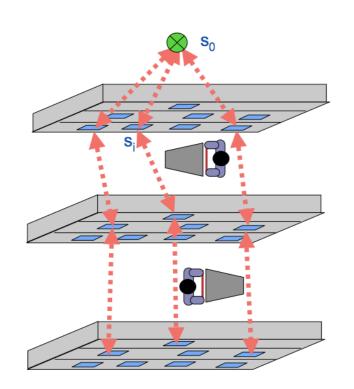
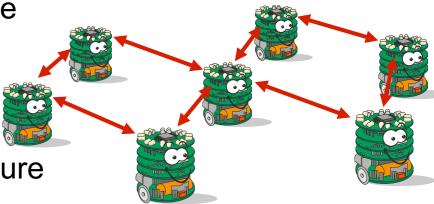

Algorithms for Radio Networks


Introduction and Basics

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Mittwoch, 26. Oktober 11


Networks Types

Cellular networks

- one or more access stations
- each access station covers a cell
- e.g. mobile telephones, WLAN

Mobile ad hoc networks

- self-configuring network of mobile nodes
- nodes serve as end-points or routers
- without any dedicated infrastructure
- Wireless sensor network
 - connecting sensors and actuator units wireless communicating with one or more base stations
 - base station is more powerful than other nodes

Popular Wireless Networks

► GSM, GPRS, EDGE

- Global System for Mobile Communications
- General Packet Radio Service
- Enhanced Data Rates for GSM Evolution
- Smart phones, PDAs, Laptop/ netbook modem, Tablet PCs

• UMTS

- Universal Mobile Telecommunications Systems
- 3rd generation mobile communication standard

▶ IEEE 802.11 a/b/g/n

- Wireless Local Area Network (WLAN)
- Wireless networking of computers, cameras, printers, etc.
- Mostly as cellular networks
- But also allows ad-hoc mode between two nodes

▶ IEEE 802.15.4 + Zigbee

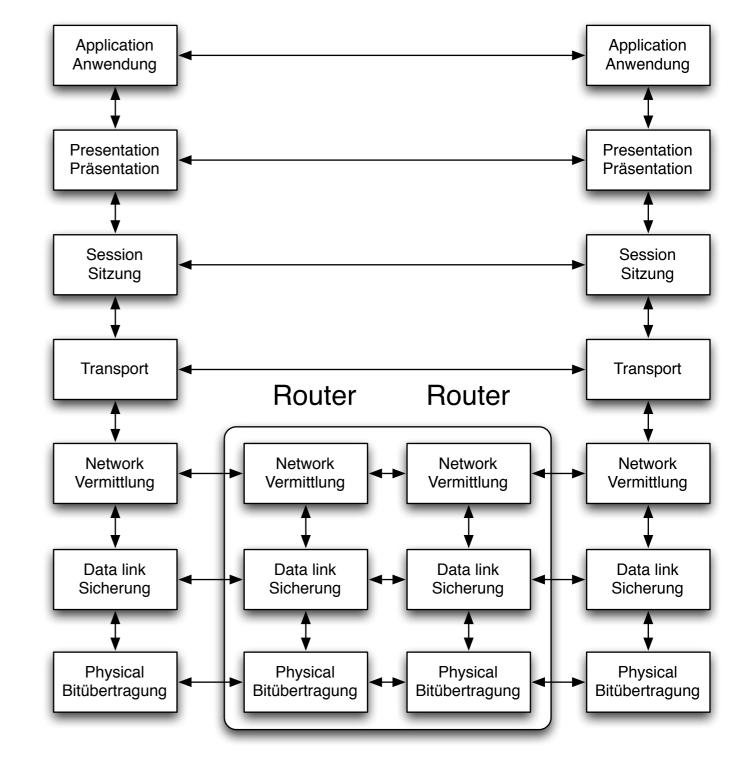
- Wireless Personal Area Network (WPAN)
 - Standard for wireless sensor networks
 - Zigbee Alliance
 - * defined higher protocol layers

ISO/OSI Reference model

7. Application

Data transmission, e-mail, terminal, remote login

▶ 6. Presentation


 System-dependent presentation of the data (EBCDIC / ASCII)

▶ 5. Session

• start, end, restart

▶ 4. Transport

- Segmentation, congestion
- ► 3. Network
 - Routing
- 2. Data Link
 - Checksums, flow control
- 1. Physical
 - Mechanics, electrics

TCP/IP-Layer of the Internet

Application	Telnet, FTP, HTTP, SMTP (E-Mail),		
Transport	TCP (Transmission Control Protocol) UDP (User Datagram Protocol)		
Network	IP (Internet Protocol) + ICMP (Internet Control Message Protocol) + IGMP (Internet Group Management Protoccol)		
Host-to- Network	LAN (z.B. Ethernet, Token Ring etc.)		

