

Algorithms for Radio Networks

Fourier-Analysis and Modulation

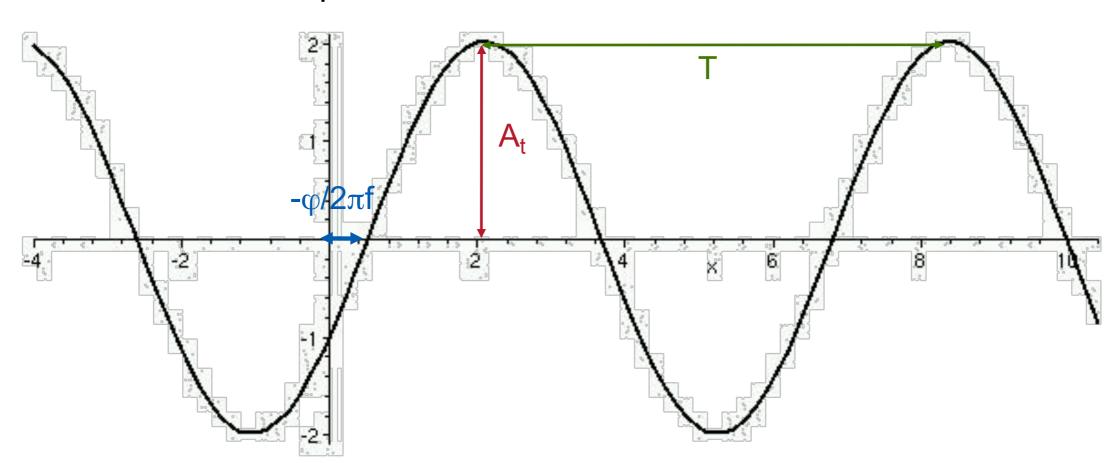
University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof. Christian Schindelhauer

Amplitude Representation

Amplitude representation of a sine curve

$$s(t) = A\sin(2\pi ft + \phi)$$

- A: amplitude
- φ: phase shift
- f: frequency = 1/T
- T: time period



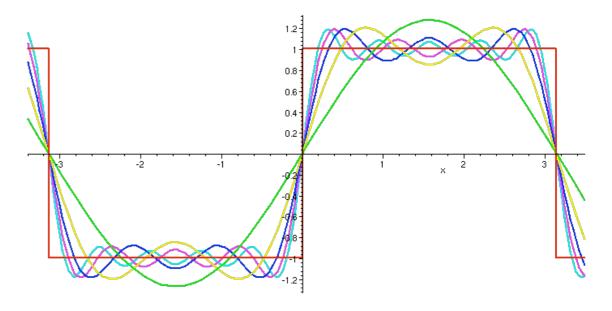
Fourier Transformation

- Fourier transformation of a periodic function
 - decomposition in various sine and cosine functions
- Dirichlet condition of a periodic function f
 - $f(x) = f(x+2\pi)$
 - f(x) in $(-\pi,\pi)$ in finitely many intervals continuous and monotonic
 - If f is discontinuous at x_0 , then $f(x_0)=(f(x_0-0)+f(x_0+0))/2$

Theorem of Dirichlet:

 If f(x) satisfies (-π,π) the Dirichlet condition then there exists Fourier coefficients a₀,a₁,a₂,...,b₁,b₂,... such that

$$\lim_{n\to\infty} \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx \equiv f(x) .$$



Computation of Fourier Coefficients

▶ Fourier coefficients a_i, b_i:

• For k = 0, 1, 2, ...

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$$

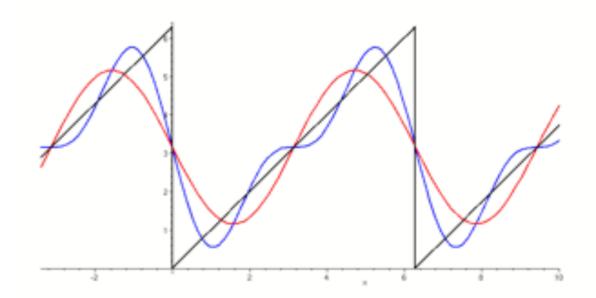
• For k = 1, 2, 3, ...

