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1 Introduction

TOSSIM is a discrete event simulator for TinyOS sensor networks. Instead of compiling a TinyOS application
for a mote, users can compile it into the TOSSIM framework, which runs on a PC. This allows users to debug,
test, and analyze algorithms in a controlled and repeatable environment. As TOSSIM runs on a PC, users can
examine their TinyOS code using debuggers and other development tools. This document briefly describes
the design philosophy of TOSSIM, its capabilities, its structure. It also provides a brief tutorial on how to
use TOSSIM for testing or analysis.

TOSSIM’s primary goal is to provide a high fidelity simulation of TinyOS applications. For this reason,
it focuses on simulating TinyOS and its execution, rather than simulating the real world. While TOSSIM
can be used to understand the causes of behavior observed in the real world, it does not capture all of them,
and should not be used for absolute evaluations.

TOSSIM is not always the right simulation solution; like any simulation, it makes several assumptions,
focusing on making some behaviors accurate while simplying others. One of the most common questions
about TOSSIM is whether it can “simulate X” or whether it “has an accurate X model.” In hope of answering
most of such questions, here is a brief summmary of its characteristics:

• Fidelity: By default, TOSSIM captures TinyOS’ behavior at a very low level. It simulates the network
at the bit level, simulates each individual ADC capture, and every interrupt in the system.
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• Time: While TOSSIM precisely times interrupts (allowing things like bit-level radio simulation), it
does not model execution time. From TOSSIM’s perspective, a piece of code runs instantaneously.
Time is kept at a 4MHz granularity (the CPU clock rate of the rene and mica platforms). This also
means that spin locks or task spin locks will never exit: as the code runs instantaneously, the event
that would allow the spin to stop will not occur until the code completes (never).

• Models: TOSSIM itself does not model the real world. Instead, it provides abstractions of certain
real-world phenomena (such as bit error). With tools outside the simulation itself, users can then
manipulate these abstractions to implement whatever models they want to use. By making complex
models exterior to the simulation, TOSSIM remains flexible to the needs of many users without trying
to establish what is “correct.” Additionally, it keeps the simulation simple and efficient.

– Radio: TOSSIM does not model radio propagation; instead, it provides a radio abstraction of
directed independent bit errors between two nodes. An external program can provide a desired
radio model and map it to these bit errors. Having directed bit error rates means that asymmetric
links can be easily modeled. Independent bit errors mean longer packets have a higher probability
of corruption, and each packet’s loss probability is independent.

– Power/Energy: TOSSIM does not model power draw or energy consumption. However, it
is very simple to add annotations to components that consume power to provide information on
when their power states change (e.g., turned on or off). After a simulation is run, a user can apply
a energy or power model to these transitions, calculating overall energy consumption. Because
TOSSIM does not model CPU execution time, it cannot easily provide accurate information for
calculating CPU energy consumption.

• Building: TOSSIM builds directly from TinyOS code. To simulate a protocol or system, you must
write a TinyOS implementation of it. On one hand, this is often more difficult than an abstract
simulation; on the other, it means you can then take your implementation and run it on actual motes.

• Imperfections: Although TOSSIM captures TinyOS behavior at a very low level, it makes several
simplifying assumptions. This means that it is very possible that code which runs in a simulation
might not run on a real mote. For example, in TOSSIM interrupts are non-preemptive (a result of
being a discrete event simulator). On a real mote, an interrupt can fire while other code is running. If
pre-emption can put a mote in an unrecoverable state, then simulated motes will run without mishap
while real-world motes may fail. Also, if interrupt handlers run too long, a real-world mote may crash;
as code in TOSSIM runs instantaneously, no problems will appear in simulation.

• Networking: Currently, TOSSIM simulates the 40Kbit RFM mica networking stack, including the
MAC, encoding, timing, and synchronous acknowledgements. It does not simulate the mica2 ChipCon
CC1000 stack. We are waiting to have a better understanding of the behavior of CC1000 before writing
a simulation implementation.

