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Abstract. This chapter is a survey on TCP performance in mobile ad-hoc networks. We first describe
the problems of standard TCP in ad-hoc networks, and then present the design space and existing solutions
to improve TCP throughput. Particularly, we use a detection-response framework to categorize different
approaches and analyze the possible design options.

1. Introduction. A mobile ad-hoc network (MANET) is a special type of wireless
networks. It consists of a collection of “peer” mobile nodes that are capable of commu-
nicating with each other without help from a fixed infrastructure. The interconnections
between nodes are capable of changing on a continual and arbitrary basis. Nodes within
each other’s radio range communicate directly via wireless links, while those that are far
apart use other nodes as relays in a multi-hop routing fashion. The typical applications of
MANETs include conferences or meetings, emergency operations such as disaster rescue,
and battlefield communications.

Compared with the traditional wired internet, MANETs have two fundamental differ-
ences, its usage of wireless channel and frequent node mobility. Both of these two charac-
teristics have significant impact on the TCP performance.

1.1. Wireless Channel. In a MANET, all nodes share the wireless medium and
communicate through radios. The problem of contention and collision in such wireless
networks is much more serious than in the wired environment. Currently, IEEE 802.11 [13]
is the de facto Medium Access Control (MAC) protocol for Wireless LANs. It coordinates
the medium access by Distributed Coordination Function (DCF), also known as CSMA/CA.
It can operate in two modes, ad hoc mode and infrastructure mode. A central base station
is needed to operate in infrastructure mode, while the ad hoc mode is for the non-centralized
type of communication as in MANETs.

However, it is doubted by some researchers [23] whether IEEE 802.11 works well in
multi-hop ad hoc networks, particularly when TCP is used as the transport layer protocol.
Existing research work [11] has shown that TCP performance decreases drastically as the
hop count becomes larger and larger.

Another problem with wireless channel that hurts TCP performance is, the high bit
error rate of wireless links. Nowadays, the wired links are already so stable that we can
ignore the link errors. But it is not yet the case as far as wireless links are concerned.
Designed for wired networks originally, TCP, particularly its Congestion Avoidance and
Control [14] mechanism, does not consider link errors as a possible reason for packet errors
or losses. This can significantly degrade the performance of TCP over wireless networks
including MANETs.

1.2. Node Mobility. The node mobility we discuss here is on a continual and arbitrary
basis, i.e., the nodes can keep moving in an arbitrary speed, toward an arbitrary direction.
A typical scenario is people communicating with each other while driving their cars. It is a
nature of MANETs.

Due to the limited communication range of radios, such constant node mobility imme-
diately leads to frequent link breakages and therefore route changes. Many ad-hoc routing
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protocols have been designed to establish and maintain routes under mobility. But it is not
clear how TCP should react to mobility-induced events, such as route changes. In fact, it
has been shown in [12] that the legacy TCP performs poorly under mobility.

In general, a MANET is a very complicated network system. There are many research
problems that are worth exploring. In this chapter, we focus on how TCP performs over
MANETs and the approaches to improving TCP performace, which is a very important issue
since TCP is the mostly used transport layer protocol in current Internet. The performance
metric we are particularly interested in is throughput. Other metrics, such as delay and
fairness, are also important and beyond the scope of this chapter. In other words, we are
more interested in throughput performance of long run TCP sessions such as file transfer
applications using FTP on top of TCP. The approaches we study here are also applicable
to short TCP sessions, although where typically people are more concerned about the delay
performance.

The rest of this chapter is organized as follows. We give an overview in section 2 on
the TCP Congestion Control mechanisms. We explain in details in section 3 why TCP
performs poorly in MANETs, and discuss the solution space and approaches in sections 4
through 7. Section 8 is a summary of the performance studies of the approaches we cover
in this chapter.

2. Overview of TCP Congestion Control. TCP is a sliding window protocl. It
is so called ‘self-clocking’ in that the sender uses acknowledgments as a ‘clock’ to trans-
mit more packets to the network. To dynamically adapt to the underlying network load,
TCP employs a Congestion Control algorithm, which consists of three major components:
Additive-Increase Multiplicative-Decrease (AIMD), Slow Start, and Fast Recovery.

The basic idea of TCP Congestion Control is that, whenever a packet is lost (or more
precisely, when the TCP sender believes a packet is lost), the sender should slow down
the sending rate. This slowdown is achieved by reducing the congestion window size. The
rationale behind this is, TCP assumes only congestion causes packet losses. Here the con-
gestion is essentially buffer overflow occuring at intermediate routers. There are two types
of events that can indicate packet losses, timeouts and triple duplicate acknowledgements.
TCP reacts differently to these two types of loss events.

