Freiburg, February 1, 2012 Discussion: February 7, 2012

## Exercise for the lecture Algorithms for Radio Networks Winter 2011/12 Sheet 12

## **EXERCISE 12:**

1. Consider the following network graph where the numbers at the edges denote the edge capacities.



- Find the maximum flow from the source S to the destination D by applying the Edmonds-Karp algorithm. Show the path found during each step from S to D in separate figure.
- Find the minimum cut in the network graph given above.
- 2. Consider the functions  $P_s(t) = 2(\sin(t) + 1)$  and  $P_c(t) = \cos(t)^2$ .
  - Prove that these functions describe benign energy sources and benign energy demand by computing the parameters ρ<sub>1</sub>, ρ<sub>2</sub>, σ<sub>1</sub>,..., σ<sub>4</sub>.
  - Compute the minimum initial energy  $B_0$  such that there is continuous operation in the ideal setting.
  - Assume  $\eta = 0.4$  and no energy leakage. Is it possible to operate this node continuously?