Ad Hoc Networks Winter 2007/2008

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Christian Schindelhauer schindel@informatik.uni-freiburg.de

Bachelor-Arbeit in der Informatik

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻12 ECTS-Punkte f ür Arbeit

- 4/5 der Note
- Umfang 3 Monate

➤3 ECTS-Punkte für Präsentation

- 1/5 der Note
- hochschulöffentlich
- vor zwei Prüfern (mit Beisitzer)

Master-Arbeit in der Informatik

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻Arbeit

- 27 ECTS-Punkte
- 6 Monate
- englischer oder deutscher Sprache

Präsentation

– 3 ECTS-Punkte

≻Siehe auch

- http://www.informatik.uni-freiburg.de/studienberatung/master/index.htm

Lab Course, Projekt, Teamprojekt

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Projekt im Bachelor of Computer Science
 - Plan im 5. Semester
 - 6 ECTS-Punkte
- Lab Course im Master of Computer Science oder Applied Computer Science
 - Plan im 2. Semester
 - 6 ECTS-Punkte

Teamprojekt im Master of Computer Science oder Applied Computer Science

- Plan im 3. Semester
- 14 ECTS-Punkte
- englischer oder deutscher Sprache

≻Siehe auch

- http://www.informatik.uni-freiburg.de/studienberatung/bachelor/index.htm
- http://www.informatik.uni-freiburg.de/studienberatung/master/index.htm

Topics

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Wireless Sensor Networks

- Medium Access Protocol
- Routing
- Lifetime
- Mobility and Scalability

Mobile Ad-Hoc-Networks

- 3-MANET

Peer-to-Peer-Networks

- TooFree
- 3-Nuts

Storage-Area-Networks

- Insane (File Area Network over the Internet)

≻Telematics

- Integrated Simulations for Self-organizing Networked Robots
- Swarmbats: Localization using environmental sound events

Lab Course/Projekt/Teamprojekt Ad hoc Network

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

➤Two parts:

- Mobile Ad hoc Network (MANET)
- Wireless Sensor Network (WSN)
- Depending on the project scope, the number of each project member is up to three.
- Lectures will be given based on the requirements of the proposed projects.
- Project output may include:
 - Specifications
 - Codes
 - Demonstration
 - Final presentation

≻Objectives

– To attain practical expertise with Hardware, Software and Design

Lab Course/Projekt/Teamprojekt Ad hoc Network University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Part A: Mobile Ad Hoc Networks

08.10.2007 - 7

Lab Course/Projekt/Teamprojekt MANET Projects

> Simulation-based:

- Network simulators: Omnet++, NS-2
- Robot simulators: MissionLab, Player/Stage
- Traffic simulators: SUMO
- Combination of the above
- Create your own simulator

Implementation-based:

 Construct MANET test bed using Gumstix with Wi-Fistix (and optionally GPS-stix, robo-stix), moving toys, laptops, you, bikes, etc.

University of Freiburg

Institute of Computer Science

Prof. Christian Schindelhauer

Computer Networks and Telematics

08.10.2007 - 8

MANET Application I: Vehicular Ad-hoc NETwork (VANET)

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Integrated traffic simulator with network simulator
- Vehicle mobility-based routing strategy
- Make use of public transport (e.g. trams, trains, buses) or traffic facilities (traffic light, lamp post) as data carrier or relay in MANET
- E.g. A biker-NET in the Blackforest

Ad Hoc Networks Winter 2007/2008

MANET Application II: Robot (-assisted) Ad hoc Network

University of Freiburg Institute of Computer Science **Computer Networks and Telematics** Prof. Christian Schindelhauer

> Mobile robots moving around wireless > Mobile robots serve as relay in sensor network

- to collect/send data from/to sensors
- to aid in localization

MANET

- How to guarantee connectivity?
- How to conserve energy?

MANET Application III: Others

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Followings are some project ideas based on the example MANET applications above:

Realistic mobility analysis

 Collect traces of human-beings' movement. Analyze the data and propose a mobility prediction algorithm to improve current MANET protocols.

Modeling radio propagation

For indoor or outdoor environment. Examine its impact to data communications in MANET.

Energy consumption analysis

 Analyze power usage of different components of computing devices, e.g. radio, CPU, sensors, of Gumstix/laptops/sensors. Propose and evaluate the techniques to reduce the cost.

Route selection algorithm

 Develop a route selection algorithm for MANET protocols to determine the best strategy for different network conditions. Evaluate the performance of the proposed algorithm.

QoS in MANET routing protocol

 Improve any MANET routing protocol to maintain route and guarantee data delivery.

Real-time multimedia streaming in MANET

 Identify limitation of wireless link and problem in MANET for multimedia streaming. Enhance routing protocol to be robust to network dynamics.

Application development

Develop an application for Gumstix, considering the hardware constraints.
 E.g. Gumstix phone.

Lab Course/Projekt/Teamprojekt Ad hoc Network University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Part B: Wireless Sensor Network

08.10.2007 - 14

Wireless Sensor Network: Lecture

There will be introductory lectures about following.

- TinyOS
- B-MAC
- Mica-2 and ScatterWeb hardware
- C crash course *if required*!

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

MICAz 2.4GHz

Design and implement software architecture of Sensor Network

≻Skill Needed:

- Software design, Object oriented design, Design Patterns, C, TinyOS

≻ Details:

- Numerous MAC layer and energy management protocols are designed, with no inter-operatability.
- They have different assumptions and provide different interfaces.
- Aim of this project is to develop a software architecture that provide common interfaces for different protocols, facilitating independent development and selecting process of protocols.

Project 2: Energy Conservation using HICA

Implement Hardware Independent Connectivity Algorithm (HICA) to increase network lifetime.

Skills Needed

- TinyOS, C and introduction to B-MAC-interface

➤ Details

- HICA increases network lifetime by putting sleep redundant nodes
- Nodes are carefully elected to be part of *connected dominating* set.
 - These node assure network connectivity.
- Rest of the nodes are put to sleep mode for a *fix period of time*
 - After that fix period new set of nodes are re-election to be part of connected dominating set.
- Aim of this project is to implement HICA on mica-2 and possibly improve its design.

Project 3: Localization using HILA

Implementation of Hardware Independent Localization Algorithm (HILA)

Skills Needed

– TinyOS, C, and introduction to B-MAC interface

➤ Details

- Localization algorithm usually required special hardware:
 - Example: GPS, light omitting/reflecting devices, special transceiver etc
- HILA required no hardware support
- It uses two-hop neighbors information to estimate relative nodes locations
- This project aim is to implement HICA on real sensor networks and improve its design.

> Build sensing robots using off the shelf hardware

Skills Needed

– Hardware architecture, TinyOS, C

≻ Details

- Mobility increase sensors coverage and connectivity. Sensor network available in market have two disadvantage
 - Too expensive
 - \approx 150\$ per sensor mote
 - Usually no built-in mobility mechanism
- Aim of this project is to design sensing robots using either <u>solar energy</u> or very energy efficient.
 - Robots should be able to software programmable and support TinyOS

Project 5: SOA Application (Open Project)

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Suggest, design and implement a state of art application

≻Skills

- TinyOS, C and others

➢ Details

- Application should be useful in real life.
 - May be some commercial value!
- Rest of details you decide.