• Authority: Initial experience from real-world deployments has shown that TinyOS networks have
very complex and highly variable behavior. While TOSSIM is useful to get a sense of how algorithms
perform in comparison to one another, TOSSIM results shouldn’t be considered authoritative. For
example, TOSSIM can tell you that one algorithm behaves better than another under high loss, but
the question remains as to whether the specified loss scenario has any basis in the real world. TOSSIM
should not be considered an end-point of evaluation; instead, it is a system that allows the user to
separate out environmental noise to better understand algortithms.
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2 Compiling and Running a Simulation

TOSSIM is automatically built when you compile an application. Applications are compiled by entering an
application directory (e.g. /apps/Blink) and typing make. Alternatively, when in an application directory,
you can type make pc, which will only compile a simulation of the application.

There are several compilation options to ncc when compiling for TOSSIM, including the maximum
number of motes that can be simulated. The default options in the TinyOS 1.1 makefile should fit almost
any need; refer to the nesC manual for further information on the options available.

The TOSSIM executable is named main.exe, and resides in build/pc. It has the following usage:

Usage: ./build/pc/main.exe [options] num_nodes
[options] are:
-h, --help Display this message.
-gui pauses simulation waiting for GUI to connect
-a=<model> specifies ADC model (generic is default)

options: generic random
-b=<sec> motes boot over first <sec> seconds (default: 10)
-ef=<file> use <file> for eeprom; otherwise anonymous file is used
-l=<scale> run sim at <scale> times real time (fp constant)
-r=<model> specifies a radio model (simple is default)

options: simple static lossy
-rf=<file> specifies file input for lossy model (lossy.nss is default)
-s=<num> only boot <num> of nodes
-t=<sec> run simulation for <sec> virtual seconds
num_nodes number of nodes to simulate

The -h or --help options prints out the above usage message, and some additional information.
The -a option specifies the ADC model to use. TOSSIM currently supports two models: generic and

random. Section 4 describes these models.
The -b option specifies the interval over which motes boot. Their boot times are uniformly distributed

over this interval. The default value is ten seconds.
The -e option is for named EEPROM files. If -e isn’t specified, the logger component stores and reads

data, but this data is not persistent across simulator invocations: it uses an anonymous file. Section 5
describes how the EEPROM in TOSSIM works.

The -l option is for making TOSSIM run at a rate representative of real time. The scale argument
specifies what relative rate should be used. For example, -l=2.0 means twice as fast as real time (two virtual
seconds run in one real second), while -l=0.1 means one tenth of real time (one virtual seconds runs in ten
real seconds.). TOSSIM can only run so fast; specifying it to run faster than it can will cause it to run as
quickly as possible. Using this option imposes a significant performance overhead; it shouldn’t be used when
trying to run simulations quickly.

The -r option specifies the radio model to use. TOSSIM currently supports two models: simple and
lossy. Earlier versions also supported a “static” model, but this has been subsumed by the lossy model.
Section 3 describes these models

The -s option tells TOSSIM to only boot a subset of the number of nodes specified. This is useful if you
want some to boot later, in response to user input. If the -s option is specified, TOSSIM boots mote IDs
0-(num - 1).

The -t option tells TOSSIM to run for a specified number of virtual seconds. After sec seconds have
passed, TOSSIM exits cleanly.
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The num nodes option specifies how many nodes should be simulated. A compile-time upper bound is
specified in /apps/Makerules. The standard TinyOS distribution sets this value to be 1000. By default, all
num nodes boot in the first ten seconds of simulation, with bootup times uniformly distributed.

TOSSIM catches SIGINT (control-C) to exit cleanly. This is useful when profiling code.

2.1 dbg

TOSSIM provides configuration of debugging output at run-time. Much of the TinyOS source contains
debugging statements. Each debugging statement is accompanied by one or more modal flags. When the
simulator starts, it reads in the DBG environment variable to determine which modes should be enabled.
Modes are stored and processed as entries in a bit-mask, so a single output can be enabled for multiple modes,
and a user can specify multiple modes to be displayed. The set of DBG modes recognized by TOSSIM can
be identified by using the -h option; all available modes are printed. The current modes are:

all: Enable all available messages

boot: Simulation boot and StdControl

clock: The hardware clock

task: Task enqueueing/dequeueing/running

sched: The TinyOS scheduler

sensor: Sensor readings

led: Mote leds

crypto: Cryptographic operations (e.g., TinySec)

route: Routing systems

am: Active messages transmission/reception

crc: CRC checks on active messages

packet: Packet-level transmission/reception

encode: Packet encoding/decoding

radio: Low-level radio operations: bits and bytes

logger: Non-volatile storage

adc: The ADC

i2c: The I2C bus

uart: The UART (serial port)

