
A Declarative Sensornet Architecture

Arsalan Tavakoli†, David Chu†, Joseph M. Hellerstein†, Phillip Levis‡, and Scott Shenker†

†UC Berkeley EECS Dept. ‡Stanford CS Dept.
Berkeley, California 94720 Stanford, California 94305

{arsalan, davidchu, hellerstein}@cs.berkeley.edu pal@cs.stanford.edu
shenker@icsi.berkeley.edu

1 Introduction

Increased code reuse, independent development, and in-
teroperability are three key missing characteristics of sensor-
net programming today that motivate the need for an overall
sensornet architecture. Architecture traditionally implies a
componentized modular framework in which narrow inter-
faces provide the only form of communication between lay-
ers encapsulating specific functions and services. The Inter-
net architecture provides the classic example of the modular
approach.

A modular approach is not without its limitation and is-
sues. The rigid layering makes incorporating cross-layer ser-
vices, an integral part of sensornets, difficult, often violating
a host of architectural principles. Furthermore, the tight in-
tegration of the upper stack in sensornets makes separating
the network, transport, and application layers along cleanly
defined boundaries a difficult if not impossible task. Some
even claim that a modular architecture is overly constraining
and hinders growth and progress for researchers [13].

We propose a new point in the design space, DSN [2], a
programming paradigm for declaratively specifying sensor-
net systems. DSN allows the user to specify an application
using a high-level language, which is subsequently fed to a
compiler which builds a runtime query processor that exe-
cutes on each node. DSN provides code reuse, although at a
higher level, but more importantly directly attacks the failure
of previous programming paradigms to provide ease of pro-
gramming. Furthermore, it provides an intuitive interface for
interacting with lower portions of the system stack and other
components written in systems languages like C.

We divide this paper into three major parts. First, we pro-
vide a brief overview of DSN, covering only the details rele-
vant for an architectural discussion. The second part focuses
on answering the fundamental questions that are posed if a
declarative approach for building sensornet systems is taken,
such as feasibility, efficiency, and extensibility. Finally, we
examine the philosophical aspects in terms of comparing it
to the modular approach and also evaluating how well it sat-
isfies the requirements that motivate the need for an architec-
ture.

DSN Implementation details and performance evaluation
results can be found in [2].

2 DSN Overview
DSN is composed of three main components: a high-level

declarative specification language, the DSN compiler, and a
runtime query processor. In this section we describe each,
and then provide a few DSN examples.

2.1 Snlog
Our high-level specification language, Snlog, is a dialect

of Datalog [12], with the following primary language con-
structs: variables, constants, predicates, facts and rules. We
begin with a simplified application example to help explain
the use of these constructs:

measurement (@Base, Cels ius , Time) :−
t imestamp (@Source , Time) , temperature (@Source ,
RawReading) , samplingOn (@Source , t r ue) , Cels ius =
f r aw 2c e l s i us (RawReading) .

samplingOn (@Source , t r ue) .

Our example reads as follows: if a temperature reading
is obtained and sampling has been enabled, then this data is
timestamped and appears at the (one-hop away) base station.
The second line enables sampling.

When apredicateis instantiated withvariable andcon-
stant assignments, tuples are created for that predicate. A
fact is an instance of a predicate, i.e. a tuple, that is in-
stantiated at the beginning of execution. In our example,
measurement, timestamp, temperature, and samplingOn are examples of
predicates, whilesamplingOn(@Source, true) is a fact. By conven-
tion, variables such asBase are capitalized, and constants
such astrue are not. A rule instantiates a tuple if the logi-
cal premises are satisfied. A rule in Snlog has the following
format:

headPredicate (@A, C) :− bodyPredicate1 (@A, B) ,
bodyPredicate2 (@B, C) .

