
A Modular Sensornet Architecture:
Past, Present, and Future Directions

Arsalan Tavakoli†, Prabal Dutta†, Jaein Jeong†, Sukun Kim†, Jorge Ortiz†,
David Culler†, Phillip Levis‡, and Scott Shenker†

†UC Berkeley EECS Dept. ‡Stanford CS Dept.
Berkeley, California 94720 Stanford, California 94305

{arsalan, prabal, jaein, binetude, jortiz, culler}@cs.berkeley.edu pal@cs.stanford.edu
shenker@icsi.berkeley.edu

1 Introduction
Wireless sensornets provide an unprecedented opportu-

nity to gather huge volumes of data about the physical world
around us. Sensornets, however, have severe resource con-
straints, in terms of power, memory, and bandwidth, which
make gathering and processing the data an extremely chal-
lenging problem. The first wave of sensornet programmers
dealt with these constraints by building tightly-integrated
and monolithic system stacks. While the resulting systems
were far more energy, memory, and bandwidth efficient than
traditional systems, they had two unfortunate properties.
First, they wereextremely difficult to program, as they had
to confront myriad new networking and sensing challenges
and doing so required very low-level control. Programming
entire systems using low-level C code is a daunting task for
experienced programmers, and all but impossible for the in-
tended users of sensornets: general scientists. Second, the
implementations provided few clearly defined internal inter-
faces, leading tolimited code reuse and interoperabilitybe-
tween applications from various programmers.

In order to deal with these challenges, Culler et al. pro-
posed an overall sensornet architecture [8]. Such a modular
architecture decomposes the system into a set of services,
specifies a set of interfaces to these services, and can define
its own protocols, including packet formats and communica-
tion exchanges. Although the Internet architecture provides
inspiration, its applicability is limited in this context by the
substantial differences between the Internet and sensornets.

After two years of progress filled with successes and fail-
ures, this paper takes a step back, and reflects on the evo-
lution of our architectural outlook into its present day form,
drawing from our design experiences. We begin in Section 2
by briefly reviewing the history of sensornet software devel-
opment, ending with a clear articulation of our overarching
goal for a networking software architecture for sensornets.
We continue on by examining the modular approach to ar-
chitecture design, and outline four concrete design goals that
will guide our future architectural work. In Section 3 we
briefly review code deliverables such as SP [22, 24], a link
layer abstraction, and NLA [10], a network-layer modular
decomposition. We present them as architectural case stud-

ies for understanding the rationale behind design decisions
made, and determining the causes of our hits and misses.
Section 4 continues by examining the implications of these
new design goals on the Berkeley modular architecture. Fi-
nally, we conclude in section 5 by exploring future direc-
tions.

2 Design Goals and Principles
As the NEST project and its support of TinyOS drew to

a close, we observed that rather than being based on large
and interchangeable libraries of components, TinyOS sys-
tems were for the most part vertical designs. Each ma-
jor deployment and software tree – Crossbow’s software,
UCLA’s sensor systems, Ohio State’s ExScal project, and
Berkeley’s demos, to name a few – had many small deci-
sions deep within the system based on subtlely incompatible
assumptions that made reusability without careful reexami-
nation prohibitively difficult. For example, the TinyOS im-
plementation of diffusion routing [16] was built on top of
SMAC [25], which provides a different programming inter-
face than the standard TinyOS data-link layer. Using dif-
fusion therefore required either using SMAC, porting to a
non-SMAC interface, or writing an SMAC-AM translation
layer. Furthermore, experience showed that tightly coupled
code often makes implementation assumptions, which in the
general case preclude porting or translation layers.

TinyOS has allowed a large number of institutions to de-
sign and implement a wide spectrum of novel and com-
pelling network technologies, but very few of the resulting
components work together. Groups with many developers –
such as UCLA and Berkeley – developed large suites of in-
teroperable components, but these suites were still incompat-
ible with each other and smaller, more directed efforts (e.g.,
Fusion [15]) were difficult to incorporate and maintain.

