Exercise for the lecture

Algorithms for Radio Networks

Winter 2011/12

Sheet 8

EXERCISE 8:

Consider the following random walk model with $i=\{1, \ldots, n\}$ steps in a one-dimensional world. For step $i=1$ start at $x_{1}=0$ and choose a random velocity $v_{1} \in[0,1]$. Move according to the chosen velocity until a distance of 1 m is traveled.
Now start at this point x_{i}, choose a new velocity $v_{i} \in[0,1]$, move for 1 m to point x_{i+1}. Repeat this step until forever.

1. Use an appropriate programming language and simulate the random walk model. Run a long random walk of at least $n=1000$ steps. Run sufficient repeats this random walk. Note down the times, the velocities and the traveled distances.
2. What is the expectation of the average velocity after $1,10,100$, and after 1000 steps?
3. What is the probability density of the travel times after $1,10,100$, and after 1000 steps?

You may support your results by some nice plots.