prog: Network reprogramming

sounder: The sounder on the mica sensor board

time: Timers

sim: TOSSIM internals

queue: TOSSIM event queue

simradio: TOSSIM radio models

hardware: TOSSIM hardware abstractions

simmem: TOSSIM memory allocation/deallocation (for finding leaks)

usr1: User output mode 1

usr2: User output mode 2

usr3: User output mode 3

temp: For temporary use

As an example, the statement

dbg(DBG_CRC, "crc check failed: \%x, \%x\n", crc, mcrc);

will print out the failed CRC check message if the user has enabled CRC debug messages, while

dbg(DBG_BOOT, "AM Module initialized\n");

will be printed to standard out if boot messages are enabled. DBG flags can also be combined, as in this
example:

dbg(DBG_ROUTE|DBG_ERROR, "Received control message: lose our network name!.\n");
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This will print out if either route or error messages are enabled.
There are a set of bindings from ASCII strings to debug modes. For example, setting DBG to “boot”

will enable boot message (by setting the appropriate bit in the mask). Setting DBG to “boot,route,am”1

will enable boot, routing and active message output. Generally, the name of the flag in TinyOS source is
“DBG ”, followed by the name of the DBG option in all caps. For example, the environment variable value
“am” enables DBG AM messages, and the value “usr1” enables DBG USR1 messages. Note that if you don’t set
DBG, then all debug output is enabled and the simulation will run very slowly.

Four modes are reserved for application components: usr1, usr2, usr3, and temp. Developers are urged
to use these modes in their code. When TinyOS is compiled for mote hardware, all of debug statements are
removed; we have verified that they add no instructions to the TinyOS code image.

We have found one of the easiest way to run experiments and gather data is to use dbg statements and
save them to a file. Generally, the more data printed out, the better (to a point); Perl scripts or other tools
can then read in the log of the run and provide information on packet loss rates, routing state, etc. A useful
function, defined in external comm.c, is printTime(char* buf, int len). It takes the current time in
simulation and converts it to the form HH:MM:SS, putting it in buf..

2.2 Network Monitoring and Packet Injection

To interact with a simulated network, you must use SerialForwarder, the standard TinyOS interface tool.
To work with TOSSIM, SerialForwarder’s input source must be set appropriately. TOSSIM provides two
modes: communication through a serial port to mote 0 and network snooping.

The serial port mode (“tossim-serial” in the “Mote Communications” field or “-comm tossim-serial” at
the command line) interacts with mote 0 over its serial port. Programs connecting to SerialForwarder can
read messages mote 0 sends to its serial port, and send messages to mote 0 over its serial port.

The snooping mode (“tossim-radio” in the “Mote Communications” field or “-comm tossim-radio” at the
command line) sits on top of the TOSSIM network model. Programs connecting to SerialForwarder hear
every radio message sent in the network, and can inject radio messages to arrive (without error) at any
mote. Because this mode outputs every message sent, it does not consider loss; programs connecting will
hear packets that might not arrive successfully at any mote.

It’s often helpful to use the -l flag when using the serial port mode; external applications can then
interact with a network in something approximating real time. Otherwise, in simulations of small numbers
of motes, things like network timeouts can go off before a PC application has a chance to respond.

Message Interface Generator (MIG) is a tool that generates Java classes for TinyOS packets. The MIG
tool parses C structures for TinyOS packets and builds a Java class with accessors for each of the packet
fields. The message classes can also unpack from and pack to byte arrays.

Using MIG with TOSSIM has one hitch; you must specify the -target=pc flag when compiling your
message classes. MIG classes generated for motes may not work with TOSSIM; the two platforms do not
necessarily pack messages identically. Having different word boundaries (one byte on motes, four bytes on
PCs) means that structures will have different padding. Problems will definitely appear if message structures
use platform-dependent types such as int.

1E.g. “export DBG=boot,route,am” in bash, “setenv DBG boot,route,am” in tcsh, etc.
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Figure 1: Empirical and Corresponding Simulated Packet Loss Data

3 Radio Models

TOSSIM simulates the TinyOS network at the bit level, using TinyOS component implementations almost
identical to the mica 40Kbit RFM-based stack. TOSSIM provides two radio models: simple and lossy. The
mica2 CC1000-based stack does not currently have a simulation implementation.