2.1. AIMD. When TCP does not detect congestion, it conservatively increases the
sending rate by increasing the congestion window size. Roughly speaking, after the initial
phase, if there is no loss event during one round trip time, the congestion window size is
incremented by one packet. By this additive increase, TCP can slowly probe the available
bandwidth without injecting too many packets to congest the network.

On the other hand, when a loss event occurs, TCP halves a threshold value that bounds
from above the congestion window size. This is again conservative in terms of the load the
send can add to the network.

2.2. Slow Start. In the beginning of a TCP connection, the congestion window size
is initialized to be 1 segment. This yields a very low initial sending rate. In order to
quickly grow to the available bandwidth which could be much larger, TCP sender doubles
its congestion window size every RTT time during the initial phase, until the congestion
size reaches a pre-determined threshold value. Beyond this threshold value, the window size
increase becomes linear. This initial phase is called the slow start phase. In fact, TCP enters
slow start not only in the beginning of a connection. TCP will enter slow start whenever
a timeout loss event occurs, i.e. the TCP sender will reset the congestion window size to 1
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if a timeout event occurs and then grow the window size exponentially until reaching the
threshold value.

2.3. Fast Recovery. Slow start is the reaction of TCP to timeout events. When
there are triple duplicate acknowledgments, TCP sender simply halves its current congestion
window size and then increases it linearly. This reaction to triple duplicate acknowledgments
without slow start is called fast recovery.

3. Problems of TCP in MANETs. As reviewed in section 2, TCP assumes that
network congestion has happened whenever a packet is lost. It then invokes appropriate
congestion control actions including window size reduction. Although this assumption is
reasonable for wired networks, it is questionable for wireless networks especially MANETs.
Other than congestion (i.e. buffer overflow), possible causes of packet losses in MANETs
include, wireless link errors, MAC layer losses due to channel contention, and link breakages
due to node mobility. All those causes that are not related to congestion can result in
unnecessary congestion control, which will degrade the TCP performance.

3.1. Wireless Link Errors. Wireless links posses high bit error rates that can not be
ignored. But TCP interprets packet losses caused by bit errors as congestion. As a result,
its performance suffers in wireless networks when TCP unnecessarily invokes congestion
control, causing reduction in throughput and link utilization.

There has been much research work (e.g., [1, 2]) in improving TCP performance over
wireless links. The Snoop Protocol [3] is a typical approach to solving the problem in
cellular networks. In this protocol, a snoop agent is located at the base station, which
monitors the packets that pass through the TCP connection in both directions. It caches
the TCP segments the acknowledgements of which have not been received. If a loss event
happens for a cached packet, the snoop agent can retransmit the packet directly without
having to wait for the retransmission from the sender.

However, most of the proposed mechanisms are designed for infrastructure-based net-
works and depend on the base stations in distinguishing the error losses from congestion
losses. Since mobile ad-hoc networks do not have such infrastructure, these mechanisms
cannot apply.

Fortunately, this issue is not that serious when link layer acknowledgments are used as
in IEEE 802.11. Now, if a packet is corrupted due to wireless link errors, the MAC receiver
will not acknowledge the original packet. After a certain timeout without receiving the
acknowledgement from the receiver, the MAC sender will retransmit the packet. Since this
is handled at the MAC layer, the wireless link errors are transparent to TCP.

3.2. MAC Layer Losses due to Channel Contention. In a shared wireless
medium, due to the channel contention among all nodes, it is not guaranteed that a packet
sent out by node A will be received successfully by its destined neighbor B. If RTS/CTS
handshake is required, it is even not guaranteed that node A can have the right to send
a packet unless it successfully sends out an RTS message and receices the corresponding
CTS message from the receiver B. In IEEE 802.11 standard, it specifies that, if a node
does not receive a CTS after sending or retransmitting 4 RTS messages, or does not receive
a link layer acknowledgement after sending or retransmitting 7 DATA messages, the node
determines the link is broken and should drop the DATA packet it tries to transmit.

This type of packet loss has nothing to do with buffer overflow. It can happen even
there is only one packet in the buffer. A recent research work [10] has shown that, in
general, buffer overflows are rare, while most packet drops experienced by TCP are due to
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link contentions. It is certainly a wrong reaction to invoke congestion control when such
MAC layer losses occur.

