}? — {0,1} such
that b(p1(z1, 22),...,pe(21,22)) = a(@1, z2), where the
p; are functions of elementary or PARITY-type and a is
an AND-type function. Otherwise, By could not com-
pute any function of type AND since the elementary and
PARITY-type functions are closed under composition.

For such a b there even exist functions e; such that
bler(z1, 22), ..., eq(@1, 22)) = a'(21, #2), for elementary
function e; and a' of type AND. This can be seen by
selecting PARITY and elementary functions in an appro-
priate way.

By definition of time the function bo (eq,...,e,) has
the same delay behavior as a’. Applying De-Morgans
rules yields realization of AND- and OR-gates. |

If a circuit is fed with a distribution g at its input gates
that is not strictly positive an internal gate may be able
to determine its value even faster because certain in-
put patterns cannot occur at its direct predecessors. In
this case the timing function may yield smaller values
and should include g as an additional parameter. For
example, given a distribution with ©(0™) = 0 the com-
putation of the OR-function becomes trivial. We will not
elaborate on such effects here.

To realize a combinatorial circuit in practice a simple
way 1s to construct a corresponding synchronous acyclic
VLSI-circuit. In every step of the computation each gate
v performs a state transition depending on the current
states of its predecessors. Note that by step time, (z) its
Boolean state has converged to the value res,(z). Little
effort seems to have been done by hardware designers
so far to achieve speedups based on these observations.

1.2 Gates with Explicit Timing Information

There are several ways to make this timing information
explicit. On a conceptual level the easiest would be to
extend the model to a three-valued logic with an addi-
tional symbol “?” meaning “I don’t know yet”. In case
of the ORand AND-function, for example, we could get
the following function tables

AND |7 0 1 OR[? 0 1
? 17 0 7 Tl 7T 1
0 |0 0 0 0?7 0 1
1 |7 0 1 11 1 1

All nonconstant internal gates are initialized by the
value “?”. As soon as a gates changes this value to ei-
ther 0 or 1 this will correctly specify res,(z). Let us call
such three-valued circuits explicitly timed circuits,
ET-circuits.

In a similar way, asynchronous hardware has been syn-
chronized by introducing the notion of self-timed cir-
cuits, see for example [DGY89, LBS93]. Since our main
goal is to analyse the average delay with respect to a
distribution on the input space to simplify the exposi-
tion we assume in the following a synchronous clocked
system of Boolean gates. With the obvious modifica-
tions the results can also be extended to asynchronous
systems. Formally, the result function for each gate v
computing the Boolean function ¢, gets as a second

parameter the time step ¢ and
resy(z,t) = @y(resy, (2,8 —1),...,res,, (2,1 — 1))

for t=1,2,....

To realize an ET-circuit in practice one could use a
binary encoding of the three-valued logic. This en-
coding maps 0,1,7 to disjunct sets of binary tupels
(e.g. code(?) = {(0,0),(0,1)}, code(0) = {(1,0)},
code(1) = {(1,1)}).

1.3 Equivalence of the Timing Models

Lemma 1 There is a simple encoding that allows to
simulate every 3-valued ET circuit C (over the standard
basis of extended AND, OR, NOT-gates) by a conventional
2-valued circuit C' of the same depth and delay as C
and twice ils size.

Proof: Using the coding function code : 0 —
{(0,1)}, 1 — {(1,0)}, ? — {(0,0)} a simulation of
C is fairly obvious (compare [DGY89]). |

Because of this property we can restrict the following
investigations to IT-circuits over the standard Boolean
domain. If necessary the timing information can be ob-
tained by a simple modification.

2 Average Case Measures

Definition 3 For a function t : {0,1}* — IN and a
probability distribution p: {0,1}™ — [0;1] let E, (t) :=
ExE{O,l}“ t(x) p(x) be the expectation of t with respect
to w. If D is a set of probability distributions we define

etime(f, D) := max min

E,(time
RED CeCir,(f) w(timec)

as the optimal expected circuit delay of f with re-
spect to distributions in D.