In TOSSIM, a network signal is either a one or zero. All signals are of equal strength, and collision is
modeled as a logical or; there is no cancellation. This means that distance does not effect signal strength;
if mote B is very close to mote A, it cannot cut through the signal from far-away mote C. This makes
interference in TOSSIM generally worse than expected real world behavior.

The “simple” radio model places all nodes in a single cell. Every bit transmitted is received without
error. Although no bits are corrupted due to error, two motes can transmit at the same time; every mote
in the cell will hear the overlap of the signals, which will almost certainly be a corrupted packet. However,
because of perfect bit transmission in a single cell, the probability of two motes transmitting at the same
time is very, very low, due to the TinyOS CSMA protocol.

The simple model is useful for testing single-hop algorithms and TinyOS components for correctness.
Deterministic packet reception allows deterministic results.

The “lossy” radio model places the nodes in a directed graph. Each edge (a, b) in the graph means a’s
signal can be heard by b. Every edge has a value in the range (0, 1), representing the probability a bit sent by
a will be corrupted (flipped) when b hears it. For example, a value of 0.01 means each bit transmitted has a
1% chance of being flipped, while 1.0 means every bit will be flipped, and 0.0 means bits will be transmitted
without error. Each bit is considered independently.

The graph of the lossy model can be specified at TOSSIM boot with a file. TOSSIM looks for the file
“lossy.nss” by default, but an alternate file can be specified with the -rf flag. The file has the following
format:

<mote ID>:<mote ID>:bit error rate

<mote ID>:<mote ID>:bit error rate

<mote ID>:<mote ID>:bit error rate ...

For example,

0:1:0.012333

1:0:0.009112

1:2:0.013196
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specifies that mote 1 hears mote 0 with a bit error rate of 1.2%, mote 0 hears mote 1 with a bit error rate of
0.9%, and mote 2 hears mote 1 with a bit error rate of 1.3%. By making the graph directed, TOSSIM can
model asymmetric links, which initial empirical studies have suggest are a common occurance in TinyOS
RFM-stack networks.

By specifying error at the bit level, TOSSIM can capture many causes of packet loss and noise in a
TinyOS network, including missed start symbols, data corruption, and acknowledgement errors.

TOSSIM includes a Java tool, net.tinyos.sim.LossyBuilder for generating loss rates from physical
topologies. The tool models loss rates observed empirically in an experiment performed by Woo et al. on
a TinyOS network [1]. The empirical data is from a network of twenty-six motes, placed in a line, spaced
at regular two foot intervals, with the TinyOS radio set at a medium power setting (50 out of 100). Each
mote transmitted two hundred packets, with each other mote keeping track of the number of packets heard.
Figure 1(a) shows a plot of this empirical data.

To generate lossy models, the tool has Gaussian packet loss probability distributions for each distance,
fit to match the empirical data. Given a physical mote topology, the tool generates packet loss rates for each
mote pair by sampling these distributions. The tool translates packet error rates into independent bit error
rates. Figure 1(b) shows the results of the experiment used to gather loss data when run in TOSSIM.

The lossy model models interference and corruption, but it does not model noise; if no mote transmits,
every mote will hear a perfectly clear channel.

3.1 Using LossyBuilder

LossyBuilder assumes each mote has a transmission radius of 50 feet. Combined with the bit error rate,
this means each mote transmits its signal in a disc of radius 50 feet, with the bit error rate increasing with
distance from the center.

LossyBuilder can read in or generate physical topologies ((x,y) coordinates), and generate loss topologies
from physical topologies by sampling from the model of the empirical distribution in Figure 1(a). Its usage
is:

usage: java net.tinyos.sim.LossyBuilder [options]

options:

-t grid: Topology (grid only and default)

-d <m> <n>: Grid size (m by n) (default: 10 x 10)

-s <scale>: Spacing factor (default: 5.0)

-o <file>: Output file

-i <file>: Input file of positions

-p: Generate positions, not error rates

Running LossyBuilder will, by default, generate a loss topology for a 10 by 10 grid with a grid spacing
of five feet (45’ by 45’), and print it to standard out. It prints the loss topology in the form that TOSSIM
expects. The -i option allows you to specify an input file of (x,y) positions, which has the format

x y

x y

x y ...

where the coordinate system is in feet. The first (x,y) pair is the position of mote 0, the second is the position
of mote 1, etc.