The existence of a tuple satisfyingbodyPredicate1 and another
tuple satisfyingbodyPredicate2 (in this case, a match on the pa-
rameter B) leads to the creation of a tuple of typeheadPredicate.
In the previous example, our single rule states that if all the
predicates in the right hand side body evaluate to true then a
newmeasurement tuple will be instantiated. Finally, each predi-
cate also has a location specifier, as denoted by the at (“@”)
symbol, which indicates which host stores the tuple. If the
location specifiers of tuples in the same rule differ, the tuple
rendevouz location is an optimization left to the compiler and

Network support

Generated nesC code

store(…) :- prod(…), cons(…).
…
path(…) :- link(…), dest(…).
…

Binary Image

Snlog Compiler/Optimizer
Snlog
Program

GenericPredicateTemplate
…
…

nesC
Templates

nesC Backend

Execution Planner

Snlog Frontend

nesC Compiler

Built-in Predicates

Type system

Database Operators

Runtime
Components

RuntimeTemplate
…
…

DSN Runtime Support

Figure 1. Overview of DSN process for converting
Snlog specification into nesC binary image

the network

Join Join Proj

tupleready

Join AggProj Sel

table
(compiler generated)

builtin
(user’s library)

database operators
(compiler’s library)

push interfaces

pull interfaces

thread of control

event signal

Sel Ag Proj

… … …

… …

… …

runtime
daemon

mac daemon

tupleready

tupleready
sendready

tupleready sendready

Figure 2. DSN query processor runtime.

runtime. Every rule is restricted to only reference link-local
neighbors.

Two different forms of predicates exist: user-defined and
built-in. The more common user-defined predicates are spec-
ified at design-time by the application developer. On the
other hand, built-in predicates provide a predicate-like inter-
face for natively-written components. Examples of currently
used built-in predicates aretimer exported by the hardware
platform, link exported by the SP link layer [11], and other
raw sensor readings liketemperature.

2.2 System Architecture
Figure 1 provides an overview of the process of convert-

ing the high-level Snlog specification into a nesC binary im-
age that is downloaded onto the motes.

One of our design decisions was to utilize a PC-intensive
compilation approach, rather than a mote-oriented inter-
pretation approach. The DSN compiler first parses the
Snlog specification and performs a series of optimizations,

%−−−− Tree Const ruc t ion
% base case
path (@Src , Dst , Dst , Cost) :− dest (@Src , Dst) ,

l i n k (@Src , Dst , Cost) .

% deduct ive case
path (@Src , Dst , OneHopNei , Cost) :− dest (@Src , Dst) ,

l i n k (@Src , OneHopNei , Cost1) ,
nextHop (@OneHopNei , Dst , TwoHopNei , Cost2) ,
Cost= f add (Cost1 , Cost2) , Src != TwoHopNei .

% use minimum cost path as next hop r o u t i n g t a b l e en t ry
shor tes tCos t (@Src , Dst,<MIN , Cost>) :−

path (@Src , Dst , OneHopNei , Cost) ,
shor tes tCos t (@Src , Dst , Cost2) , Cost < Cost2 .

nextHop (@Src , Dst , OneHopNei , Cost) :−
shor tes tCos t (@Src , Dst , Cost) ,
path (@Src , Dst , OneHopNei , Cost) .

%−−−− Tree Root
dest (@∗ ,0) . %base i d i s 0
shor tes tCos t (@∗ ,0) . %boots t rap cost to be there

Listing 1. Tree Routing

such as distributed rule rewriting [9], and then translates this
into an dataflow that utilizes database operators to form exe-
cution chains (Figure 2). The compiler uses a set of generic
compiler library templates to generate nesC code for the run-
time query processor of each mote. Finally, during runtime,
each node runs a query processor that continually incorpo-
rates new tuples that arrive wirelessly or are generated by
built-ins (e.g. sensor readings) to compute a logical fixed-
point.

Given the limited resources of sensornets, both from a
runtime performance and code/memory footprint perspec-
tive, our runtime query processor is not full fledged. It only
operates over the schema created by the program specifica-
tion, meaning that it can understand new tuples inserted into
the network, but not new rules or predicates. However, this
has been enough to successfully implement a host of proto-
cols and applications, as demonstrated by the examples pre-
sented next and in [2].

2.3 Application Examples
In order to more concretely demonstrate the ability of

DSN to specify sensornet systems, we provide the specifi-
cations for two fundamental sensor network services: Tree
Routing and Multi-hop Collection.1.