A simple example of a Boolean function that can be
computed significantly faster in the average case com-
pared to the worst case (for which the trivial logarith-
mic lower bound for the depth holds) is the OR-function
ORp(Z1,...,2,) := Z1VZ2V---Vz,. In the following
discussion we assume the standard basis {V, A,—}. Any
time optimal circuit with respect to the expectation for
this function has not only linear depth, but also a linear
time complexity in the worst case. We prove this claim
by showing that the circuit in the middle of figure 1 is
the only one — up to a permutation of the input gates —
that is expected time optimal.

Theorem 2 etime(OR,, ui™) = 2 —2-(»-2),
Levin observed that the expectation is not closed under
polynomial transformations, one of the basic properties
in classical complexity analysis (see [Levi86, Gure91]).
This problem can be resolved by applying the inverse
function T-! to the time measure and requiring that
the sum is linearly bounded.

Ty T T3 T4 Ty Te L7 Ty

Figure 1: Different circuit designs to compute the OR-
function

Definition 4 For a monotone complezity bound T :
IN — IN we define the inverse by T *(t) :=
min{m | T(m) > 7}.

A function t {0,1}" — IN is called
average T-bounded with respect to a probability
distribution p : {0,1}" — [0;1], denoted by
(t,) € AV(T), if

Y. TH(He)) p(z) < n.
z€{0,1}n
For a Boolean function f € B, a set of probability
distributions D C D, , and ¢ complezity bound T we
define the relation avtime(f,D)<T = Vpc€
D 3C € Ciry(f) (timec,p) € Au(T) , which means
that for any distribution in D the function f can be
computed by a circuit with average delay bounded by
T . The negation of this relation is written as: T <

avtime(f, D).

Note that the expected delay as defined above yields
a single real number ¢t = E,(timec) for every circuit
C of fixed input size n, whereas in order to bound the
average delay we need a function T such that the inverse
T~1(r) exists for every value 7 = timec(z). As usual
in complexity theory, we are interested in the asymtotic
behaviour of such functions T and restrict the analysis
to nicely growing functions like the logarithm, powers
of the logarithm, and iterated logarithms.

Circuits are a nonuniform model and we will derive
sharp average bounds for each input size n. These re-
sults can be translated into a uniform setting by con-
sidering family of circuits, one for each input size.

In the following when using the term average bound
we always refer to the second definition with the help
of the inverse function 7!, the other will be called
an expected bound. As already mentioned it is
justified to base an average case complexity analysis
on the technical more complicated average time mea-
sure, and not on the simple expected time measure
by results obtained in the analog case of machines
[Levi86, Gure91, ReSc93b].

For the average case measure it holds
Theorem 3 Let llog: n — loglogn denote the

twice iterated logarithmic function with respect to base
2. Then

llog—1 < avtime(ORn,,u““i) < 2-llog+1 .

n

Proof: A straightforward calculation shows that the
right circuit in figure 1 is average 2 - llog+1-bounded
with respect to the uniform distribution.

The lower bound can be shown as follows. For any cir-
cuit C' and every input z with timeg(z) =t the re-
sult is determined by at most 2! input variables. For
t < logn this implies that at least one input must have
value 1, which for the uniform distribution happens

with probability 1 — 22" Thus

Prittmec(z) < logn] < 1—-27".
For T = llog —1 the inverse is given by T~1(t) = 22"
Thus, using the fact that T-! is monotone increasing
we can estimate the sum by

Z —T_;(t) Prltimec(z) = 1]

t>1

-1
T~ (logn) Pr[timec(z) > logn]

1 +
glegn+1
2

v

27" = exp(2n—logn—n)> 1.

The right circuit in figure 1 has nearly optimal expected
time (< 2.3) and logarithmic depth. A simple calcula-
tion shows that the optimal circuit for the OR with re-
spect to the expected delay of linear depth has an aver-
age delay of logarithmic order. Thus the average mea-
sure may yield much larger values than the expected
measure. In the other direction the increase can be
shown to be bounded.

n

Lemma 2 Let T be a monotone complezity bound such
that the function n — 77— is monotone increasing then
(t,u) € Av(T) = E,(t) < 2-T(n). In particular, this
implies:

avtime(f,D) < T — etime(f,D)<2-T(n).