This observation led us towards a design fostering soft-
ware compatibility and interoperability. To some degree, we
knew what we wanted, but needed a several trials (and er-
rors) to clearly articulate it. The core goal of the networking
software architecture has been to

“Enable and foster a large number of diverse
networking protocols that can be quickly incorpo-

rated into an application without a large perfor-
mance cost.”

To some degree, many of TinyOS’s difficulties in achiev-
ing this goal can be traced to imprecise and incompletely
specified interfaces. For example, some communication ab-
stractions enforce single outstanding split-phase operations
(e.g., GenericComm) while others allow multiple concur-
rent operations (e.g., QueuedSend). Solving this problem is
mostly a question of software design and engineering. How-
ever, with the experience gained from five years of research
by thousands of users who have developed hundreds of pro-
tocols, simultaneously revisiting the abstractions was clearly
beneficial. We concluded early on that the diversity of net-
work protocols required a modular approach. Rather than
establish a fixed set of protocols, we would provide a toolkit
– with a few example uses – with which users could more
easily build protocols.

Modular approaches have proven successful in numerous
areas. Click [18] decomposed routers into fine-grained mod-
ules that could be chained together to implement services.
Flux [12] provides a componentized approach to building
operating systems for multiple environments. Finally, Ex-
okernel [11] is an operating system architecture that pro-
vides application-level resource management by using a li-
brary of components utilizing a low-level narrow interface.
These three architectures were relatively successful, in terms
of being adopted by the community. However, the key ob-
servation that is shared among these three frameworks is the
maturity of the target field. Routers, operating system kernel
design, and resource management were all reasonably well
understood problem domains, and hence building a modu-
lar architecture to fit the outstanding need was more easily
possible. While gradual innovation certainly continued, the
system as a whole remained relatively stable.

Sensornets, on the other hand, have not reached this level
of maturity. There continues to be large paradigm shifts, and
even a specific target application with performance require-
ments is not clearly specified. Since we began working on
the software architecture, new requirements have emerged.
Three, in particular, have broad reaching implications we had
not considered:

1. Storage-centric networks [21]

2. Packet rate control [23]

3. Highly-tunable bit-rate control [9]
The rapid proliferation rate of new fundamental services

has made specification of modular components and strict in-
terfaces difficult and often quickly outdated. The large num-
ber of emerging architecture and protocols specifications,
both academic and industrial [2, 5, 1, 3, 4], exemplify this
uncertainty. However, we argue that sensornets are in the
midst of an era of innovation and evolution, and these de-
velopments must be fostered and carefully cultivated, rather
then confined by imposing premature modular architectures
and standards.

Based on these observations, we propose a new concrete
set of design principles to guide the development of elements
of the networking software architecture. In order, these goals
are:

1. Collaborative use

2. Completeness

3. Extensibility

4. Code Reuse
The first goal, collaborative use, addresses the fundamen-

tal problem encountered in early TinyOS systems. Two dif-
ferent protocols need to be able to collaboratively share un-
derlying resources. Highly tuned research protocols that are
designed to work in isolation can show the limits of what
is possible, but for them to be practically useful in pushing
technology forward, there must be implementations that play
nice with others.

The second goal, completeness, is the one that has been
the major cause of difficulty. Being general enough to allow
most if not all protocols to be implemented is feasible at any
point in time, but as systems evolve and new mechanisms
emerge, this can be difficult. Similarly, mechanisms which
seemed useful historically may become unnecessary in the
future.

The third design goal tackles this tension, embodying our
main argument that the focus of the architecture is supporting
the innovation and evolution in sensornet research, in order
to help drive the field towards maturity. While code reuse
and independent development are important considerations,
their utility is limited by the constant flux of the overall sys-
tem. Finally, co-existence of systems will be of increasing
importance in the future, but not until standards and unified
architectures become accepted by the community.