The tree routing specification that runs in DSN is shown
in Listing 1. The logic is as follows: each node discovers
the paths available to reach the root, either by having a di-
rect link to the destination (base case), or by going through
a neighbor that has established a path to the base station (de-
ductive case). Among all the paths, the specification dictates
that the lowest cost path be chosen, and this forms the basis
for thenextHop predicate, which is subsequently broadcasted to
all neighbors.link (@Host, Neighbor, Cost) is a built-in predicate that
contains a single tuple for each entry in the neighbor table.
The root(s) of the tree is provided by thedest(@Host, BaseID) fact.

1We provide a complete listing of the specifications but elide
initialization constructs. We refer the reader to [2] for more details.

impor t (’ t r ee . sn l ’) % uses the t ree r o u t i n g s p e c i f i c a t i o n

%−−−− Per iod i c Temperature Transmissions
toTransmi t (@Src , Reading) :− temperature (@Src , Reading) ,

t imer (@Src,1 , Tval) .
t imer (@Src,1 , Tval) :− t imer (@Src,1 , Tval) . % ‘ ‘ 1 ’ ’ i s a t imer

i d

%−−−− Message Forwarding
% package message f o r t ransmiss ion
message (@Next , Src , Dst , Obj) :− toTransmi t (@Src , Obj) ,

nextHop (@Src , Dst , Next , Cost) .

% forward to next hop
message (@Next , Src , Dst , Obj) :− message (@Crt , Src , Dst , Obj) ,

nextHop (@Crt , Dst , Next , Cost) .

% sto re when at d e s t i n a t i o n
s to re (@Ds, Src , Obj) :− message (@Dst , Src , Dst , Obj) .

Listing 2. Multi-Hop Collection

This specification illustrates the recursive power of Snlog:
it succinctly expresses the deduction of global knowledge
(nextHop routing table) from local state (link table).

Listing 2 provides the specification for a multi-hop col-
lection protocol, running on top of the tree formed by List-
ing 1. The specification has two parts. First, it uses a periodic
timer to collect temperature data, where bothtemperature and
timer are built-in predicates. On the network front, each node
either sends a packet it created, forwards a message received
from a neighbor, or stores data if it is the intended destina-
tion. One interesting aspect to note about this program is that
its only use of the underlying topology creation algorithm is
thenextHop predicate. In other words, this specification would
function correctly over any other routing protocol that ex-
ported thenextHop predicate.

3 Fundamental Questions
In order to establish DSN as a viable architectural ap-

proach for sensornets, a series of fundamental questions
must first be posed and answered:

1. Does DSN provide the user with enough expressivity
and flexibility?

2. Can DSN build efficient sensornet systems?

3. Will DSN be able to provide new features with minimal
implementation pain?

4. Do DSN systems play nice with others?

5. Can DSN provide hardware portability?

6. How well does DSN integrate with the rest of the sys-
tem?

7. What are the fundamental limitation of the DSN model?

This section discusses these issues based on our analysis and
deployment experience to date, although we note that ad-
ditional time and testing will allow for more definitive re-
sponses.

3.1 Programming expressivity
One of the most important factors in determining the suc-

cess of any architectural framework is its ability to provide
the required functionality by cleanly implementing a major-
ity of applications in the domain of interest. DSN provides
the ability to specify substantial portions of system stacks us-
ing a high-level declarative language, in essence decoupling
the logic of the application from the actual implementation.
We have demonstrated specifications for several actual ap-
plications and services, such as multihop routing, tracking,
version coherent dissemination, geographic routing, expo-
nentially weighted moving average link estimation, collec-
tion and event detection.

One of the major benefits of DSN, that directly addresses
ease of programming, is the lines of code needed for imple-
menting these applications and services. Often the differ-
ences were nearly two order of magnitudes over native im-
plementations, as Tree Routing required 580 lines in the na-
tive implementation, but only 6 high-level rules using DSN.
This reduction simplifies application development greatly,
directly addressing one of the major pains of sensornet pro-
gramming. It is important to note that this reduction is with-
out loss of expressivity despite using high-level rules.