3.3. Link Breakages due to Mobility. In addition to all links being wireless, fre-
quent route disruption events – route failures and route changes – due to mobility can cause
serious problems to TCP as well. Given a source node S, a destination node D, and a pre-
established route from S to D which traverses an intermediate node I, a route failure occurs
(at node I) if the packets arrive I but the routing protocol can not find any valid route to
D (even though there may exist such a route). On the other hand, a route change occurs if
the pre-established path from I to D is broken but the routing protocol successfully finds
another route and replaces the broken one. We examine below what impact route failures
and route changes have on TCP.

First, route failures can cause packet drops at the intermediate nodes, which will be
interpreted as congestion loss. When forwarding packets along a pre-established route, if
the downstream neighbor of an intermediate node moves out of its transmission range, a
link breakage occurs. The outstanding packets have to be queued at this node. A properly
designed routing protocol will try to establish another route to the destination. But if no
other routes can be found (e.g., in case of network partition), those queued packets have
to be dropped. Consequently, if the sender does not receive the acknowledgments of these
packets within an estimated amount of time, a timeout event happens and TCP enters the
slow-start process as if congestion occurred.

Second, even if the underlying routing protocol can replace the broken routes in a
timely manner, route changes can introduce frequent out-of-order packet delivery, which
will also confuse the current TCP control mechanism. Using the above example, assume
another route is established from S to D after the downstream link from I is broken (the
new route may or may not go through I). It is possible that the end-to-end delay on the
new route is shorter than the old route, so that a later packet traversing the new route
arrives earlier than a packet being forwarded through the old route. This results in an
out-of-order packet delivery. The cumulative acknowledgement mechanism of TCP will
generate duplicate ACKs before receiving the expected packet in sequence. If the sender
receives three of such duplicate ACKs, TCP also presumes the network is congested and
invokes fast retransmission.

In this chapter we mainly cover the second and third problems, especially the third
problem. We next describe the state-of-the-art approaches to improving the performance of
TCP over MANETs.

4. Design Space and Existing Solutions. To overcome the drawbacks of the stan-
dard TCP in MANETs, the first step is to distinguish between the real congestion and those
other causes, such as link contention and route changes, which would result in the same loss
events of timeout and/or 3 dup-ACKs.

4.1. Distinguishing Link Contention from Buffer Overflow. Fu et al has shown
in [10] that, in MANETs, there exists an optimal window size W ∗, at which TCP achieves
highest throughput. This optimal value depends on the network topology and traffic pattern.
The existence of such optimal window size is because at most h/4 nodes can transmit
concurrently on a h-hop chain due to the interference among neighboring nodes. But TCP
normally grows its window size Wavg much larger than this optimal value.

In contrary to the intuition, this larger window size does not increase TCP throughput,
but decreases the throughput instead. This can be explained by the link contention. Since
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now there are more than W ∗ packets in the congestion window, and these packets are
distributed among the intermediate nodes on the path from source to destination, most
nodes have non-empty buffers. Although the buffers are not full, the nodes will try to
contend for the wireless channel under the random access control of IEEE 802.11. This
eventually generates more link contention among nodes compared with if there are only W ∗

packets in the window, and in turn reduces TCP throughput due to the reduced spatial
reuse.

Two link layer techniques are proposed in [10] to improve TCP performance, Distributed
Link RED (LRED) and Adaptive Pacing. LRED assigns a link drop probability to the head-
of-line packet in the buffer based on the average number of link layer transmission retries of
recent outgoing packets. In IEEE 802.11 link layer, the packets are dropped with probability
1 after exceeding the retry thresholds. In LRED, this drop probability is tuned and adaptive
to the recent link contention.

Adaptive Pacing is also a link layer approach. It tries to solve the exposed receiver
problem, by adding an additional back-off period of a packet transmission time. The purpose
is to reduce the link contention caused by exposed receivers.

4.2. Distinguishing Link Breakages from Congestion. In order to discriminate
the packet losses due to link breakages from those caused by buffer overflow, we need to
answer the following two questions:

• How can the TCP sender/receiver detect the route disruptions?
• How should the TCP sender/receiver respond to the route disruptions?

First, to alleviate the performance degradation in MANETs, it is desirable for TCP to
be able to distinguish between network congestion and non-relevant events such as route
failures and route changes. It is not sufficient to determine from the superficies of packet
losses or duplicate ACKs. More detailed detection is necessary in order to find out the real
cause behind. This can be done by analyzing the feedback from network or transport layer.
The network layer feedback includes the information provided by the underlying ad hoc
routing protocols, such as the routing error messages. The transport layer feedback is the
information generated by and accessible to the transport protocol, such as the timing and
sequence of TCP packets.