For example,
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java net.tinyos.sim.LossyBuilder -d 20 20 -s 10 -o 20x20-10.nss

will output a loss topology of a 20 by 20 grid, with ten foot spacing, and write it to the file “20x20-10.nss”.

3.2 Bit Errors and Packet Errors

The forumula for calculating packet error rates (Ep) from bit error rates (Eb) for the mica RFM 40Kb stack
with SecDed encoding is:

Ep = 1 − (Ss · (Se)d)

Ss = (1 − Eb)9

Se = (1 − Eb)8 + (8 · Eb · (1 − Eb)12)

Ep = 1 − ((1 − Eb)9 · ((1 − Eb)8 + (8 · Eb · (1 − Eb)12))d)

where Ss is the start symbol success probability, Se the probability a packet byte is uncorrupted (zero or
one bit errors), and d is the number of bytes in the packet.

The simple model can be represented in the lossy model: it is a fully connected graph, in which every
edge has a loss probability of zero. However, doing so requires specifying the entire graph to TOSSIM; the
simple model is an easy shortcut (and has an internal representation that’s more efficient).

3.3 Lossy Model Actuation

Specifying a loss topology with a file defines a static topology over an entire simulation. There are simulation
situations, however, in which changing topologies are needed. TOSSIM therefore allows users to modify the
loss topology at run-time. Applications can connect to TOSSIM over a TCP socket and send control messages
to add, delete, or modify network links. Currently, the only application that does so is TinyViz, discussed
in Section 6. The TinyViz network plugins use the same empirical model of LossyBuilder to generate link
loss rates; moving motes causes TinyViz to send the appropriate commands to TOSSIM.

4 ADC Models

TOSSIM provides two ADC models: random and generic. The model chosen specifies how readings taken
from the ADC are generated. Whenever any channel in the ADC is sampled in the random model, it returns
a 10-bit random value (the rene and mica ADCs are 10 bits).

The general model also provides random values by default, but has added functionality. Just as external
applications can actuate the lossy network model, they can also actuate the generic ADC model using
the TOSSIM control channel, setting the value for any ADC port on any mote. Currently, only TinyViz,
(discussed in Section 6) supports this, through the ADC plugin. Left-clicking on a mote selects it; using
the ADC panel, you can set the 10-bit value read from any of the mote’s ADC ports. Figure 2 shows a
screenshot of this TinyViz functionality.

5 EEPROM

TOSSIM models the EEPROM at the line (16-byte block) level. TOSSIM models it with a large, memory-
mapped file. By default, this file is anonymous, and disappears when a simulation ends. However, with the
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Figure 2: Setting ADC values in TinyViz

-ef option, a user can specify a named file to use; this allows the EEPROM data to persist across multiple
simulation invocations.

6 TinyViz

TinyViz is a Java visualization and actuation environment for TOSSIM. The main TinyViz class is a jar
file, tools/java/net/tinyos/sim/tinyviz.jar. TinyViz can be attached to a running simulation. Also,
TOSSIM can be made to wait for TinyViz to connect before it starts up, with the -gui flag. This allows
users to be sure that TinyViz captures all of the events in a given simulation.

TinyViz is not actually a visualizer; instead, it is a framework in which plugins can provide desired
functionality. By itself, TinyViz does little besides draw motes and their LEDs. However, it comes with a
few example plugins, such as one that visualizes network traffic.

Figure 3 shows a screenshot of the TinyViz tool. The left window contains the simulation visualization,
showing 16 motes communicating in an ad-hoc network. The right window is the plugin window; each plugin
is a tab pane, with configuration controls and data.

The second element on the top bar is the Plugin menu, for activating or de-activating individual plugins.
Inactive plugins have their tab panes greyed out.

The third element is the layout menu, which allows you to arrange motes in specific topologies, as well
as save or restore topologies. TinyViz can use physical topologies to generate network topologies by sending
messages to TOSSIM that configure network connectivity and the loss rate of individual links.