There are certain classes of programs that, at present time,
can not be implemented using DSN. For example, users
lack the ability to dictate the packet formats in DSN. This
makes writing standards-compliant programs, such as an IP-
compatible service, difficult. However, we believe such a
need is not difficult to satisfy. As part of each declarative
program, the user already specifies storage layout of tables
as initialization statements. It is not hard to extend this idea
to specifying layout of packets as well. This further narrows
the distinction between stored tables and network messages
in DSN.

A single system may have multiple applications, each re-
quiring its own unique packet formats. DSN can be easily
extended to provide customized packet formats for individ-
ual rules and predicates. Also, an easily added feature, draw-
ing from the plethora of database literature on nested tuples,
is the ability couple and layer certain tuples in packets. This
allows DSN to replicate layered protocols, such as a TCP
packet that stacks the link, IP, and TCP headers on top of
each other.

In addition, extremely timing sensitive operations may
be difficult to achieve. While DSN has demonstrated very
faithful replication of some very timing intensive distributed
algorithms such as Trickle, low level packet time-stamping
that should occur immediately as the packet is received (e.g.
within the radio device driver) may be better left to native
radio driver implementations. Built-ins are good candidates
for achieving this functionality.

This subsection raises two important design considera-
tions for DSN. In a declarative system, there is often a ten-
sion between how much control to provide the user and
simplicity. The current implementation is an initial start-
ing point; the level of control the user has over the inner-
workings of the system, such as how data is processed and
when, can be altered as the system matures. Second, one

of the advantages of modeling the system as a distributed
database is that an extensive library of literature exists that
provides invaluable guidance when designing such a frame-
work.

3.2 System Feasibility
The resource-constrained, performance sensitive nature

of sensornets necessitates efficient, correct implementations.
Efficiency metrics are plentiful, and we feel the following are
most pertinent here: code and memory footprint and runtime
performance.

From a footprint perspective, DSN implementations are
comparable to vertically integrated monolithic implementa-
tions, being slightly larger. The main source of overhead is
the fixed cost of the runtime query processor. This cost is
incurred regardless of the complexity of the program. How-
ever, as programs gain complexity, the code size stays stable
and the memory footprint grows sublinearly, allowing com-
plex DSN applications to fit within the limited ROM/RAM
space of a mote. [2] substantiates this claim by providing
ROM/RAM comparisons between DSN and native imple-
mentations for applications that span a wide range of com-
plexity.

Except for low-level task scheduling and device drivers
provided by TinyOS, and SP link services, no code from the
monolithic implementations is reused. Rather, the rest of the
system is a distributed deductive database. Consequently, it
becomes important to demonstrate that the behavior of DSN
applications is comparable, if not equivalent, to their native
counterparts. [2] used collection, tree formation, and Trickle
as the three benchmark applications, and DSN performed
equivalently to the alternative in all categories.

3.3 System Extensibility
An important consideration for any architecture is the

ease with which new features can be added, either through
the addition of components, the definition of new interfaces,
or the introduction of additional mechanisms. DSN was
designed in an extensible manner to allow for incremental
extensions without requiring an overhaul of the compiler.
The majority of extensions involve the addition of new fea-
tures to the high-level specification language, providing en-
hanced capabilities. These extensions require relatively mi-
nor changes in the compiler, but otherwise do not affect the
system.

This is greatly aided by the well-defined interfaces and
subcomponents inherited from databases. For example, new
dataflow operators such as those shown in Figure 2 use well-
understood open/getnext/close and open/sendnext/close in-
terfaces. Similarly, the introduction of new rule-level opti-
mizations, such as determining the rendevous location for a
rule with multiple location specifiers, is itself localized to the
high-level optimizer, separated cleanly from the front-end
parsing, intermediate dataflow planning, and backend code
generation.

3.4 Interoperability
The importance of interoperability of an architecture

varies depending on the intended use; we divide interoper-

ability into software and communication components.
Communication interoperability refers to the ability of

various systems to be able to communicate seamlessly with
each other, often by specifying a standard communication
exchange or protocol format. Different DSN applications are
interoperable with each other in the sense that a node can re-
ceive a packet from another node, and potentially process
it for link estimation purposes. However, without a shared
schema, the data of other systems will be meaningless and
potentially harmful if different applications can not be dis-
tinguished. In terms of communication interoperability as
a whole, DSN does not take a position on a single protocol
standard; rather, as discussed above it provides the mecha-
nism for specifying such a format if developers chose to do
so. In essence, protocol interoperability in DSN boils down
to schema matching, a heavily studied database technique.