Proof: For (f, pn) € Av(T) the definition implies

> un(m)'w <1.
|z|=n

Consider a partition Iy, I2 of the input set {0,1}"
L = {ze{0,1}* f(z) > T(n)},
I {z €{0,1}" f(z) < T(n)}.
Li: If f(z) > T(n) then T~(f(2)) > T-YT(n) +

1) > n. For the monotone increasing function g(n) :=
n/T(n) one can then draw the following conclusions:

T(fE) | ()
n = T(n)’

9(T7Hf(2)) > g(n) =

Then,

Z,Um(m)f(m) < Zﬂn(m)w <1.

zcl, T(n) B zcl,

I: f(z) <T(n) for z € I implies

z€I;
and thus f(2)
z
lmlz::n,“n(m)'T(n) s 2

Furthermore, contrary to the expected bound, it can be
shown that a circuit with an optimal asymptotic average
bound has always small depth.

3 The Complexity of Distributions

For an average case analysis of circuits we also have to
define a complexity measure for the distributions that
generate the random inputs. The complexity will be
measured by the circuit model itself, that is by the com-
plexity of a circuit that starting with a vector of truly
random bits generates the specific distribution.

Definition 5 A circuit C with r input gates and n
output gates performs a transformation of a random
variable Z defined over {0,1}" into a random variable
X over {0,1}" as follows. The input vector for C is
chosen according to Z. Then X equals the distribution
of the values obtained at the output gates.

If Z is the uniform distribuiion over {0,1}" such a cir-
cuit will be called a distribution generating circuit,
D G-circuit, that generates the distribution of X .

In the following we will identify a distribution p with
the random variable X that represents p. Let X =
X1, X0

No interesting results can be obtained if we consider
distribution generated by DG-circuits with unbounded
fan-out, which means that every output may depend
on a single random bit. The example in figure 2 shows
that in such a case even very simple circuits can generate
highly unbalanced distributions.

z(n) —1
n d(n) —1

Figure 2: An example of a DG-circuit with z(n) = n+1
random bits as inputs and an n-bit output vector.

If in this figure we choose d(n) = 1, that means the big
rectangle in the middle simply routes the input wires
to the A-gates then the output distribution is given by

PriX =0"] = 1+4+2°(+) and Pr[X =y] = 2-(n+1)
for y # 0. For the OR,-function, for example, this
distribution implies a lower bound of %log n for the ex-
pected delay. However, it will be shown that for any
probability distribution that is generated by a constant
depth circuit with bounded fan-out the expected delay
is constant. Therefore, we restrict DG-circuit to a con-
stant fan-out, let us say fan-out 2.

With the notion of DG-circuits we classify distributions
as follows:

Definition 6

DDepth,(d) :={p € Dn, | 3 an r-input end n-
output DG-circuit C of depth d
that transforms a random variable
Z over {0,1}" with disiribuiion
i into a random variable X over
{0,1}"* with disiribution u }

The basic properties for achieving a substantial speedup
in the average case for many Boolean functions are the
following. The speedup results for the average case com-
plexity presented below will hold for any distribution
fulfilling these properties.

Lemma 3 Let u, resp. X belong to DDepth, (d) and
define Ix :={i|0< Pr[X; =1] < 1}. Then
1.) forall i€ Ix holds

272" < Pr[X;=1] < 1-272",

2.) there ezists a set of k > |Ix|-272% bit positions
X; ., X4, that are independent.

1"
Proof: By induction on the depth it can easily be shown
that in a DG-circuit any gate in depth d takes a value

with a probability that must be a multiple of 2-2° In
particular, if the probability of a certain output value is

not zero it must be at least 2—2°.

Choose any bit position X; (see figure 3). This random

< 24 T

\ X; X] /

S 22d
Figure 3: The random variables that determine X; can
only influence at most 22¢ output bits.

variable depends on at most 2¢ random input bits Z; .
Because of the fanout restriction each such Z; can influ-
ence at most 2¢ random variables X;. Thus, there are
at most 22¢ — 1 other X} that may not be independent
of X,' . I

4 Upper and Lower Bounds for Basic
Boolean Functions

4.1 Functions with Sublogarithmic Average
Time Complexity

We start with one of the simplest nontrivial Boolean
function, the OR and show that it can be computed much
faster on the average for a large class of distributions.
For both, the expected and the average measure, the
upper and lower bounds almost match.