We note that this list of design goals is not expected to re-
main stable over time. As the field matures, the importance
of encouraging evolution and innovation diminishes, mak-
ing way for the other, more traditional, goals such as code
reuse and interoperability. We envision this maturity occur-
ring from the bottom-up, meaning that the lower parts of the
system stack will embrace a modular approach much sooner.
TinyOS 1.x, as well as T2, both provide a modularized op-
erating system kernel. Furthermore, the role of SP has grad-
ually become better-defined, and the hope is that the period
between version releases will be increasing over time.

In the next section, we describe two major components of
the architecture, the SP abstraction and the network layer de-
composition, describing how they follow the principles and
how the evolution of networking has forced us to reconsider
assumptions made in their design.

3 Case Studies
Beginning with the DARPA NEST project, a major re-

search goal at UC Berkeley has been to provide flexible, ef-
ficient, and reusable software architectures for sensornet re-
searchers. The TinyOS operating system, for all of its lim-
itations, has proven to be customizable and flexible enough
to be beneficial to many research efforts. Furthermore, while
difficult at times, being in the position of providing a soft-
ware system for a diverse set of cutting-edge users requires
understanding their needs and therefore, more broadly, the
requirements that sensornets introduce.

The growing complexity and interest in sensor network-
ing led us to, over the past few years, design and build a

SP

Data Link A Data Link B

SP Adapter A SP Adapter B

Network
Protocol 1

PHY A PHY B

Network
Protocol 2

Network
Protocol 3

Network
Service

Manager

Link
Estim

ator

Link
Estim

ator

Neighbor Table Msg Pool

Neighbors Send Receive

Figure 1. The SP Abstraction

modular software architecture for network protocols. In this
section we focus on our two main architectural components,
SP [22] and NLA [10]. We examine the design progression
of our work toward a modular software architecture for net-
work protocols, using these two components as case studies.
We describe the motivation behind certain design decisions,
some of which have been very successful, others less so.

3.1 SP
The observation that the single-hop layer in TinyOS (Ac-

tive Messages) is generally quite stable and used with little
modification led us to the conclusion that a single-hop pro-
tocol forms the unifying low-level programming abstraction
for sensornet protocols [8]. However, while active messages
were often used as designed for isolated experiments of a
single network protocol, experience with larger deployments
showed us that arbitrating between multiple network proto-
cols was a critical requirement. SP was designed to serve
as the architectural narrow-waist, effectively decoupling de-
velopment of network protocols from underlying link layers,
and managing co-existence of multiple protocols, while con-
tinuing to export a single-hop programming abstraction. Al-
though other components that separated the network and link
layers had previously been proposed [14], they focused on
specific functionality, such as data aggregation, rather then
overall architectural design.

One of the major challenges faced by SP was provid-
ing a uniform abstraction for widely different MAC layers.
For example, TDMA MAC layers inherently limit the set of
reachable nodes but in theory provide interference-free slots,
while CSMA layers provide easy connectivity but encounter
many more hidden terminals.

Figure 1 provides an overview of the SP abstraction. SP
provides two key mechanisms to bridge between network
and data link protocols. A shared single-hop neighbor table
allows network and data link protocols to share connectivity
information, while a message pool can batch transmissions
from multiple protocols, thereby taking advantage of TDMA
slots or amortizing the cost of an expensive wakeup packet.
Finally, link adapters are used to provide a standard interface
for all underlying link layers.

Having run and implemented a variety of protocols and

applications on top of SP we gained some insight on which
features work well, which are superfluous, and which are
missing. In some cases our observations conflict, due to
differing requirements of upper-layer protocols. For ex-
ample, message futures are excellent for single-hop proto-
cols, as SP can minimize active time by sending tight packet
bursts. However, for flow-based multihop protocols that seek
to avoid interference in CSMA networks, such as IFRC [23],
SP’s packet scheduling prevents specifying maximum packet
rates.