Second, appropriate reactions other than congestion control should be taken as soon as
the TCP sender discovers that such superficies is not induced by congestion, but by route
disruptions. The effectiveness of any performance enhancement approaches highly depends
on the timeliness of responses to the route disruptions. Intuitively, the ideal solution to
the route disruption problem is for the TCP to freeze its current state (e.g., to freeze the
congestion window size and RTO, etc.) as soon as the route breaks (i.e., the sender stop
sending more packets) and resume as soon as a new route is found [5, 12, 18]. However, this
requires instant notification or feedback from the network layer at the intermediate nodes to
the transport layer at the TCP senders. Such a feedback system can be difficult to implement
and expensive to operate. Other simpler, less expensive, but still effective alternatives are
fixing the RTO, temporarily disabling congestion control, or instantly recovering during
congestion avoidance.

Recently, there have been several approaches proposed to address this problem, all fitting
in the detection-response framework, i.e., consisting of both the detection and response parts.
We can categorize all existing approaches according to the different detection and response
mechanisms of them. We will discuss each of them in the following sections.
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5. Detection by Network Layer Feedback. Route changes are triggered by link
breakages at some intermediate nodes (possibly the sender itself). Detecting these link
breakages is a basic requirement for any ad-hoc routing protocol. If the intermediate nodes,
where the breakages happen, can convey this information back to the sender, the TCP
controller at the sender will be able to detect the event. We call this a network layer feedback
mechanism. The majority of the existing approaches employ this detection mechanism,
namely TCP-F (TCP-Feedback) [5], ELFN (Explicit Link Failure Notification) [12], ATCP
(Ad hoc TCP) [18], and TCP-BuS [17].

5.1. TCP-F. TCP-F (TCP-Feedback) [5] relies on the network layer at intermediate
nodes to detect the route failures due to the mobility of downstream neighbors along the
route. TCP-F puts the TCP sender in one of the two states: active state and snooze
state. In the active state, TCP sender follows the standard TCP behavior. As soon as an
intermediate node detects a link failure, it explicitly sends a route failure notification (RFN)
packet to the sender and records this event. After receiving the RFN, the sender enters the
snooze state, stops sending further packets and freezes the values of state variables such
as retransmission timer and congestion window size. The sender remains in the snooze
state until the intermediate node notifies it of the restoration of the route through a route
reestablishment notification (RRN) packet. Then it enters the active state again.

Thee link breakage is first detected at the intermediate node. The TCP sender can not
detect it until a special RFN packet arrives from the failure point. Similarly, the detection
of restoration depends on the special RRN packets from some intermediate nodes. The
RFN and RRN packets are transported to the sender by TCP. There is a potential danger
of malfunction if the RFN or RRN packets are lost.

5.2. ELFN. ELFN (Explicit Link Failure Notification) [12] is another technique based
on feedback. The objective is to provide the TCP sender with information about link and
route failures so that it can avoid taking congestion control actions. ELFN is based upon
DSR [16] routing protocol. To implement ELFN message, the route error message of DSR
was modified to carry a payload similar to the “host unreachable” ICMP message. When a
TCP sender receives an ELFN, it disables its retransmission timers and enters a “stand-by”
mode, which is similar to the snooze state of TCP-F. Instead of using an explicit notice to
signal that a route has been reestablished, a packet is sent periodically to probe the network
to see if a route has been established. After finding a new route, the sender leaves the
stand-by mode, restores its retransmission timers and continues as normal.

Compared with TCP-F, the detection in ELFN is achieved with the help of modified
route error messages, which are forwarded under the control of the routing protocol. The
detection is moved up to the transport layer only at the TCP sender. No extra packets,
such as RFN and RRN packets, are necessary.

5.3. ATCP. ATCP (Ad hoc TCP) [18] utilizes network layer feedback too. It relies
on the network to generate appropriate ICMP host unreachable messages and propagate
them back to the TCP sender. In addition to the route failures, ATCP also tries to deal
with the problem of high bit error rate. The TCP sender can be put into a persist state,
congestion control state or retransmit state. ATCP inserts a thin layer between TCP and
IP. It listens to the network state information by monitoring ECN (Explicit Congestion
Notification) messages [8] and ICMP “Destination Unreachable” messages, and then puts
TCP at the sender into the appropriate state. On receiving a “Destination Unreachable”
message, the sender enters the persist state. The TCP at the sender is frozen and no packets
are sent until a new route is found, so the sender does not invoke congestion control. The
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ECN is used as a mechanism to explicitly notify the sender the network congestion along
the route being used. On receipt of an ECN, congestion control is invoked without waiting
for a timeout event. If a packet loss happens and the ECN flag is not set, ATCP assumes
the loss is due to bit errors and simply retransmits the lost packet.