Theorem 4 For 0 < d < llogn holds

2971 _1 < etime(OR,, D Depth(d))
< 3427,
llogn +2%—2 < avtime(OR,, DDepth(d))
< 2llogn+ 2%t yad+ 2.

Proof Sketch: 1In order to prove the lower bounds
it suffices to find a specific distribution in DDepth(d)
for which the average delay of the OR-function becomes
large. Let X = X;,...,X,, be a random variable with
PrX; =1 = 2-2* and such that the X; are indepen-
dent. It is easy to see that such an X can be generated
in depth d. For this X the probability that a subse-

quence of length 22°~1 ig identical to 02°~! is at least
%. These sequences contained in an input string can-
not solely determine the result of any circuit computing
OR,,. The lower bounds immediately follow because all

gates have bounded fanin.

For the upper bounds we have to consider an arbitrary
random variable X over {0,1}" in DDepth(d).

First assume that X € DDepth,,(d) is strictly positive.
By lemma 3 there exist at least n - 272¢ independent
input bits X;. Partition them into groups Y; of size
22* and compute for each Y; the OR(Y;) of all its bits
in depth 2¢. Let W be the remaining bits. Their dis-
junction can be computed by a binary tree of depth at
most logn. Finally, realize the OR-function as

OR(X) = OR(Y:)V(OR(Y3)V(-- - (OR(Y,)VOR(W))---))

enough. Straightforward calculation shows, that the
upper bound etime(OR,, PDepth(d)) < 3 + 2¢ holds
for this circuit.

where p > n - 2-2d-2* > 1 4 llogn for n large

Using the outputs of the circuits OR(Y;) and
OR(W) as inputs of the right circuit in figure 1
(OR(OR(Y1),...,0R(Y,),0R(W))) a straightforward cal-
culation leads to

XP:T_l(2-logi—|—1—|—2d) T-Y(2-logn+1) <

n-2-ttl n-2P =

1

=1
So an upper bound of the Av-measure is given by
T<2 -(logn+2-d+2%+1)

If X is not strictly positive either there exists an X;
with Pr[X; = 1] = 1 and the result will always be 1

and the OR becomes trivial. Otherwise, let m be the
number of X; with Pr[X; = 0] < 1. Since all inputs
bits with X; = 0 can be ignored the problem reduces
to computing OR,, for a strictly positive distribution on
{0,1}™. Hence, a circuit for OR,, solves OR,, within the
same upper bound. |

Note, that the circuit shown on the right of figure 1
up to a permutation of the input bits is asymptotically
optimal with respect to depth, expected time und aver-
age time bound for all probability distributions. These
bounds can be translated to functions similar to the OR
as follows.

Lemma 4 Let f € B*, g € Bl and h € BE be
Boolean functions and assume that h can be computed
by a circuit with bounded fanout in depth 6. Then

etime(f o g o h, DDepth(d))
< depth(f) + depth(h) + etime(g, DDepth(d + §)) ,
avtime(g, PDepth(d+ 0)) < T —
avtime(f o g o h, D Depth(d))
< depth(f) + depth(h) + T .

Proof: Let D be a circuit, that generates a probability
distribution in PDepth(d). Then h(res(D)) denotes the
circuit obtained by connecting D with a circuit for h.

It holds A(res(D)) € DDepth(d + 8). By definition,
etime(g, {h(res(D))}) < etime(g, DDepth(d + §)) .

Compute goh by composing circuits for ¢ and h. Here
the random input variables of g in both circuits (for
goh and g) have the same probability. Therefore,

etime(g o h, {D}) < etime(g, {h(res(D))}) + depth(h) .

D was chosen arbitrarily from the set DPDepth(d). Fur-
thermore, the expected time for g is increased if one
allows all DG-circuits of depth d + 6, instead of DG-
circuits computing h(res(D)) only. Therefore

etime(g o h, DDepth(d))
< etime(g, DDepth(d + 8)) + depth(h) .