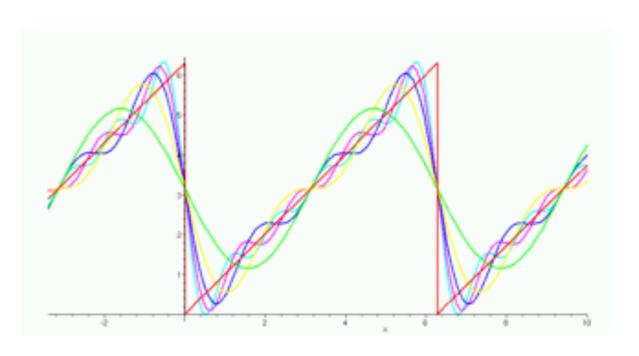
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx$$

Example: saw tooth curve

$$f(x) = x , \text{ für } 0 < x < 2\pi$$

$$f(x) = \pi - 2\left(\frac{\sin x}{1} + \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \dots\right)$$





Fourier Analysis for general period

- ➤ Theorem of Fourier for period T=1/f:
 - The coefficients c, a_n, b_n are then obtained as follows

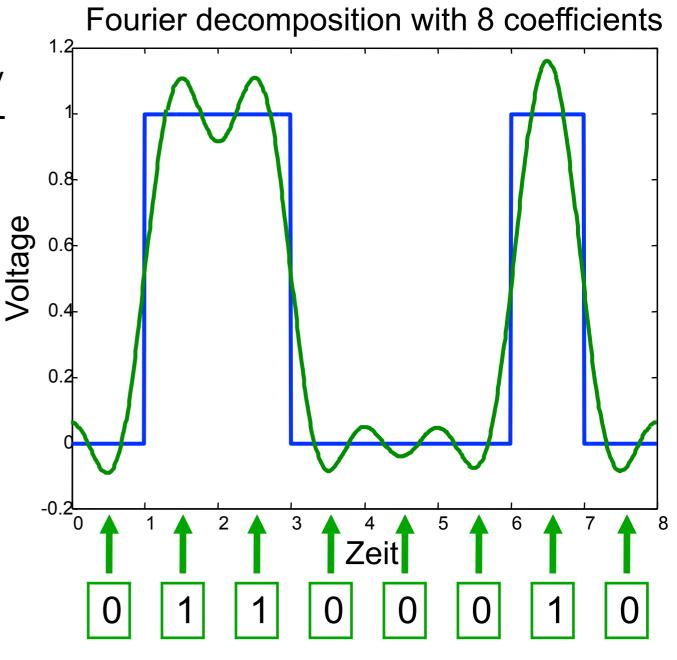
$$g(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(2\pi k f t) + b_k \sin(2\pi k f t)$$
$$a_k = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$
$$b_k = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$

The sum of squares of the k-th terms is proportional to the energy consumed in this frequency:

$$(a_k)^2 + (b_k)^2$$

How often do you measure?

- ▶ How many measurements are necessary to determine a Fourier transform to the kth component, exactly?
- Nyquist-Shannon sampling theorem
 - To reconstruct a continuous bandlimited signal with a maximum frequency f_{max} you need at least a sampling frequency f max of 2 f_{max}.



Symbols and Bits

For data transmission instead of bits can also be used symbols

- E.g. 4 Symbols: A, B, C, D with
 - A = 00, B = 01, C = 10, D = 11

Symbols

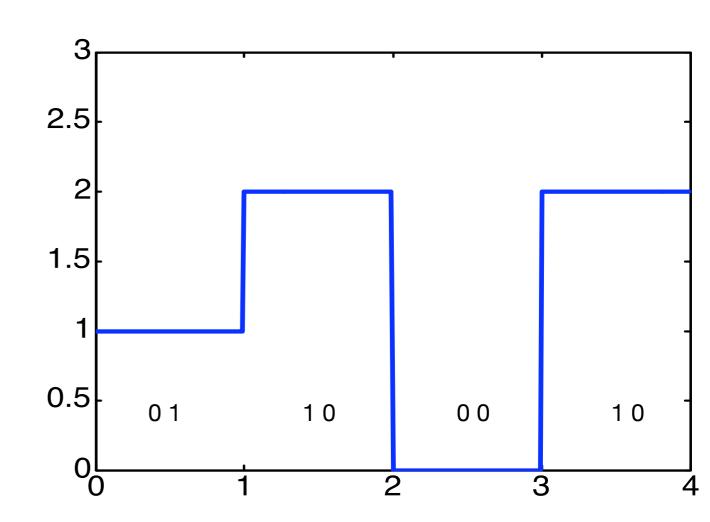
- Measured in baud
- Number of symbols per second

Data rate

- Measured in bits per second (bit / s)
- · Number of bits per second

Example

 2400 bit/s modem is 600 baud (uses 16 symbols)