5.4. TCP-BuS. TCP-BuS [17] is similar to TCP-F in detection mechanisms. Two
control messages (ERDN and ERSN) related to route maintenance are introduced to notify
the TCP sender of route failures and route reestablishment. These indicators are used to
differentiate between network congestion and route failures as a result of node movement.
ERDN (Explicit Route Disconnection Notification) message is generated at an intermediate
node upon detection of a route disconnection, and is propagated toward the sender. After
receiving an ERDN message, the sender stops transmission. Similarly, after discovering a
new partial path from the failed node to the destination, the failed node returns an ERSN
(Explicit Route Successful Notification) message back to the sender. On receiving ERSN
message, the sender resumes data transmission.

TCP-BuS considers the problem of reliable transmission of control messages. If a
node A reliably sends an ERDN message to its upstream node B, the ERDN message
subsequently forwarded by node B can be overheard by A (assuming same transmission
ranges of A and B). Thus, if a node has sent an ERDN message but can not overhear
any ERDN message relayed by its upstream node during a certain period, it concludes the
ERDN message is lost and retransmits it. The reliable transmission of ERSN is similar.

To summarize, these mechanisms all rely on the intermediate nodes, where the route
failures are detected, to send some control messages to notify the TCP sender. We categorize
and call them the network layer feedback mechanisms.

6. Detection by Transport Layer Feedback. It is also possible to detect route
disruptions by looking at the timing and sequence information of TCP packets. We call this
the transport layer feedback mechanism. There are two known approaches which employ
this detection mechanism: the consecutive timeouts heuristic [7] and TCP-DOOR [22].

6.1. Consecutive Timeouts Heuristic. Since routes are likely to be broken fre-
quently in mobile environments, routing algorithms for MANETs are designed to repair
broken routes quickly. To take advantage of this capacity, it is reasonable to let a TCP
sender retransmit the unacknowledged packets at periodic intervals rather than having to
wait increasingly long periods of time between retransmissions.

The fixed RTO [7] technique adopts this idea and does not rely on the feedback from
lower layers. In fact, a heuristic is employed to distinguish between route failures and conges-
tion. When timeouts occur consecutively, the sender assumes a route failure has happened
rather than network congestion. Here, the detection of route failures is achieved when the
TCP sender encounters the second successive retransmission timeout. This detection may
be not correct. But presumably, the probability of route failures is higher than congestion
when consecutive timeouts occur, especially in highly dynamic environments.

6.2. Detection through Out-of-Order Packet Delivery. In an ideal TCP session,
the packets sent by one end should arrive at the other end in sequence and in order. However,
there are two cases in which this ideal order can be violated. One case is retransmissions
due to packet losses – a previously transmitted sequence number has to be repeated later.
We call this an Out-of-Sequence event. The other case is Out-of-Order (OOO). It happens
when a packet sent earlier arrives later than a subsequent packet.
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Fig. 6.1. A Possible Case of Route Change

OOO often implies route changes in the network. Consider two hosts communicating
over a fixed route in the network. Assuming the FIFO queues are used at every node, all
packets should be received in the same order as they are sent. However, if the route changes
during the communication session so that a later packet P2 takes a different path than an
earlier packet P1 (see Fig. 8.1), and if the new route taken by P2 is “faster” or “shorter”
than the one taken by P1, P2 can arrive before P1, therefore OOO delivery can happen.

While we have largely ignored the route change events in a wired network because they
are such an infrequent event, we can no longer do so with mobile ad-hoc networks. In
mobile ad-hoc networks, route changes can happen frequently and multiple times during a
TCP session, especially in a highly dynamic environment. Ignoring OOO delivery can have
serious performance implication in mobile ad-hoc networks.

Packet losses caused by route changes are not related to network congestion. It is there-
fore not advisable to invoke congestion control to slow down the sending rate. Unfortunately
in TCP, if a data packet is delivered to the receiver three packets later than a subsequent
one, a triple-duplicate-ack condition will happen and the sender will halve its congestion
window size, halve the slow start threshold, and reset the the retransmission timer (RTO).
It can be worse, if the data packet is delivered so out-of-order that the sender times out
when waiting for the ACK, which will result in a slow start that is more detrimental to
TCP throughput. If such OOO events happen multiple times in one TCP session, the TCP
throughput can become deteriorated.

By detecting these OOO events and responding appropriately, we can improve the
throughput. Although an OOO delivery may not directly result in triple duplicate ACKs
or timeout, the sender still can learn about the current network state of route changes, and
possible performance improvement action can be taken to avoid unnecessary TCP slowdown.