Among the successful aspects of SP is the ability to seam-
lessly run multiple concurrent protocols and services, meet-
ing the first design goal. Rather than have a shared packet
queue for network protocols (e.g., TinyOS 1.x’s Queued-
Send), in SP each protocol has a single outstanding packet
and tells SP how many packets it would like to send (message
futures). SP’s abstraction naturally fits concurrent models,
even providing the opportunity to implement specific pol-
icy managers that dictate system-wide, rather than protocol-
wide, policies. The importance of such abstractions are un-
derlined by the trend towards increasingly complex sensor-
net systems. SP also satisfies the fourth design goal in that it
reduces the code and memory footprint of complex systems.

When SP was designed, it satisfied the second design
goal, completeness. While we did not write full implemen-
tations for protocols such as SMAC or PSFQ, discussions
led us to believe that doing so would not be problematic.
However, as new protocols emerged, they introduced new re-
quirements which SP could not satisfy. When developing SP
the idea of having SP schedule packet transmissions to max-
imize energy efficiency seemed a tremendous benefit, but as
the importance of rate-limiting, to avoid self-interference, in
CSMA networks has become clear this design decision has
become a liability. Transport protocols such as IFRC [23]
that require controlling timing do not find the required mech-
anisms in SP. SP support for service-specific architectures,
such as energy management and resource arbitration, was
missing. On the link side, SP was to some extent biased to-
wards 802.15.4 and the CC2420, ignoring capabilities such
as radio bit-rate control [9]. Furthermore, the exported inter-
faces provided limited access to cross-layer services such as
discovery and time synchronization. Support for such fea-
tures would not only require additional interfaces, but also
new internal mechanisms as well. When designing SP we
realized that support for such services and programs might
eventually be necessary, but we did not realize that their ex-
clusion would cause problems in the near term. We return to
this theme in the next section.

Conversely, there were features that seemed appropriate
initially but remain largely unused. The predominant exam-
ple of this involved the feedback mechanisms used by SP to
communicate with the upper layers. Although the informa-
tion was semantically meaningful at lower layers, the feed-
back was not useful for most network protocols and appli-
cations. This experience highlighted the need to work in a
top-down fashion, flushing out the requirements of the up-
per layers, rather than building into SP the set of services
that seem useful or practical. In other words, the current
state of sensornet research necessitates that SP provide a link

Forwarding Engine (FE)

Routing

Topology

(RT)

Routing

Engine

(RE)

Forwarding Engine (FE)
Output

Queue
Forwarding Engine (FE) Dispatcher

Transport Layer

Data Link Layer

C
o
n
tr

o
l
p
la

n
e

D
a
ta

 p
la

n
e

N
e

tw
o

rk
 L

a
y
e

r

Figure 2. The Network Layer Architecture

abstraction that supports existing implementations, more so
than building a narrow waist that exports a set of services
that new implementations are expected to adhere to. While
future applications may use such features, the disregard for
these interfaces by current protocols, coupled with the desire
to maintain a lean narrow waist, leads to a top-down focus.

In designing the unifying link layer abstraction for T2
[20], our approach has been quite different. We began with a
foundation similar to the previous version, pruning unneeded
services and functionality. More importantly we synthesized
a list of requirements for a diverse set of protocols and appli-
cations in order to ensure support in the upcoming version.
We also focused on integrating cross-layer services, such as
security and power management, working closely with de-
velopers of these stand-alone components and focused ar-
chitectures. The result is a new link abstraction which we
feel is lean, yet provides the essential set of services needed
to support the majority of higher-level services.