In order to compute f o g o h append a circuit for f.
The bound for avtime can be proved the same way. il
Let AND, denote the n-ary AND-function and EQUAL,
the 2n-ary function which decides whether two n-
bit strings are equal. Using ORp(Z1,...,2,) =
—AND,,(Z1,...,Tn) and EQUAL,(Z1,Y1,---:%n,Yn) =
—O0R, (21 D Y1,-..,Zn O Yn), & simple application of the
lemma above yields

Theorem 5

etime(0Ry,, D Depth(d))
< etime(EQUAL, , D Depth(d))
< etime(ORy, DDepth(d+2)) + 1,
etime (OR,,, D Depth(d))
< etime(AND,, DDepth(d + 1)) + 1
< etime(ORy, DDepth(d +2)) + 2 .

Simzilar relations hold for the measure avtime.

There are more basic Boolean functions that have a sim-
ilar expected and average time complexity as the OR, for
example the comparison of two binary numbers.

4.2 Logarithmic Average Lower Bounds: The
Parity Function

On the other hand, we have found only few examples of
functions for which the average case is almost as com-
plex as the worst case. The parity function, denoted
by PARITY, is one of them. Intuitively this seems clear
because no matter how the actual input looks like the
final output depends on every single bit. In order to
prove this rigorously, we will introduce a general lower
bound technique.

Let THRESHOLDZ denote the m-ary Boolean function
which equals 1 if at least ¢ input bits are 1, for
0 < a < n, and MAJORITY, the special case a = L%J
BITSORT, denotes the sorting of n Bits, and MULTIPLY,,
the multiplication of two n-bit numbers.

Definition 7 To measure the input bit dependency of
an n-ary Boolean function f we define

depen(f) = min{k |3 ai,,...,a,

such that fi

that is the minimal length of a prime implicant or a
prime clause of f.

Eil :ail ,...,E,,;k :a’ik = COHSt}

Thus depen(f) is the co-dimension of the largest
Boolean subcube on which f is constant.

Proposition 1

depen(OR,) = 1,
depen(PARITY,) = n,
depen(MULTIPLY,) > n ,
depen(THRESHOLD?) = min(a,n—a),
depen(MAJORITY,) = |Z],
depen(BITSORT,) = n.

Lemma 5 Let f € B, and C € Cir(f) then Vz €
{0,1}* timec(z) > log depen(f) .

Proof: Let z € {0,1}™ be arbitrary. By definition of
depen(f) any subset of less than depen(f) many input
bits z; does not uniquely determine the value of f(z).
Since the fan-in is bounded by 2 any computation of
a circuit C for f that generates the final result in less
than log depen(f) time does not read enough inputs. il
Over the standard basis PARITY,, can be computed in
worst case time 2logn. For the average case even re-
stricting to the uniform distribution the Lemma above
implies for this function and similarly for the others with
large codimension

Theorem 6

etime(PARITY,, u2™) > logn,
etime(MAJORITY,,, ui™) > logn—1,
etime(BITSORT,, ui™) > logn,
etime(MULTIPLY,, ui™) > flogn,
avtime(PARITY,, ua™) > logn—1,
avtime(MAJORITY,, ™) > logn — 2,
avtime(BITSORT,,, ui™) > logn—1,
avtime(MULTIPLY,, p2™) > llogn—1.

Proof: follows directly from proposition 1 and lemma 5.

The same lower bounds hold for any strictly positive
distribution.

4.3 Threshold

If the threshold value @ is small the dependency pro-
vides only a lower bound on the average time of loga.
We can show that this bound can actually be achieved
and generalize the bounds to more complex distribu-
tions.

Theorem 7 For d <
2-(2°+2d+0(1)) polds:

llogn — 1 and a < n -

1 (loga+2%) - 0(1)
< etime(THRESHOLDZ, D Depth(d))
< 2-(loga+2%)+0(1) ,
+(llogn + loga + 2¢) — O(1)
< avtime(THRESHOLDZ, D Depth(d))
< 2-(llogn + loga + 2¢) 4+ O(1) .
Proof: 1t suffices to consider @ > 2. As in the up-

per bound proof for the OR-function we may restrict to
random variables X with 0 < Pr,[X; = 0] < 1 for all

t € [1...n], that means Pr[X; =1] > ¢:= 2-2*,

To achieve the upper bound for the threshold function
partition the independent inputs into groups G; of size

l:’y-a-22d for some v > 1. Let

> X

XiEGj

Zj =

Z; is lower bounded by the binomial distribution B4
with expectation Ejq =1-¢ =+ -a. Thus,
Pr[Z; < a] < Pr[Biy < d
-1
= Pr [El,q — By > (y—1)a = ’YTEI,q

1 v-1
< 2exp(—5(—)" - Eug)
1
2

for v = 4. Thus, each group G; has at least a ones
with probability at least 1/2. There are at least

Y
3
< 2exp(—za) <

n.9-2d n - 2—(27+2d)
= = m

l v-a

many groups. With probability at most 2™ no group
has enough ones.