In a TCP session, OOO can happen in either direction. Both streams of data packets
and ACK packets can be delivered out of order. Accordingly, OOO detection should be
carried out by both ends: sender detecting Out-of-Order ACK packets and receiver detecting
Out-of-Order data packets.

6.2.1. Sender Detecting Out-of-Order ACK Packets. Every TCP ACK packet
carries a sequence number indicating the highest data segment number that the receiver
has received consecutively so far. Since there are no retransmissions of an ACK packet
(duplicate ACK is not a retransmission), the sequence number of an ACK sent later is
impossible to be less than any ACK sent earlier. This non-decreasing property of ACK
sequence numbers makes it simple for the sender to detect OOO delivery of non-duplicate
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ACK packets: whenever the sender receives an ACK packet, it can compare the sequence
number it carries with the one in the previous ACK, and if the current sequence number is
smaller, the sender can surely declare OOO.

Detecting OOO delivery of duplicate ACK packets requires additional ordering infor-
mation, because otherwise two duplicate ACK packets would have the identical content. To
achieve this, we propose to add to the TCP ACK header a one-byte TCP option, called
ACK duplication sequence number (ADSN). When TCP receiver sends first ACK packet for
a data segment, the ADSN option is set to zero. Whenever it sends out a duplicate ACK
for the same sequence number, it increments the ADSN number. Under the extremely rare
condition that ADSN ever reaches 256, it will be wrapped back to zero. This way, each
duplicate ACK will carry a different ADSN field and the TCP sender can compare this field
to detect an OOO delivery.

6.2.2. Receiver Detecting Out-of-Order Data Packets. The method of compar-
ing sequence numbers does not apply to detecting OOO data packets, because TCP retrans-
mission can cause a data packet with lower sequence number to arrive after one with higher
sequence number. To reliably detect OOO data packets, we must include strict ordering
information in the TCP data packet. One way to achieve this is to add to the TCP header
a two-byte TCP option, called TCP packet sequence number (TPSN). Starting from zero,
and incremented with every data packet sent (including retransmissions), this TPSN records
the exact order of the data packet stream. This is different from the normal TCP sequence
number because the latter refers only to the data segment stream – a retransmitted packet
always carries the old data segment sequence number. Similar to TCP sequence number
wrapping, TPSN wraps around 216 as well. With TPSN option, the TCP receiver can detect
OOO reliably.

Another method that can facilitate OOO detection without needing a new TCP option
is the use of TCP timestamp option [15]. When this option is used, the TCP sender records
the precise time each packet is sent in the TCP packet header. Since TCP timestamp
option is already used in many TCP algorithms that operate on fine-grain timers, when it
is available, the TCP receiver can compare the timestamp in each packet with the previous
one to detect OOO.

7. Response Mechanisms. When route failure or route change events are detected,
TCP can respond accordingly to avoid the performance degradation. In case of route failures,
congestion control by slow-start does not help to make better use of the network, but in fact
potentially reduce the performance by backing off the retransmission timer. The optimal
reaction should be to freeze TCP, i.e., the sender stops sending more packets. For route
changes, it depends on the link utilization of the newly established routes whether or not
the congestion control is appropriate. If the new routes are less utilized, it is too pessimistic
to reduce the congestion window or slow down the sending rate. Instead, a better choice
could be to disable these congestion control actions in a certain period of time. Another
possibility is, if the congestion control has been invoked, to recover instantly from a previous
state.

Since TCP sender bears the burden of congestion control, the response actions should
mainly take place at the sender. Therefore, if TCP receiver or some intermediate node
detects such events, it should notify the sender, for example, by setting a special flag bit
in the TCP ACK packet. Once the TCP sender receives such notification, or it detects
such events directly from the ACK stream, it can accordingly take the following response
actions: freezing TCP, fixing the RTO, temporarily disabling congestion control, or instantly
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recovering during congestion avoidance.

7.1. Freezing TCP. Freezing TCP mainly involves two steps:
1. Completely Stop sending further packets (new or retransmissions).
2. Freeze all timers, the sending window of packets, and the values of state variables

such as RTO and cwnd.
All the four approaches based on network layer feedback (TCP-F, ELFN, ATCP, TCP-

BuS) employ this response mechanism. The detailed operations are slightly different, par-
ticularly how to recover from the frozen state. We next describe several design options in
this mechanism.

When an intermediate node detects a link breakage (this can be done at the MAC
layer as seen in section 3.2), the first design choice to make is, how to propagate the link
breakage information to the TCP sender. One option is to take advantage of the route
error messages of underlying routing protocol, as in ELFN. The other option is to send a
special notification packet to the sender, as in TCP-F and TCP-BuS. Furthermore, during
the propagation process from the failure node to the sender, each intermediate node may
attempt to repair the route locally and stop the propagation if the repair is successful.