3.2 NLA
The network layer architecture component [10] was de-

signed to extend the modular architecture upward, building
on top of SP. From a very early stage, it was apparent that
a single network protocol or standard could not be enforced.
Unlike IP’s point-to-point best effort service, sensornets uti-
lized a variety of communication paradigms, none of which
could single-handedly support the needs of all applications.
As a result, the goal became to develop a framework for im-
plementing network protocols, focusing on maximizing code
reuse by identifying shared functionality across protocols.
Additional functionality was added to the framework, such
as a buffer manager and support for managing multiple pro-
tocols simultaneously(at a higher level than SP), although
certain features such as link estimation and neighbor table
management were pushed down to SP. The core of NLA
is the decomposition of protocols into four distinct compo-
nents: a routing topology, a routing engine, a forwarding en-
gine, and an output queue. Figure 2 provides a graphical
overview of NLA.

The initial implementation results were encouraging. Five
different protocols were successfully implemented, often
running concurrently on a single mote. Furthermore, the ex-
ercise validated NLA and SP’s ability to work together and
successfully develop a stack. Performance results were ac-

ceptable as well. Five of these six protocols were developed
at Berkeley, and while on the one hand it meant that we were
experts in analyzing their requirements, it increased the like-
lihood of failing to support other classes of protocols.

However, a series of challenges soon arose, some imple-
mentation specific, others a result of the NLA modularity it-
self. The battle between two diametric approaches, a rigid
framework with generalized interfaces or a flexible archi-
tecture with loosely-defined interfaces and horizontally in-
tegrated components, embodied the difficulty of designing a
modular network layer. In order to maximize code reuse and
independent development, the rigid approach clearly speci-
fied the functionality present in each component, and pro-
vided generalized interfaces between the components to al-
low for arbitrary pairings. Furthermore, a single, standard
interface was exported to higher layers.

Such an approach raises certain issues. First, the in-
creased level of generality increases code size and re-
duces performance, as these general interfaces are essen-
tially wrappers for protocol specific components. Second,
and more importantly, being able to arbitrarily connect com-
ponents may not be desirable. For example, while a tree
routing topology connected to a geographic routing engine
may compile, it is semantically meaningless. Furthermore,
selecting a single interface exported by the network layer is
difficult, as different applications and transport layer proto-
cols have widely varying requirements and interaction mech-
anisms. Flush [17] serves as an example here, requiring rate-
controlled sending and node-wide transmission suppression,
neither of which is typically required by other protocols. Fi-
nally, the restrictions of such an approach limit the set of
protocols that can be implemented. There are certain proto-
cols that do not cleanly decompose into these four compo-
nents, or that have specific requirements in terms of header
format and processing order, like IP, and as a result can not
be implemented within this rigid framework. On the other
hand, while it is true that a more flexible architecture avoids
many of the pitfalls of the first approach, it has one major
shortcoming: it limits code reuse and hampers independent
development, and moves back in the direction of monolithic
implementations.

One might argue that such challenges can be overcome
with a better design. However, we feel that NLA is a solid
instance of a modular network layer, and much like SP, after
a second version is released based on feedback and lessons
learned, will be a highly effective tool that will become an
integral part of our sensornet architecture. At the same time,
we can not ignore the fundamental issues discussed in this
section, notably that a modular network layer may not be
the optimal solution in all cases. We return to this discus-
sion of evaluating the effectiveness of a modular approach to
building a sensornet architecture in Section 4, but first take a
closer look at the design goals and principles of a sensornet
architecture.

3.3 Overview
In all three architectural steps – original vision to SP, SP to

NLA, and NLA to network protocols – we have encountered
oversights which have forced us to revisit our decisions and

designs. For example, the original vision for the network
architecture called for the unifying protocol to be a single-
hop broadcast with arbitrary reception predicates. However,
when developing SP we realized that this was not efficiently
achievable with TDMA layers such as 802.15.4, forcing us
to revisit our approach.

4 Architectural Implications
The discussion of design goals and guiding principles has

a profound impact on the Berkeley Modular Sensornet Ar-
chitecture and its future. The importance of innovation and
flexibility, particularly at the higher layers of the stack, cou-
pled with the limited support for these needs provided by a
modular approach, render a completely modular sensornet
architecture impractical for the moment: too much too soon.