Structure of a broadband digital transmission

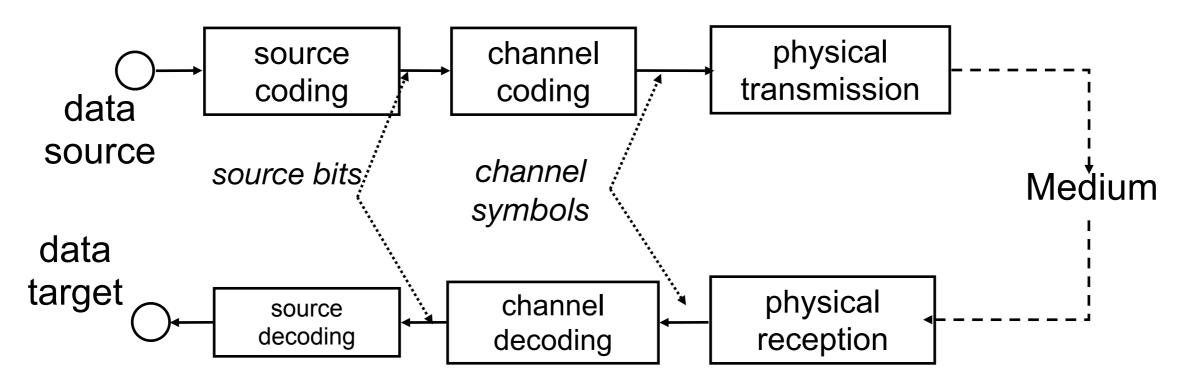
Source Coding

- removing redundant or irrelevant information
- e.g. with lossy compression (MP3, MPEG 4)
- or with lossless compression (Huffman code)

Channel Coding

- Mapping of source bits to channel symbols
- Possibly adding redundancy adapted to the channel characteristics
- · physical transmission

Conversion into physical events

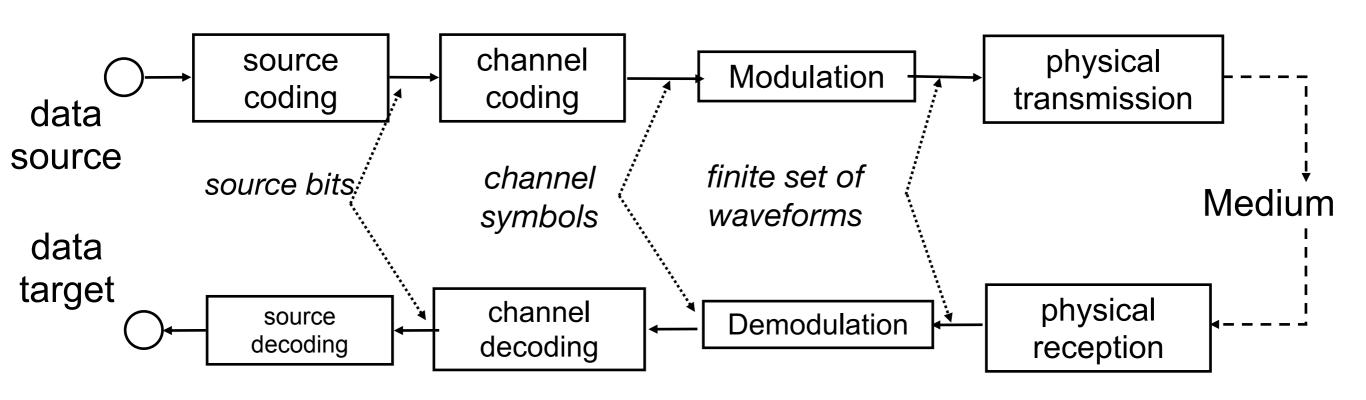


Algorithms for Radio Networks Prof. Dr. Christian Schindelhauer

Structure of a broadband digital transmission

MOdulation/DEModulation

- Translation of the channel symbols by
 - amplitude modulation
 - phase modulation
 - frequency modulation
 - or a combination thereof



Algorithms for Radio Networks
Prof. Dr. Christian Schindelhauer

Computer Networks and Telematics University of Freiburg

Broadband

Idea

- · Focusing on the ideal frequency of the medium
- Using a sine wave as the carrier wave signals