Signals, Data and Information

Information

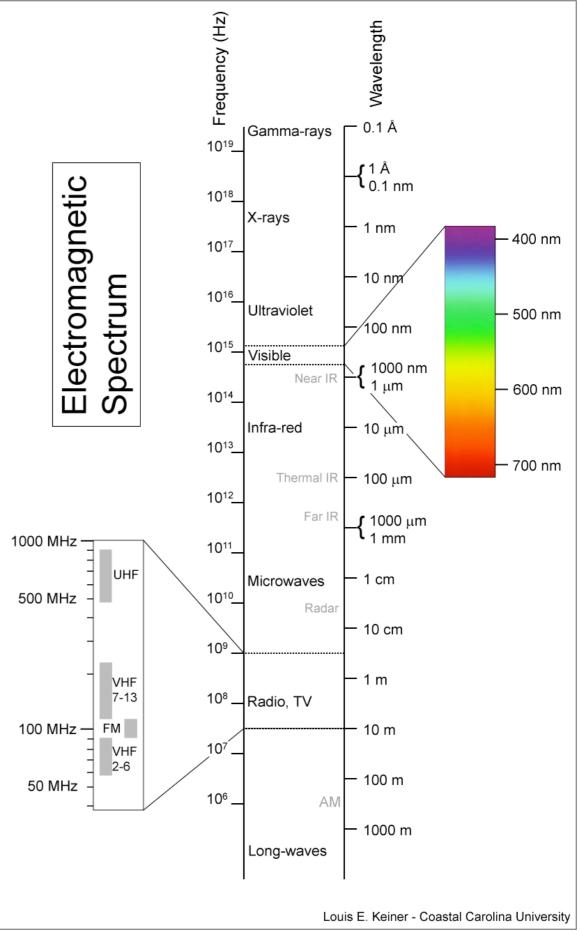
- Human interpretation,
- e.g. Beautiful weather
- Data
 - Formal presentation
 - e.g. 28 degrees Celsius, rainfall 0cm, 0% cloud cover
- Signal
 - Representation of data by physical variables,
 - e.g. Current flow through thermal sensor, the video signals from camera
- Examples of signals:
 - Current, voltage
 - In the digital world signals representing bits

Physics – Background

- Moving particles with electric charge cause electromagnetic waves
 - frequency f : number of oscillations per second
 - unit: Hertz
 - wavelength λ : distance (in meters) between two wave maxima
 - antennas can create and receive electromagnetic waves
 - the transmission speed of electromagnetic waves in vacuum is constant
 - speed of light $c \approx 3.10^8$ m/s
- Relation between wavelength, frequency and speed of light:

 $\boldsymbol{\lambda} \cdot \mathbf{f} = \mathbf{c}$

Electromagnetic Spectrum


guided media

guided media

Bands

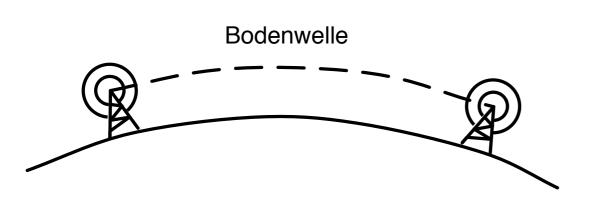
- LF Low Frequency
- MF Medium Frequency
- HF High Frequency
- VHF Very High Frequency
- UHF Ultra High Frequency
- UV Ultra Violet light

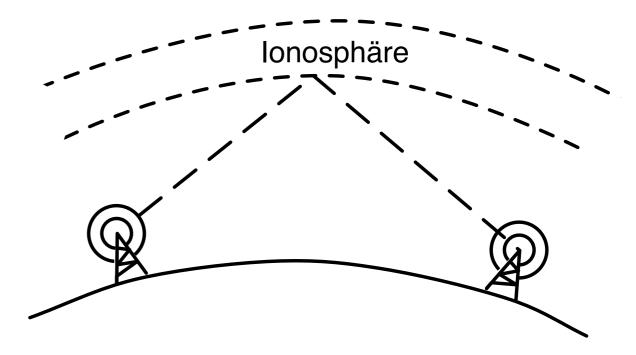
Computer Networks and Telematics University of Freiburg