However, modularity maintains its core benefits, and
these have proved a good fit for the low-level components
of the system. The most important aspect when designing
these components is to provide support for the current set
of requirements. For SP, two of the main challenges have
been integrating cross-layer services, such as real-time con-
trol and reliability, cleanly within the system. Furthermore, a
broad set of network protocols must be supported, allowing
the majority of developers to reliably build on top of this link
abstraction. The success of such a component is based on
two-part strategy: when the next version of SP is released, it
must address a majority of system demands posed by upper-
layer protocols, allowing for relatively seamless migrations
of these applications to SP-supported system stacks. Conse-
quently, when the system is embraced by the community,
it will enable future developers to design their programs
around SP, ensuring compatibility. While inevitably new re-
quirements will arise in the future, potentially motivating an-
other release of SP, we see this part of the architecture mov-
ing steadily towards stability.

Looking at the upper layers of the system stack, as de-
scribed in the previous section, the requirements are still
somewhat nebulous. New applications are consistently ap-
pearing that challenge some of the fundamental assumptions
under which we operate in regards to sensornets. Conse-
quently, these layers need the flexibility and extensibility
to foster innovation and evolution, and therefore a modular
framework no longer seems completely satisfactory. Rather
an approach is needed that allows for changing requirements
and rapid-prototyping, yet still maintains the needed power
of expressivity.

The important question then becomes where in the stack
to draw this division. Let us first introduce the taxonomy that
will be used throughout this section. We define this lower
layer, the modularly constructed aspect of the system, as the
underlying infrastructure. Examples of this are our SP and
NLA components, as well as some high-level components
such as Flush [17] in rare cases. We refer to the partial sys-
tem that sits on top of this underlying infrastructure as apro-
gramming paradigm. Programming paradigms vary widely,
as in essence they are just tools for allowing the end-user to
program the network. Examples include DSN (declarative
sensor networks) [7], EnviroTrack (middleware for writing
tracking applications) [6], Tenet (a multi-tier programming

philosophy) [13], and Mate (a virtual machine for sensor-
nets) [19]. Each of these paradigms provides a different pro-
gramming abstraction for the developer, but it is important to
note that all rely on an underlying infrastructure.

Our current viewpoint is that the division between the
underlying infrastructure and the programming paradigm
should lie around NLA and the network layer, either directly
above or below, or perhaps even a hybrid of the two. Despite
some shortcomings, we believe that SP has justified its in-
clusion in any future architectural framework. However, as
mentioned in section 2, the difficulties associated with mod-
ularity began to surface with the introduction of NLA. NLA
provided a framework for implementing a broad set of exist-
ing and future network protocols, but the rigid structure also
limited expressivity and flexibility. Consequently, we liken
NLA’s role in the architecture to that of TCP in the Internet
Architecture. A large number of applications build on top of
TCP as a transport protocol, but for the class of applications
where this is not desirable, programming is done directly
over raw UDP, which we liken to wiring the programming
paradigm directly into SP. Consequently, a mechanism that
provides the developer with the flexibility to move the divid-
ing line over time seems to be the ideal hybrid approach.

Returning to the programming paradigms, each is suited
for a particular style of programming, often for specific
classes of applications, and together they provide varying
levels of expressivity, efficiency, and flexibility. As an exper-
iment for testing this hybrid approach to system building, we
have been working with the SP/NLA and DSN combination,
which we report on elsewhere. This combination appears to
work well, but in this section we focus on what specific char-
acteristics of a programming paradigm are important in order
for the hybrid approach to succeed.