For each group compute the function THRESHOLD{
by a standard circuit of depth 2logl. In parallel,
THRESHOLD? is also computed by a standard circuit.
These subcircuits are combined by an average case ef-
ficient circuits for the OR-function (see figure 4). The
expected delay of this circuit is given by

2log+0O(1)+Pr[no THRESHOLD] evaluates to 1]-2logn .

If m > llogn the last term of this sum adds only a
constant since the probability is small. Otherwise, from
the upper bound on d we can conclude
. 9—(2%+2d)
o= 2T S e
m -

OR

Figure 4: THRESHOLDZ.

and thus a single THRESHOLD} already evaluates to 1
with high probability.

For the lower bound we choose the same probability
distribution as for the OR. Consider delay 6 := loga +
2¢ — 4 for some ¥ > 0. At most [=277 a- 2% many
inputs X; can influence the output gate by that time.
For [< n — a one can conclude that termination of the
output gate implies that among these inputs bits there
must be at least ¢ many ones, otherwise the output is
not guaranteed to be correct. Let Z := > X;, where
we sum over the [inputs X; closest to the output gate.
Z is distributed according to By 4 for ¢ = 2-2%. Hence,
for 8:=27(1—-277)

Pr[Z > a)
= Pr[Byg—Eiy > a(1-277) = 8- Ey,]

< exp (—El,q .Blog g)
< exp (—(’y -1)(1- 2_7)) < €

for v sufficiently large. Thus with probability at least

1—e> % the delay has to be larger than §. This yields

etime > % (loga + 2% — 7). The analysis even gives a

factor 1 — € instead of % for arbitrary small €.

The bounds for the average delay can be obtained sim-
ilarly.

4.4 Addition

It is well known that the problem of adding two bi-
nary numbers z,y € {0,1}" is basically equivalent to
an efficient computation of the carries. By adding the
two values at each bit position one can derive a string
z € {pro, gen,del}” indicating whether a carry is prop-
agated, deleted or generated. It remains to compute all
prefixes p; = 21 022 ®...Q 2 of z where ® is a binary
associative operator that combines the carry informa-
tion.

Instead of considering random variables for the distrib-
ution of #z and y we might as well consider a random
variable Z over {pro,gen,del}™ for the correspond-
ing distribution of the z-values. It is easy to see that
the complexity of corresponding distributions is almost
identical (up to a permutation of each pair z;,y;).

If Pr[Z; = pro] = 0 then p; is independent of the
value of Zy,...,Z;_1 which simplifies the problem. If
Pr[Z; = pro] = 1 then it suffices to compute all prefixes
of z1,...,2i-1,%i41,..., 2, and set p; = p;_1. In this
case the size of the problem can be reduced. Therefore,
we can assume that for all 7 holds:

0 < Pr[Z; =pro] < 1.

For a vector z € {pro, gen,del}"™ define pro(z) as the
maximal length of a contiguous block of symbols pro
in z. The importance of this quantity is shown by the
following

Lemma 6 For any circuit C that solves the prefiz prob-
lem and any input z holds

timeg(z) > logpro(z) .

Furthermore, there exists a circuit that achieves this
lower bound within e factor of 4.

In order to generate the random variable Z we general-
ize the notion of DG-circuits to arbitrary finite domains
in the obvious way, in this case to {pro, gen,del}. Such
a circuit may use as internal gates arbitrary binary op-
erators over this domain. For ease of notation we will
use expn to denote 2™ and v = log, e.

Lemma 7 For Z € DDepth(d) with Z; # pro for all
1 holds for any 1:

Prlpro(Z) > 21— 1] < % - exp(—! 2_(2d+2d)) .