Algorithms for Radio Networks Prof. Dr. Christian Schindelhauer

9 Picture under creative commons license http://creativecommons.org/licenses/by-sa/2.5/

Bands for Wireless Networks


- VHF/UHF for mobile radio
 - antenna length
- SHF for point-to-point radio systems, satellite communication
- Wireless LAN: UHF to SHF
 - planned EHF
- Visible light
 - communication by laser
- Infrared
 - remote controls
 - LAN in closed rooms


Propagation Performance

- Straight-lined propagation in vacuum
- Received power decreases with 1/d²
 - in theory
 - in practice higher exponents up to 4 or 5
- Reduction because of
 - attenuation in air (in particular HF, VHF)
 - shadowing and mountain effect
 - reflection
 - diffusion at small obstacles
 - diffraction

Frequency Dependent Behavior

- VLF, LF, MF
 - follow the curvature of the earth (up to 1000 km for VLF)
 - permeate buildings
- ► HF, VHF
 - absorbed by the ground
 - reflected by the ionosphere 100-500 km height
- Over 100 MHz
 - straight-line propagation
 - marginal penetration of buildings
 - good focus
- Over 8 GHz absorption by rainfall

Algorithms for Radio Networks Prof. Dr. Christian Schindelhauer Computer Networks and Telematics University of Freiburg

Problems

Multiple Path Fading

- Signal arrives at receiver on multiple paths because of reflection, diffusion, and diffraction
- Signal time variation leads to interferences
 - decoding faults
 - attenuation

Mobility problems

- Fast fading
 - different transmission paths
 - different phasing
- Slow fading
 - increase of distance between sender and receiver

Noise and Interference

Noise

- inaccuracies and heat development in electrical components
- modeled by normal distribution

Interference from other transmitters

- in the same spectrum
- or in neighbored spectrum
 - e.g. because of bad filters

Effect

• Signal is disrupted

Signal Interference Noise Ratio

- reception energy = transmission energy · path loss
 - path loss ~ $1/d^{\gamma}$
 - γ∈[2,5]
- Signal to Interference and Noise Ratio = SINR
 - S = (desired) Signal energy
 - I = energy of Interfering signals
 - N = Noise
- Necessary condition for reception

$$\mathsf{SINR} = \frac{S}{I+N} \ge \mathsf{T}hreshold$$

Path Loss

Attenuatation

 Received signal power depends on the distance d between sender and receiver

Friis transmission equation

- distance: R
- wavelength: λ
- P_r: energy at receiver antenna
- P_t: energy at sender antenna
- G_t: sender antenna gain
- G_r: receiver antenna gain

$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2$$
$$P_r(d) = P_r(d_0) \cdot \left(\frac{d_0}{d}\right)^2$$

Path Loss Exponent

Measurements

- γ path loss exponent
- shadowing variance $\sigma^{\! 2}$
- reference path loss at 1m distance

Location	Average of γ	Average of σ^2 [dB]	Range of PL(1m)[dB]
Engineering Building	1.9	5.7	[-50.5, -39.0]
Apartment Hallway	2.0	8.0	[-38.2, -35.0]
Parking Structure	3.0	7.9	[-36.0, -32.7]
One-sided Corridor	1.9	8.0	[-44.2, -33.5]
One-sided patio	3.2	3.7	[-39.0, -34.2]
Concrete canyon	2.7	10.2	[-48.7, -44.0]
Plant fence	4.9	9.4	[-38.2, -34.5]
Small boulders	3.5	12.8	[-41.5, -37.2]
Sandy flat beach	4.2	4.0	[-40.8, -37.5]
Dense bamboo	5.0	11.6	[-38.2, -35.2]
Dry tall underbrush	3.6	8.4	[-36.4, -33.2]

Karl, Willig, Protocols and Architectures for Wireless Sensor Networks, Wiley, 2005

Algorithms for Radio Networks

Introduction and Basics

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Mittwoch, 26. Oktober 11