Software interoperability measures the degree to which
interfaces are well defined so that applications and services
can be developed independently. Currently, DSN utilizes a
loosely coupled layering scheme in which, for example, the
tree formation service exports a single interface that can then
be used by different routing protocols. A strong effort was
not made to provide strict layering and well-defined inter-
faces, in part because we feel that the cost of creating a rigid
framework far outweighs the benefit of providing a greater
degree of software interoperability. Certain services will ex-
port well-defined interfaces, but as we noted above, writing
an entire application from scratch generally consists of less
than 15 rules.

3.5 Portability
In a field as diverse as sensornets, a unifying overall sen-

sornet architecture must be compatible with the range of
hardware platforms and their software counterparts that ex-
ist. This means working across the different types of motes,
some with starkly different characteristics and features. DSN
is as portable as its system libraries. Currently, this means
DSN runs on TinyOS and SP supported platforms. SP decou-
ples the network and link layers, essentially providing a rea-
sonable level of radio hardware independence. TinyOS pro-
vides hardware independence for a variety of microproces-
sors and sensors.

3.6 Integration with Lower Architecture
We chose to build DSN on top of a low-level OS kernel.

We feel that at lower levels a modular, imperative approach
is more appropriate because of the fine-grained timing re-
quirements, and also the precision needed to interact with
hardware components. Consequently, we separate an overall
architecture into two distinct segments: a programming par-
adigm and the underlying infrastructure. We define the un-
derlying infrastructure to be the modularized framework that
exports narrow interfaces to higher-layers, focusing on the
design of communication protocols. The programming par-
adigm sits on top of this underlying infrastructure, and inter-
acts directly with the end-user, focusing on application, and
occasionally protocol, development. We do not take a posi-
tion on where in the stack the dividing line falls , but rather
point out that the interface between the two components is

what allows for generality and interoperability. DSN falls
into the programming paradigm category. Other examples
of programming paradigms are [1, 6, 8, 15]. Any program-
ming paradigm must consequently provide seamless integra-
tion with the underlying infrastructure.

DSN’s built-in predicate mechanism provides a simple
way of interacting with any nesC component, whether it is
the underlying infrastructure, or a higher-level component
that has just been written in nesC, such as a unique transport
protocol. A built-in predicate allows a developer to export
any native component using a custom predicate, which can
then be used in the same manner as user-defined predicates.
Furthermore, by specifying a standard interface for a certain
built-in predicate, differing implementations of the underly-
ing component can be utilized without affecting the applica-
tion.

3.7 Fundamental Limitations
Throughout this section we have discussed some of the

benefits and current shortcomings of DSN. However, many
of them stem from limitations of the current implementation;
the important question is what are the fundamental limita-
tions of DSN. Given the list of benefits described in this sec-
tion, why is it that declarative high-level languages are not
more widely used today?

A declarative system faces two main hurdles to adoption.
First, the problem domain must be well-understood in order
to transform high-level statements into efficient implemen-
tations. We feel that sensor networks are now reasonable
candidates for this consideration. Second, declarative spec-
ifications inherently forego certain operational control in fa-
vor of simplicity. Applications requiring precise timing re-
quirements, or intense low-level computations are difficult to
implement declaratively. However, TinyDB was one of the
first systems to demonstrate that the data-centric nature of
sensornets provides a good fit for dataflow-oriented declara-
tive programming models. DSN expands this vision, moving
beyond simple data collection toward an entire declarative
system.

4 Philosophical Questions
This section discusses the architectural contributions of

DSN. We compare it to a traditional modular system archi-
tecture, as well as discuss the extent to which the motivating
factors for an architecture are satisfied.