The right side of the top bar has three buttons and a slider. TinyViz can slow a simulation by introducing
delays when it handles events from TOSSIM. The slider configures how long delays are. The On/Off button
turns selected motes on and off; this can be used to reboot a network, or dynamically change its members.
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Figure 3: TinyViz connected to TOSSIM running an object tracking application. The right panel shows sent
radio packets, the left panel exhibits radio connectivity for mote 15 and network traffic. The green arrows
and corresponding labels represent link probabilities for mote 15, and the magenta arrows indicate packet
transmission.
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The button to the right of the slider starts and stops a simulation; unlike the delays, which are for short,
fixed periods, this button can be used to pause a simulation for arbitrary periods. The final button, on the
far right, enables and disables a grid in the visualization area. The small text bar on the bottom of the right
panel displays whether the simulation is running or paused.

The TinyViz engine uses an event-driven model, which allows easy mapping between TinyOS’ event-
based execution and event-driven GUIs. By itself, the application does very little; drop-in plugins provide
user functionality. TinyViz has an event bus, which reads events from a simulation and publishes them to
all active plugins.

6.1 TinyViz Plugins

Users can write new plugins, which TinyViz can dynamically load. A simple event bus sits in the center
of TinyViz; simulator messages sent to TinyViz appear as events, which any plugin can respond to. For
example, when a mote transmits a packet in TOSSIM, the simulator sends a packet send message to TinyViz,
which generates a packet send event and broadcasts it on the event bus. A networking plugin can listen for
packet send events and update TinyViz node state and draw an animation of the communication.

Plugins can be dynamically registered and deregistered, which correspondingly connect and disconnect
the plugin from the event bus. A plugin hears all events sent to the event bus, but individually decides
whether to do anything in response to a specific event; this keeps the event bus simple, instead of having a
content-specific subscription mechanism.

A plugin must be a subclass of net.tinyos.sim.Plugin. Plugin has the following signature:

public abstract class Plugin {

public Plugin() {}

public void initialize(TinyViz viz, JPanel pluginPanel) {...}

public void register() {...}

public void reset() { /* do nothing */}

public abstract void deregister();

public abstract void draw(Graphics graphics);

public abstract void handleEvent(SimEvent event);

}

Plugins register themselves with the TinyViz event bus, which then notifies them of all events coming in
from TOSSIM; it is up to an individual plugin whether to do something. The draw method is used to draw
visualizations in the left pane of the TinyViz window.

7 Using gdb

The binary executable produced by typing make pc in any app directory can be debugged using GDB.
Developers of TinyOS code can step through programs they have written, debugging deterministic, logical
aspects of their code before loading programs onto motes.

When accessing variables and functions in TOSSIM under GDB, specific prefixes precede them, to dis-
tinguish variables from different components that have ths same name. The nesC compiler takes each
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component’s fields and functions and renames them with unique identifiers. This renaming for fields of a
component is done by taking the field name, and preceding it by the component name and a $ sign. Func-
tions are renamed by taking the name of the function and preceding it by the name of the component it is
defined in, followed by a $ sign, followed by the interface name, followed by another $ sign.

The maximum number of nodes that can be simulated is determined at compile time. This value, as
mentioned in section TOSSIM Architecture specifies the size of the array for each component’s fields during
code generation of the compilation process. When compiling for the pc, each declaration of a component
field is followed by [, the value of tossim num nodes, and ], where tossim num nodes is specified by the flag
-fnesc-tossim tosnodes= in Makerules, or by default, set to 1000. This is the way TOSSIM simulates
multiple motes. TOSSIM keeps an array for each variable of state, and references each mote’s corresponding
state when running code for that mote.

During code generation for the pc, all references to component fields are followed by [, tos state.current node

and ], where tos state.current node refers to the moteID of the mote TOSSIM is currently executing
code for.

For, for example, the Counter component has a variable named state of type uint 16t. This translates to
the C name Counter$state. When compiled for TOSSIM, it becomes uint16 t Counter$state[MAX NODES].
If a component has a variable that’s an array (e.g., uint8 t buffer[8], it becomes an array of arrays (e.g.,
uint8 t buffer[8][MAX NODES]). Laying out module variables in this way means that overrun and under-
run bugs will have different effects on real motes and in TOSSIM. On a real mote, such a bug will corrupt
that mote’s state; in TOSSIM, it will corrupt other motes’ state.