Upon receiving the link breakage notification from the failure node, the TCP sender
should immediately stop sending more packets even if the congestion window allows to
do so, since the route being used is broken. Accordingly, the sender should also stop the
retransmission timers, freeze related state variables, especially RTO and cwnd. The TCP
state of the sender is kept frozen until a new valid route is established. The period of the
sender being frozen may be long or short, which is dependent on the network topology and
nodes movement.

For the TCP sender to leave the frozen state, it can wait for another notification from
an intermediate node that a new valid route is established. Or more actively, it can probe
the network periodically with a short HELLO-type message until it learns of a valid route.
TCP-F and TCP-BuS use the former method, while ELFN uses probing.

However, after the TCP sender leaves the frozen state and resumes the transmission,
it is not a simple decision to make what values the state variables should take. Intuitively,
the state variables can continue with their frozen values. An alternative is, as proposed in
ATCP, to assign 0 to TCP’s receiver advertised window and assign 1 segment to congestion
window size. The argument is that, it may result in congestion at some intermediate node
if using the previous congestion window for the new route. Hence when TCP resumes
transmission, it will enter slow start process.

The advantage of freezing TCP is, the sender can react very quickly to the link failure
(almost in real-time, i.e., as soon as it is detected), and therefore minimizes the number of
packet losses and subsequent delays. This benefits from the timely network layer feedback.

However, the disadvantage of relying on network layer feedback is, it results in a rein-
vention of feedback support in each new ad hoc routing protocol. On the contrary, transport
layer feedback results in a reusable mechanism for all ad hoc routing protocols. Addition-
ally, the reliable transmission of the feedback to the TCP sender further complicates the
approaches based on network layer information. Next, we describe three response mecha-
nisms that do no rely on the network layer feedback and hence avoid these problems.

7.2. Fixed RTO. Fixed RTO [7] is a very simple responding mechanism, originally
coming from the consecutive timeouts heuristic. If the sender encounters two consecutive
retransmission timeouts, it assumes some events other than congestion happen. Then the
value of retransmission timeout is fixed, without incurring exponential backoff. The RTO
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remains fixed until the route is re-established and the retransmitted packet is acknowledged.
This simple technique is particularly effective when network partition happens. Without

fixing the RTO, it will become longer and longer exponentially, which implies that the chance
to probe a valid route is smaller and smaller.

An improved approach is, not only to fix the RTO, but also to reset it to the initial value
which is a short time period. In other words, it is better to probe the network frequently
after a network partition is believed to have happened in order to avoid wasting time idling.

7.3. Disabling Congestion Control. This response mechanism is from TCP-
DOOR [22]. Since we have mentioned that OOO is likely caused by route changes and
not by congestion, one way to avoid the undesired congestion control effects is for the TCP
sender to temporarily disable congestion control action whenever an OOO condition is de-
tected. That is, for a time period T1 after detecting an OOO, TCP sender will keep its state
variables constant, such as the retransmission timer (RTO) and the congestion window size.
Setting the length for this disabled period is a tradeoff.

As we have noticed earlier, this is not guaranteed to be appropriate. If the newly
established routes after the link breakages are also much utilized or even more congested
than the old routes before the breakages, congestion control actually should not be disabled.
To be even more conservative, slow start may be invoked as suggested in ATCP. In general,
if the traffic in a MANET is not heavy, disabling congestion control can improve the TCP
performance (as proven by the supportive results later); otherwise, congestion control or
even slow start should be invoked.

7.4. Instant Recovery. This is also from TCP-DOOR [22]. The detection of OOO
condition implies that a route change event has just happened. Therefore, if during the
past time period T2 the TCP sender has suffered from “congestion symptoms” (such as
gross timeout or three duplicate ACKs) and entered the congestion avoidance state (such as
halving its window size), it should recover immediately to the state before such congestion
avoidance action was invoked. (A similar idea was first suggested by Sally Floyd [9].) The
rational for this is the following. If the congestion indication event was a gross timeout, it
was likely caused by the temporary disruption during some route change. The fact that the
TCP sender has begun receiving ACK means that the disruption was over and the TCP
should quickly resume the pre-route-change state, without going through slow start or linear
window recovery. Similarly, if congestion avoidance was triggered by a three-duplicate-ACK
event, these duplicate ACKs were likely caused by OOO deliveries or temporary route
disruption, not by congestion losses. And likewise, this condition would have passed and
TCP should resume its previous state.