Proof: We partition the Z; into blocks B; of length .
Lemma 3 yields that in each such block there exist at

Zo Zi—1Zh Z2i-1 Z\np) Zn—1
Z: [-] [] []

< » < »
-t - -t -

l l <l

A
A\

Figure 5:

least 1/22¢ independent inputs Z; and Pr[Z; = pro] <
1-272%,

If Z has a pro-chain of len%th 2l —1 at least one block
B; must be identical to pro*. For each B; this happens
with probability at most

(1- 2—2¢)1 2—2¢ < exp(— 1 2_(2d+2¢)) ‘
This gives
Prlpro(Z) > 21-1] < ? - exp(—y 1 2724429y
|

Lemma 8 For d < llogn there exists Z € DDepth(d)
such that

1
Pr |pro(Z) > exp(i (2% + llogn))| > % .

Proof: Let the Z; be independent random variables

such that Pr[Z; > pro] > 1 — 2-2%. Then for any fixed
block of Z of length [the probability that it contains

only the symbol pro is given by p := (1-— 2_2d)l. So
nfl—1
Pripro(Z)>1] > Y (1—-p)-p=1-(1-p"
4:=0
= 1-(1—(1—-2"2)/t
> 1 (1 exp(~2+1- exp(~28))!
> 1—exp(—exp(—2-1-exp(—2%

au

For I = exp(3 - (2¢ +llogn)) we get:

Pr [pro(Z) > exp(; (2% 4 llogn))| >

[\Dln—t

Using these estimations we can show

Theorem 8 For d < llogn holds

1
Z(llogn +2%) < etime(ADDITION,, D Depth(d))
< O(llogn+2%) ,
llogn+2¢—-2 < avtime(ADDITION, D Depth(d))
< O(llogn+2%) .

Proof: The lower bounds for the expected measure
follow from Lemma 6 and 8. Choose Z as in Lemma 8.
Then

S ¢ Prftimec(Z) <] > %(llogn—l—Zd).

For the average measure the lower bound follows from
the lower bound of the OR,-function (see theorem 4).

Zi_z Z;a
Zi_14 “oe Zi_7 Zi_é o Zi_2 Zi
[] /I @ L1

U3
V2
U1

Vo

Di

Figure 6: A circuit for carry propagation with optimal
average delay

The upper bounds can be obtained by a special circuit
design that uses similar techniques as for the fast aver-
age case OR-circuit. It is briefly described in figure 6.

)) - n/)

Each prefix p; is computed separately by summing up
the Z;. This is done in blocks of increasing length start-

ing from the right.

Lemma 7 and lemma 6 implies

Prlpro(Z) >21-1] <
Prtime(X) > 8t+5] <

Choosing 7 :=

|8 —~IS

2t

this circuit C can be bounded as

etime(C) < >, Pr[time(X) =8t +5]- (8-t +5)
< Prtime(X) < 8-7+45]-(8-7+5)

+ Prtime(X) > 8-7+5]-(4-logn + 3)

-1

- €eXp (W) ;
_9t

+ exp (—22¢+2d) .

llogn + 2% + 2d the expected delay of

<8745+ (4logn—|—3)-n-2_2r -exp (_—f)

224424

<87 + (4-logn+3)-n-272-145
8- (llogn + 2% +2d) + 6 .

For the Av-measure we choose
8- (llogn + 2% +2d) + 5

T
with

T =

This gives

> . Prltime(X)=8-t+5]-

exp exp (%(N’ —5)—2¢ 2d) .

T '(8t+5)
n

< Ebgn “texp (—%) -T~1(8-t+5)

logn — 2
< E exp (22¢+2¢) exp (22¢+2¢) < L.