Using the application Blink as an example, type make pc in the /apps/Blink/ directory to compile
the application for TOSSIM. Run gdb on the executable produced by typing gdb build/pc/main.exe.
Examining BlinkM.td, to break at the function Clock.fire(), type break *BlinkM$Clock$fire. break (or
b) specifies a breakpoint in GDB, and the * tells the GDB command line parser to examine the entire block
of text following it as a single expression. It is currently necessary to specify the * before the function name
for GDB to parse it properly. BlinkM denotes the component the function is defined in, and Clock specifies
the interface the function fire belongs to.

To run Blink with one mote, type run 1 or r 1. r is the GDB command to run the current executable,
and all values after the r are passed as arguments to the executable. Therefore the 1 specifies the number
of motes to simulate to TOSSIM. MoteIDs are assigned starting at 0. In this current example the moteID
of the single mote being simulated is 0.

Upon hitting the breakpoint at fire, to print the value of BlinkM’s state, type
print BlinkM$state[tos state.current node] (or p for print). p is the print command in GDB. BlinkM
corresponds to the component the field state belongs to. Since the application was compiled for the pc, it
is necessary to specify which mote’s BlinkM$state to access, as [tos state.current node] following the
field name does.

8 Concurrency Model

TOSSIM captures the TinyOS event-driven concurrency model at interrupt and task granularity. For a
description of the TinyOS concurrency model, refer to the TinyOS documentation. This document does not
describe the model, merely how TOSSIM implements it.

TOSSIM models each TinyOS interrupt as a simulation event. Each event is associated with a specific
mote. Simulator events run atomically with respect to one another. Therefore, unlike on real hardware,
interrupts cannot pre-empt one another. After each simulator event executes, TOSSIM checks the task
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Time (4MHz ticks) Action

3987340 Simulator event is dequeued and handled at time 3987340.

The clock interrupt handler is called, signaling the application Timer event.

The application’s Timer handler requests a reading from the ADC.

The ADC component puts a simulator ADC event on the queue with timesta mp 3987540.

The interrupt handler completes; the clock event re-enqueues itself fo r the next tick.

3987540 Simulator ADC event is dequeued and handled at time 3987540.

The ADC interrupt handler is called, signaling an ADC ready event with a sensor value.

The application event handler takes the top three b its and calls LEDs commands.

The ADC interrupt handler completes.

7987340 Simulator event is dequeued and handled at time 7987340.

The clock interrupt handler is called, signaling the application Timer event.

. . . execution continues as above

Figure 4: Sample Execution

queue for any pending tasks, and executes all of them in FIFO scheduling order. In TOSSIM, interrrupts
do not pre-empt tasks. This method of task execution means that spinning tasks (e.g., tasks that enqueue
themselves in a spin-lock fashion) will cause TOSSIM to execute that task indefinitely. Using tasks in this
way is contrary to the event-driven TinyOS programming model.

Once a simulator event calls an interrupt handler, the handler executes TinyOS code through commands
and events.

8.1 Sample Execution

Figure 4 contains a sample execution that demonstrates the workings of TOSSIM. A simple program,
SenseToLeds, is running on a single mote. This program has a 1Hz timer that samples the light sensor
and displays the three high order bits of the reading on the mote LEDs. Since simulator time is kept in
terms of a 4MHz clock, the timer events are four million ticks apart, and the 50µs ADC capture takes
200 ticks between request and interrupt. In Figure 4 TOSSIM-specific execution is shown in plain text,
while unchanged TinyOS execution is shown in italics. This sample execution shows how a small number
of TOSSIM events results in the series of TinyOS events and commands comprising an entire (albeit very
simple) application.

9 Internals

Currently, TOSSIM compiles by using alternative implementations of some core system components (e.g.
Main.nc, HPLUART.nc) and incorporating a few extra files (e.g. event queue.c).

The basic TOSSIM structure definitions exist in platform/pc/nido.h. These include the global sim-
ulation state (event queue, time, etc.) and individual node state. Hardware settings that affect multiple
components (such as the potentiometer setting) currently must be modeled as global node state. nido.h

also includes a few useful macros, such as NODE NUM and THIS NODE; these should be used whenever possible,
so minimal code modifications will be necessary if the data representation changes.