One of the key goals of this hybrid approach is provid-
ing ease of programming for the end-user. As such, pro-
gramming paradigms which are able to decouple the appli-
cation logic from the actual implementation are desirable;
declarative programming models provide a good mechanism
for achieving this decoupling. Innovation and flexibility
helps the hybrid approach move the sensornet research for-
ward, but at the same time the power of expressivity must be
roughly comparable to the existing approach. Finally, if this
high-layer component can provide seamless integration with
the underlying structure as the interface, and even the divi-
sion, shifts then this hybrid architecture can naturally move
toward a stable architecture that finds a balance between the
upper and lower stack. Furthermore, if the programming par-
adigm itself can optionally provide modularity then this tran-
sition will proceed with even greater smoothness.

So the natural question that arises is what do these obser-
vations mean for the Berkeley Modular Sensornet Architec-
ture? Given the current level of innovation, evolution, and
paradigm shifting of sensornets, a completely modular ar-
chitecture is not feasible, or at the very least not completely
practical. However, we have instead provided an alternative
system, one that utilizes a hybrid approach in which a mod-
ular underlying infrastructure is merged with a declarative
programming paradigm. The modular lower stack allows for
code reuse and independent development, while the upper

layer facilitates innovation and rapid-prototyping.

5 Looking Forward
Synthesizing the design goals and guiding principles is

an important preliminary step in the process for creating an
architecture. After being faced with difficulties when try-
ing to specify an entirely modular sensornet architecture, we
stepped back and analyzed these challenges, looking to draw
high-level conclusions regarding the future direction of our
work. After making the observation that sensornets are still
a research field bustling with innovation and lacking the ma-
turity and stability of other systems, such as query process-
ing and operating systems, we outline a revised set of design
goals for our sensornet architecture. With these goals, we
come to the realization that a completely modular architec-
ture is too much, too soon. Consequently we propose an
alternative hybrid system that better fits the needs of the sen-
sornet community at this current juncture.

We are currently working on the two components of this
hybrid approach, the infrastructure services and the program-
ming paradigm. The new version of our unifying link ab-
straction is under development, being designed for T2. It
focuses on fitting the needs of a wide variety of existing ap-
plications and protocols. After the link abstraction has been
completed, the feedback from the initial version of NLA will
be used to design the next-generation modular network layer.
The current network layer implementation of T2 already em-
bodies some elements of the NLA modular work.

Our work on the programming paradigm has focused on
DSN, which describe in greater detail elsewhere. However,
our belief in this hybrid approach is not limited to any one
specific programming paradigm, but rather is based on a
more general sense that at this time we cannot extend the
modular approach much higher than NLA and must rely on
other techniques for the high-level programming of sensor-
nets.

Looking to the future, components such as SP and NLA,
as well as eventually an entire, integrated architectural
framework, will hopefully grow their user base, allowing for
a more extensive and updated evaluation of sensornet design
principles and requirements. Increased deployments and a
gradual maturing of sensornet research will also help further
crystallize and stabilize the development of this sensornet ar-
chitecture.

6 References
[1] 6lowpan: Overview, assumptions, problem statement and goals.http://www.

ietf.org/internet-drafts/draft-ietf-6lowpan-problem-05.txt.

[2] The epcglobal architecture framework.http://www.epcglobalinc.org/
standards/Final-epcglobal-arch-20050701.pdf.

[3] Isa-sp100.11 call for proposal: Wireless for industrial process management
and control. http://www.isa.org/filestore/ISASP100 11 CFP 14Jul06
Final.pdf.

[4] Isa-sp100.14 call for proposal: Wireless network optimized for industrial
monitoring. http://www.isa.org/filestore/ISASP100 14 CFP 14Jul06
Final(2).pdf.

[5] Zigbee specification, version 1.0. http://www.zigbee.org/en/spec
download/download request.asp.

[6] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George, L. Gu,
T. He, S. Krishnamurthy, L. Luo, S. Son, J. Stankovic, R. Stoleru, and A. Wood.

Envirotrack: Towards an environmental computing paradigm for distributed sen-
sor networks.IEEE ICDCS, 2004.