5 Conclusion

The following table summarizes the average case com-
plexity results shown for basic Boolean functions.

function
distribution etime avtime

OR 2— s O(llogn)
uniform

OR, AND, O©(min(2¢, O(min(llogn

EQUAL logn)) +24,logn))
DDepth(d)

PARITY, O(logn) O(logn)

MAJORITY
uniform

ADDITION O(min(llog n+ O(min(llog n+
DDepth(d) 2¢,1logn)) 2¢,1logn))

THRESHOLD? O(min(log a+ O(min(llog n+
DDepth(d) 24,1logn)) loga + 24,

logn))

The upper bounds match the lower bounds in a strong
sense. According to the definition it is only required
that for each distribution g computable in depth d the
average delay complexity is small, that is for each p one
can find an average delay efficient circuit. Our construc-
tion actually yield a single circuit design that means ef-
ficient for all x4 in DDepth(d) (up to a permutation of
the inputs). For the addition we have even obtained a
single circuit that is optimal for all d simultaneously.
These new circuit designs may have practical applica-
tions since the constant factors are small. Most notably,
we have shown that for a large class of distributions the
addition can be performed with an average delay of or-
der llogn. These techniques can also be exploited to
design algorithms for parallel machines achieving aver-
age time bounds of sublogarithmic order.

By extending these methods we can achieve an optimal
average delay for addition and similar prefix problems
by circuits of linear size [JRSW93] as it was obtained
by Ladner/Fischer for the worst case [LaFi80].
Expected case upper bounds of order O(llogn) for the
addition and other prefix problems have also been ob-
tained by Reif for a different model [Reif93]. He ob-
served that circuit depth O(llogn) ist sufficient if one
allows a small portion of input vectors for which a wrong
result will be obtained. Conbining such a circuit with
a worst case circuit of depth O(logn) that is always
correct and using one gate of unbounded fanin a circuit
with expected delay O(llogn) can be constructed. Thus
only two cases occur, the optimal averge case behaviour
or the worst case. Our circuits dynamically adapt to
each specific input and always use not much more than
the minimal set of input bits necessary to compute a
prefix correctly.

Acknowledgement

We want to thank Thomas Zeugmann, Maciej
Liskiewicz, Michael Goedecke, Stephan Weis, Ingo We-
gener, and Rolf Wiehagen for fruitful discussions, help-
ful hints and pointers to the literature.

References

[BCGL92] S. Ben-David, B. Chor, O. Goldreich,
M. Luby, On the Theory of Average Case
Complezity, J. CSS 44, 1992, 193-219.

I. David, R. Ginosar, M. Yoelli, An Effi-
ctent Implementation of Boolean Functions
and Finite State Machines as Self-Timed
Circuits, ACM SIGARCH, 1989, 91-104.

V. Krapchenko, Depth and Delay in a Net-
work, Soviet Math. Dokl. 19, 1978, 1006-
1009.

Y. Gurevich Average Case Completeness,
J. CSS 42, 1991, 346-398.

A. Jakoby, R. Reischuk, C. Schindelhauer,
S. Weis, The Average Case Complezity of
the Parallel Prefiz Problem, Technical Re-
port, TH-Darmstadt, 1993, to appear at
ICALP, 1994.

[DGY89]

[Krap78]

[Gure91]

[TRSW93]

[LaFi80]

[LBS93]

[Levi86]

[LiVi92]

[Milt91]

[Reif93]

[ReSc93a]

[ReSc93b]

R. Ladner, M. Fischer, Parallel Prefic Com-
putation, J. ACM 27, 1980, 831-838.

W. Lam, R. Brayton, A. Sangiovanni-
Vincentelli, Circuit Delay Models and Their
Ezact Computation Using Timed Boolean
Funciions, ACM/IEEE, Design Automa-
tion Conference, 1993, 128-133.

L. Levin, Average Case Complete Problems,
SIAM J. Computing 15, 1986, 285-286.

M. Li, P. Vitanyi, Average Case Complez-
ity under the Universal Distribution Equals
Worst-Case Complezity, IPL 42, 1992, 145-
149.

P. Miltersen, The Complezity of Malign En-
sembles, STAM. J. Comput. 22, 1993, 147-
156.

J. Reif, Probabilistic Parallel Prefiz Com-
putation, Comp. Math. Applic. 26, 1993,
101-110.

R. Reischuk, C. Schindelhauer, Precise
Average Case Complezity, Proc. 10. GI-
AFCET Symposium on Theoretical As-
pects of Computer Science, STACS 1993,
Springer Lecture Notes, 650-661.

R. Reischuk, C. Schindelhauer, Precise Av-
erage Case Complezity Measures, Technical

Report, ICSI Berkeley, TR-93-049, August
1993.