Nido.nc is where the TOSSIM global state is defined. The main() function parses the command line
options, initializes the TOSSIM global state, initializes the external communication functionality (defined
in external comm.c, PCRadio.h), then initializes the state of each of the simulated motes with call

StdControl.init() and call StdControl.start(). It then starts executing a small loop that handles
events and schedules tasks.
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9.1 TOSSIM Architecture

TOSSIM replaces a small number of TinyOS components, the components that handle interrupts and the
Main component. Interrupts are modeled as simulatgor discrete events. Normally, the core TinyOS loop
that runs on motes is this:

while(1){

TOSH_run_task();

}

TOSH run task runs tasks until the task queue is empty, at which point it puts the CPU to sleep. An
interrupt will wake the mote. If the interrupt has caused a task to be scheduled, then that task will be run.
While that task is running, interrupts can be handled.

The core TOSSIM loop is slightly different:

for (;;) {

while(TOSH_run_next_task()) {}

if (!queue_is_empty(&(tos_state.queue))) {

tos_state.tos_time =

queue_peek_event_time(&(tos_state.queue));

queue_handle_next_event(&(tos_state.queue));

}

A notion of virtual time (stored as a 64-bit integer) is kept in the simulator (stored in tos state.tos time),
and every event is associated with a specific mote. Most events are emulations of hardware interrupts. For
example, when the clock in hpl.c is initialized to certain counter values, TOSSIM’s implementation enqueues
a clock interrupt event, whose handler calls the function normally registered as the clock interrupt handler;
from this point, normal TinyOS code takes over (in terms of events being signaled, etc.) In addition, the
event enqueues another clock event for the future, with its time (for the event queue) being the current time
plus the time between interrupts.

When compiling for TOSSIM, the nesC compiler modifies code generation for components such that
fields declared in components result in arrays of each field. The maximum number of motes that can be
simulated at once is set at compile time by the size of this array; the default value is 1000 and is specified in
/apps/Makerules with the -fnesc-tossim-tosnodes= flag. Since every event is associated with a specific
mote, the tos state.current node field is set just before the event handler function is called, so that all
modifications to component fields affect the correct mote’s state. Since all TinyOS tasks enqueued by an
event are run to completion before the next event is handled, tasks all execute with the same node number
and access the enqueuing mote’s state.

9.2 TOSSIM Implementations

To load a component, the nesC compiler uses a directory search path. The default search path is:

• The application directory

• tos/platform/xxx (the selected platform)

• tos/sensorboards/xxx (the selected sensor board(s))

• tos/system
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• tos/lib

Entries can be prepended to the search path with the -I option to the compiler. Using the -I option
therefore allows you to use alternative implementations of components provided by TinyOS. For example,
one can write a TOSSIM implementation of the microphone, and put it in a separate directory, then include
that directory with -I. This will cause the compiler to load the new TOSSIM implementation instead of the
default one in the sensor board directory.

The component model of TinyOS means that TOSSIM implementations are not constrained to hard-
ware abstractions. For example, TOSSIM has an implementation of the EEPROM component, instead of the
lower-level hardware interface. Similarly, instead of using a bit-level simulation, one can write a TOSSIM
implementation of AMStandard, for a packet-level simulation.

9.3 RFM

A TOSSIM network model has the following structure:

typedef struct {

void(*init)();

void(*transmit)(int, char); // int moteID, char bit

void(*stop_transmit)(int); // int moteID

char(*hears)(int); // char bit, int moteID

bool(*connected)(int,int); // int moteID1, int moteID2

link_t*(*neighbors)(int); // int moteID

} rfm_model;

init, transmit, stop transmit and hears are straightforward; they’re used to transmit and receive
bits. The connected and neighbors functions are used for some specific low-level emulations of the radio
channel during bit synchronization.

To give a feel for how the TOSSIM RFM model works, we’ll step through the lossy model. The variable
names have been changed to make it a bit easier to explain.

In the lossy model, each mote has four variables: the value it currently hears, whether it is transmitting
or not, and a structure defining its network links. Each network link has a bit error probability and stores
the value currently being transmitted along that link (after error).

Every time a mote transmit()s (after error) a 1 to another mote, that mote’s hears variable is in-
cremented. When the transmitting mote calls stop transmit(), the variable is decremented. When the
receiver calls hears(), it receives a 1 if the hears variable is non-zero. Signals are therefore modeled as a
logical or.

When a mote transmits a zero or one with transmit(), the function scans through the list of network
connections (neighbors()). For each link, it flips the bit with the probability specified by that link, and
stores the bit that’s actually transmitted (this is needed for when stop transmit() is called, so hears can
be decremented properly).
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