4.1 DSN vs. Modular Architecture
The Sensornet Architecture Project at UC Berkeley has

focused on building a modular architecture for sensornets [3]
to increase code reuse and permit independent development.
The main two artifacts of the project to date have been
SP [11, 14], and NLA [4]. SP, a unifying link abstraction,
serves as the narrow waist of the modular architecture, ef-
fectively decoupling the network and link layers with shared
common components such as message pools, link estima-
tors and neighbor tables. NLA sits directly on top of SP,
and provides a framework for building network protocols
and decomposing them into four basic components: a rout-
ing topology, routing engine, forwarding engine, and output

queue. A general interface is then exported to higher layers.
SP and NLA provide a general framework for link and

network protocol designers. However, they also expose the
shortcomings of this modular approach. Incorporating cross-
layer services into a modular architecture is difficult, and in-
terfaces for each service must be explicitly embedded into
each layer. This can make future additions complicated. Fur-
thermore, NLA demonstrates that the coupling of a wide
range of application requirements and vertically integrated
stacks prevent even a general but rigid framework from sat-
isfying all needs. Above the network layer, the degree of in-
tegration only intensifies, making rigid interfaces a less sat-
isfying design approach.

DSN provides a notably different way of building sensor-
net systems. There is no fundamental concept of layering;
the system executes a runtime query processor that handles
only database-like tuples. Underneath the covers, this query
processor interfaces with the operating system scheduler and
device drivers. Arbitrary functionality may be made avail-
able to the DSN user via the built-in predicate mechanism,
much like system libraries in a traditional operating system.
For example, we used SP’s neighbor table as a built-in be-
cause it abstracted radio hardware. However, we also im-
plemented neighbor tables natively in DSN when we wished
to use a different underlying link layer. It is easy for a de-
veloper to selectively sample from preexisting nesC imple-
mentations while retaining the ease of use of the declarative
specifications. At one extreme, DSN permits highly styl-
ized library-based wiring [6]. We have chosen to primarily
explore the other end of the spectrum, and investigate the de-
gree to which it is both possible and sensible to “push declar-
ative” through the system stack.

One of the main advantages of DSN over a completely
modular architecture is the natural support for extensibility
and evolution. In the previous section we discussed the abil-
ity of DSN to provide loosely-specified layering of specifi-
cation rules, how new interfaces, or rather predicates, can
be defined by each application, and also the ability to add
new features by occasionally incrementally upgrading the
compiler. We feel these capabilities fit quite well with the
requirements of sensornet application designers, while also
addressing the original issues that motivated the need for a
unifying architecture. Finally, DSN allows a user to split up
an application into several versions, and then allow for easy
specification of the node-version mapping. This feature fa-
cilitates the tasking of heterogeneous and multi-tier networks
using DSN.

The DSN approach has disadvantages as well, relative to
a modular architecture. First, imperative operations are dif-
ficult to specify. For example, the execution order of rules
may matter, especially those with side-effects such as from
built-ins. While there is no straightforward mechanism in
traditional logic to specify execution order, DSN provides an
elementary priority control mechanism. Second, some algo-
rithmic data structures may not have natural relational rep-
resentations. For example, the convex hull computation of
a geographic routing fallback mechanism presented in [7]
uses a stack. While a table is strictly more general than
a stack, we incur a mental translation overhead to convert

these into the relational format. Lastly, as mentioned previ-
ously, achieving fine-grained timing operations is difficult,
although DSN has successfully implemented applications
with such requirements.

4.2 Code Reuse and Independent Develop-
ment

The original motivating factors for a well-defined sensor-
net architecture were a lack of code reuse, limitations of in-
dependent development, and a need for interoperability [3].

We feel that the first two factors are simply proxies for
ease of programming, which DSN addresses directly. In the
end, the most important aspect of sensornet programming is
that the end-user and programmer can interact with the sys-
tem to achieve their goals. This implies not only an expres-
sive interface, but also an intuitive and easy to use one as
well. Code reuse and independent development also seek to
simplify the task of the programmer. Declarative-level reuse
can be established in DSN by simply declaring exported and
imported predicates. Yet even without this feature, users are
able to specify real applications, such as tracking, using a
very modest number of rules and facts. In general, the declar-
ative nature of the system allows for a decoupling of the logic
of an application and the actual implementation. This sepa-
ration is critical for non-technical users.