[7] D. Chu, A. Tavakoli, L. Popa, and J. Hellerstein. Entirely declarative sensor
network systems.ACM VLDB, 2006.

[8] D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre, S. Shenker,
I. Stoica, G. Tolle, , and J. Zhao. Towards a sensor network architecture: Lower-
ing the waistline.USENIX HotOS, 2005.

[9] H. Dubois-Ferriere, R. Meier, and L. F. P. Metrailler. Tinynode: A comprehen-
sive platform for wireless sensor network applications.IEEE SPOTS, 2006.

[10] C. T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler, S. Shenker, and
I. Stoica. A modular network layer for sensornets.USENIX OSDI, 2006.

[11] D. R. Engler, M. F. Kaashoek, and J. O. Jr. Exokernel: An operating system
architecture for application-level resource management.ACM SOSP, 1995.

[12] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The flux oskit:
A substrate for kernel and language research.ACM SOSP, 1997.

[13] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira, D. Estrin,
R. Govindan, and E. Kohler. The tenet architecture for tiered sensor networks.
ACM Sensys, 2006.

[14] T. He, B. M. Blum, J. A. Stankovic, and T. Abdelzaher. Aida: Adaptive
application-independent data aggregation in wireless sensor networks.ACM
Transactions on Embedded Computing Systems, 2004.

[15] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating congestion in wireless
sensor networks.ACM Sensys, 2004.

[16] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed
diffusion for wireless sensor networking.ACM TON, 2002.

[17] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis, S. Shenker, and
I. Stoica. Flush: A reliable bulk transport protocol for multihop wireless net-
works. In submission.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click mod-
ular router.ACM TOCS, 2000.

[19] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks.ASP-
LOS, 2002.

[20] P. Levis, D. Gay, V. Handziski, J.-H. Hauer, B. Greenstein, M. Turon, J. Hui,
K. Klues, C. Sharp, R. Szewczyk, J. Polastre, P. Buonadonna, L. Nachman,
G. Tolle, D. Culler, and A. Wolisz. T2: A second generation os for embedded
sensor networks.Technical Report TKN-05-007, Telecommunication Networks
Group, Technische Universitat Berlin, 2005.

[21] M. Li, D. Ganesan, and P. Shenoy. Presto: Feedback-driven data management in
sensor networks.USENIX NSDI, 2006.

[22] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica. A
unifying link abstraction for wireless sensor networks.ACM Sensys, 2005.

[23] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis. Interference-aware
fair rate control in wireless sensor networks.ACM SIGCOMM Computer Com-
munication Review, 2006.

[24] A. Tavakoli, J. Taneja, P. Dutta, D. Culler, S. Shenker, and I. Stoica. Evaluation
and enhancement of a unifying link abstraction for sensornets.In submission.

[25] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wire-
less sensor networks.IEEE INFOCOM, 2002.

http://www.ietf.org/internet-drafts/draft-ietf-6lowpan-problem-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-6lowpan-problem-05.txt
http://www.epcglobalinc.org/standards/Final-epcglobal-arch-20050701.pdf
http://www.epcglobalinc.org/standards/Final-epcglobal-arch-20050701.pdf
http://www.isa.org/filestore/ISASP100_11_CFP_14Jul06_Final.pdf
http://www.isa.org/filestore/ISASP100_11_CFP_14Jul06_Final.pdf
http://www.isa.org/filestore/ISASP100_14_CFP_14Jul06_Final(2).pdf
http://www.isa.org/filestore/ISASP100_14_CFP_14Jul06_Final(2).pdf
http://www.zigbee.org/en/spec_download/download_request.asp
http://www.zigbee.org/en/spec_download/download_request.asp

	Introduction
	Design Goals and Principles
	Case Studies
	SP
	NLA
	Overview

	Architectural Implications
	Looking Forward
	References