8. A Summary of Performance Studies. We have seen several approaches in pre-
vious three sections, all of which fit in the detection-response framework very well. Although
it is by no means a complete list of existing approaches, we believe they are representative
with respect to possible design choices. Table 8.1 summarizes the detection and response
mechanisms of these approaches.

Following is a summary of the performance studies of these approaches. Our purpose
is not to compare them among each other. Rather we want to briefly show how well each
approach performs in terms of improvement over standard TCP. The results are cited from
the papers where these approaches are proposed.

8.1. TCP-F. In [5], the authors simulated a single unidirectional bulk transfer session.
The network was viewed as a black box. There were two simulation parameters, failure rate
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Table 8.1
Detection and Response Mechanisms of Each Approach

Approach Detection Response

TCP-F Network Feedback Freezing TCP

ELFN Network Feedback Freezing TCP

ATCP Network Feedback Freezing TCP

TCP-BuS Network Feedback Freezing TCP

Fixed RTO Consecutive Timeouts Fixing RTO

TCP-DOOR Out-of-Order Delivery Disablling CC + Instant Recovery

(number of route failures in the total simulation time) and route re-establishment delay
(RRD). This is a very simplified simulation model. Figure 8.1 shows the throughput of
TCP-F vs. TCP under different RRDs when there were 10 route failures in 100 seconds of
simulation time. TCP-F outperformed standard TCP when RRD was long.
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Fig. 8.1. Throughput of TCP-F vs. TCP for 10 failures with data rate of 12.8 Kbps [5]

8.2. ELFN. In [12], the authors introduced a notion of expected throughput, which
is an upper bound of TCP throughput and used as a comparison basis to measure the
performance of ELFN. The simulation was done by using ns simulator. There were 30
mobile nodes in a 1500mx300m simulated area. The nodes followed the random waypoint
mobility model with 0 pause time. Figure 8.2 shows the throughput of ELFN and base
TCP as a percentage of the expected throughput under several mean speeds. Five probing
intervals were simulated (recall that in ELFN, TCP sender probes the network in order to
leave the frozen state). We can see that, with a reasonable value (i.e. neither too small nor
too large) of probing interval, ELFN outperformed base TCP.

8.3. ATCP. In [18], ATCP was implemented in FreeBSD kernel. Its performance was
studied using an exprimental testbed. The testbed consisted of five PCs which formed
a four hop network. A bit error rate of 10−5 was used for all experiments. To emulate
network partitions, a node was configured to periodically generate ICMP host unreachable
messages. Packet reordering was simulated by simply manipulating the order of the packets
in the queue. Figure 8.3 gives a comparison between ATCP and TCP when there were both
bit errors and packet reordering. Instead of throughtput, the data being compared was the
transfer time of a 1MB file.
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8.4. TCP-BuS. In [17], the authors studied the performance of TCP-BuS using their
own simulator which only implemented routing and transport protocols. The topology
was simply a chain of 20 nodes, which were separated from one another by 50 meters.
One link was randomly chosen to be disconnected in order to simulate route failures. In
figure 8.4, the delivery ratios of TCP-BuS, TCP-F and base TCP were copmpared. TCP-
BuS outperformed both TCP-F and base TCP in terms of delivery ratios for all frequencies
of route failures.

8.5. Fixed RTO. The simulator used in [7] was ns2. The authors simulated a network
of 50 nodes over a 1000mx1000m area. The mobility pattern was based on random waypoint
model with 0 pause time. The mean node speed was 10 m/s. Besides TCP connections,
there was background traffic of 10 or 40 constant bit rate (CBR) flows. It was reported that
fixed-RTO yielded about 70% gain in DSR throughput when there were 10 CBR flows. In
case of AODV routing protocol, the gain was about 8% for 10 CBR flows and increased to
48% for 40 CBR connections.

8.6. TCP-DOOR. The performance study in [22] was also done in ns2 simulator.
The network consisted of 20 nodes in a 1000mx750m area. Again, the nodes moved freely
according to random waypoint pattern with 0 pause time. The moving speed was ran-
domly chosen between 0 and 10m/s. Both non-congested (without background traffic) and
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Fig. 8.4. Delivery Ratios of TCP-BuS, TCP-F and base TCP [17]

congested (with CBR flows as background traffic) conditions were studied.
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Fig. 8.5. DSR-Cache-off with Congested condition [22]

In the simulation, DSR was used as the underlying routing protocol. In order to elim-
inate the effect of DSR route cache and isolate the performance gain of TCP-DOOR, the
route cache was turned off in one set of the simulations. The improvement ratio of TCP-
DOOR over base TCP is shown in figure 8.5 for the case of congested condition and the
route cache being turned off. The average improvement ratio was about 50%.
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