The issue of interoperability is a well-studied and active
database research area. For example, we can think of com-
munications with other network entities as simply schema
matching on packets. This would permit mixed networks
of traditional C implementations and DSN implementations
to cooperate in building routing trees. Additionally, operat-
ing across tiered networks is straightforward. Emitted data
is already in the form of tuples, easily consumable by many
outside systems [10, 5]. The ability to easily assign different
roles to different nodes allows the developer to differentiate
between different nodes or tiers even within the same seg-
ment of code. For example, master-slave networks in which
the powerful master nodes perform all computation, similar
to that presented in [6] can be easily specified in DSN. For
each rule in a specification, the user can add an additional
predicate that limits the execution of that rule to either mas-
ters or slaves, and then use facts to assign roles to the nodes
in the network.

5 Conclusion
DSN is a new way programming paradigm that has sig-

nificant implications for sensornet architectures. The funda-
mental abstraction of a deductive database query processor
is a natural fit for both sensor data and network design. We
have shown several examples of programs that run in our sys-
tem, and our experiences have indicated that these are often
several orders of magnitude smaller than equivalent native
implementations. This contributes greatly to the ultimate
goals of every architecture: to simplify development while
permitting innovation.

Future work includes specifying a wider variety of appli-
cations and protocols using DSN, and also further integrating
it with other specific architectures, such as energy manage-
ment, resource arbitration, and security.

6 References
[1] T. Abdelzaher, B.Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George, L. Gu,

T. He, S. Krishnamurthy, L. Luo, S. Son, J. Stankovic, R. Stoleru, and A. Wood.
Envirotrack: Towards and environmental computing paradigm for distributed
sensor networks.IEEE ICDCS, 2004.

[2] D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker, and I. Sto-
ica. Entirely declarative sensornet systems. Technical Report UCB/EECS-2006-
132, UC Berkeley, 2006.

[3] D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre, S. Shenker,
I. Stoica, G. Tolle, and J. Zhao. Towards a sensor network architecture: Lowering
the waistline.USENIX HotOS, 2005.

[4] C. Ee, R. Fonseca, S. Kim, A. Tavakoli, D. Culler, S. Shenker, and I. Stoica. A
Network Layer Architecture for Sensornets. InOSDI, 2006.

[5] M. Franklin, S. Jeffrey, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu, O. Cooper,
A. Edakkuni, and W. Hong. Design considerations for high fan-in systems: The
hifi approach.CIDR, 2005.

[6] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira, D. Estrin,
R. Govindan, and E. Kohler. The tenet architecture for tiered sensor networks.
In Sensys, 2006.

[7] B. Leong, B. Liskov, and R. Morris. Geographic routing without planarization.
In NSDI, 2006.

[8] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. In
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS X), 2002.

[9] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative networking with distrib-
uted recursive query processing. InACM SIGMOD International Conference on
Management of Data, June 2006.

[10] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.
Implementing declarative overlays. InSOSP ’05: Proceedings of the twentieth
ACM symposium on Operating systems principles, pages 75–90, New York, NY,
USA, 2005. ACM Press.

[11] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica. A unify-
ing link abstraction for wireless sensor networks. InSenSys ’05: Proceedings of
the 3rd international conference on Embedded networked sensor systems, pages
76–89, New York, NY, USA, 2005. ACM Press.

[12] R. Ramakrishnan and J. D. Ullman. A survey of research on deductive database
systems.Journal of Logic Programming, 23(2):125–149, 1993.

[13] T. Roscoe. The end of internet architecture.HotNets, 2006.

[14] A. Tavakoli, J. Taneja, P. Dutta, D. Culler, S. Shenker, and I. Stoica. Evaluation
and Enhancement of a Unifying Link Abstraction for Sensornets. InUC Berkeley
Technical Report, 2006.

[15] K. Whitehouse, F. Zhao, and J. Liu. Semantic streams: a framework for compos-
able semantic interpretation of sensor data.EWSN, 2006.

	Introduction
	DSN Overview
	Snlog
	System Architecture
	Application Examples

	Fundamental Questions
	Programming expressivity
	System Feasibility
	System Extensibility
	Interoperability
	Portability
	Integration with Lower Architecture
	Fundamental Limitations

	Philosophical Questions
	DSN vs. Modular Architecture
	Code Reuse and Independent Development

	Conclusion
	References