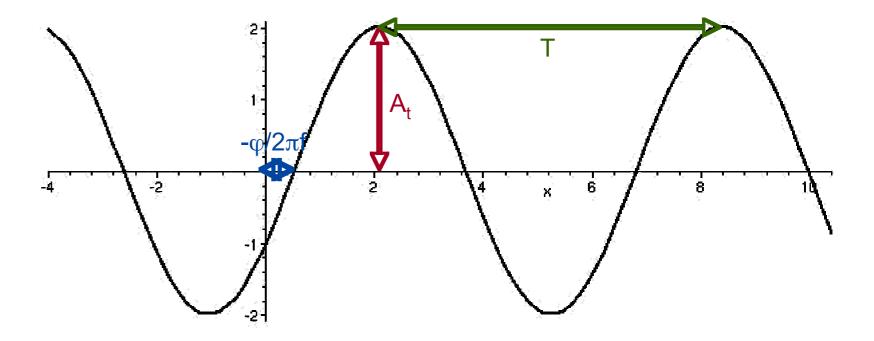
▶ A sine wave has no information

- the sine curve continuously (modulated) changes for data transmission,
- implies spectral widening (more frequencies in the Fourier analysis)

▶ The following parameters can be changed:

- Amplitude A
- Frequency f=1/T
- Phase φ

$$s(t) = A\sin(2\pi ft + \phi)$$



Algorithms for Radio Networks Prof. Dr. Christian Schindelhauer

Amplitude Modulation

The time-varying signal s (t) is encoded as the amplitude of a sine curve:

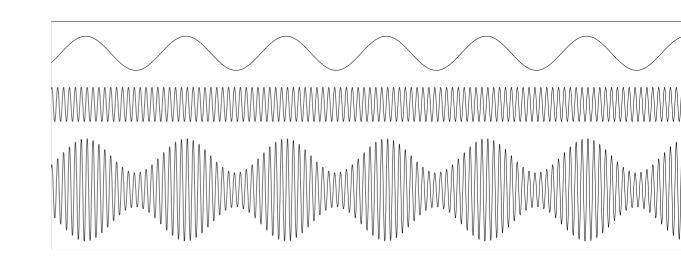
$$f_A(t) = s(t)\sin(2\pi ft + \phi)$$

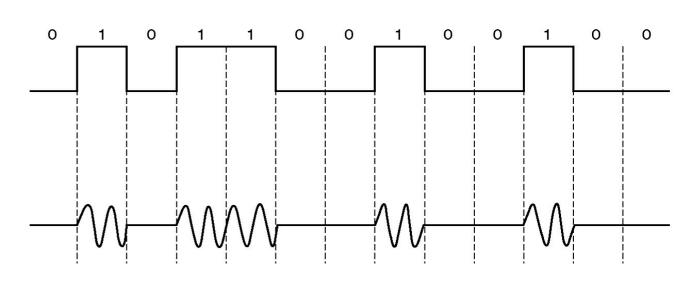
Analoges Signal

- analog signal
- amplitude modulation
- Continuous function in time
- e.g. second prolonged wave signal (sound waves)

Digital signal

- amplitude keying
- E.g. given by symbols as a symbol of strength
- special case: symbols 0 or 1
 - on / off keying





Algorithms for Radio Networks Prof. Dr. Christian Schindelhauer

Computer Networks and Telematics University of Freiburg

Amplitude Shift Keying (ASK)

Let E_i(t) is the symbol energy at time t

$$s_i(t) = \sqrt{\frac{2E_i(t)}{T}} \cdot \sin(\omega_0 t + \phi)$$

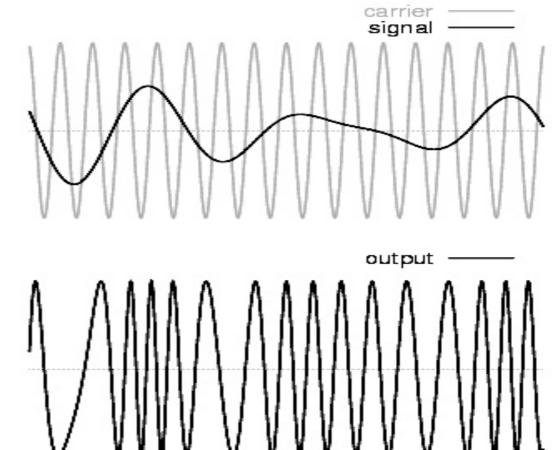
• Example: $E_0(t) = 1$, $E_1(t) = 2$

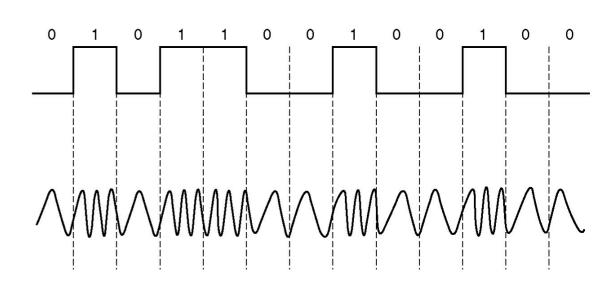
Frequency Modulation

The time-varying signal s (t) is encoded in the frequency of the sine curve:

$$f_F(t) = a\sin(2\pi s(t)t + \phi)$$

- Analog signal
 - Frequency modulation (FM)
 - · Continuous function in time
- Digital signal
 - Frequency Shift Keying (FSK)
 - E.g. frequencies as given by symbols



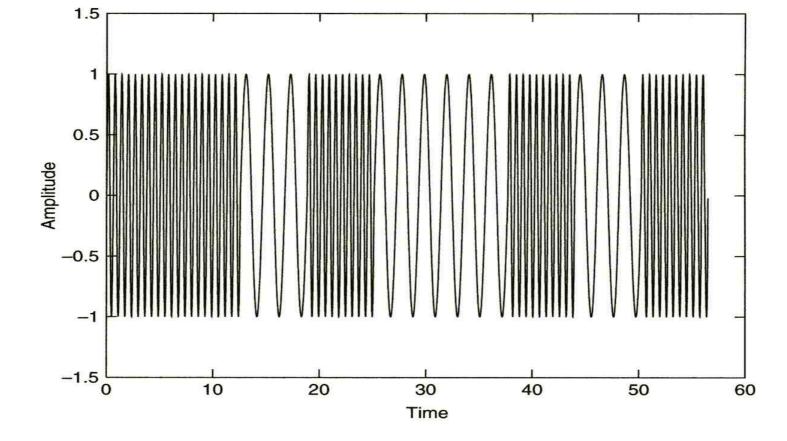


Frequency Shift Keying (FSK)

• Frequency signals $\omega_i(t)$

$$s_i(t) = \sqrt{\frac{2E}{T}} \cdot \sin(\omega_i(t) \cdot t + \phi)$$

• Example:



Phase Modulation

➤ The time-varying signal s (t) is encoded in the phase of the sine curve:

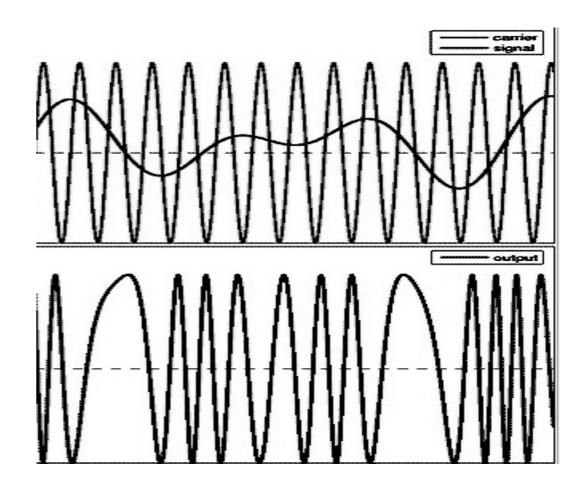
$$f_P(t) = a\sin(2\pi ft + s(t))$$

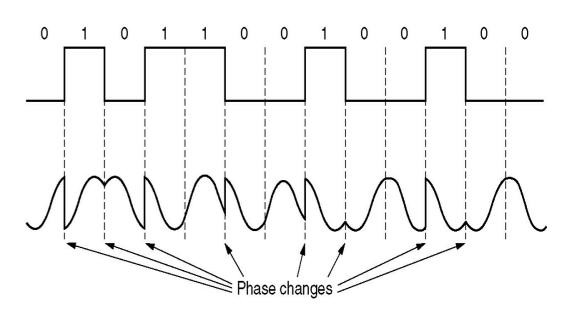
>Analog signal

- –phase modulation (PM)
- –very unfavorable properties
- -es not used

≻Digital signal

- –phase-shift keying (PSK)
- -e.g. given by symbols as phases





Computer Networks and Telematics University of Freiburg

Digital and analog signals in comparison

For a station there are two options

- digital transmission
 - finite set of discrete signals
 - e.g. finite amount of voltage sizes / voltages
- analog transmission
 - Infinite (continuous) set of signals
 - E.g. Current or voltage signal corresponding to the wire

Advantage of digital signals:

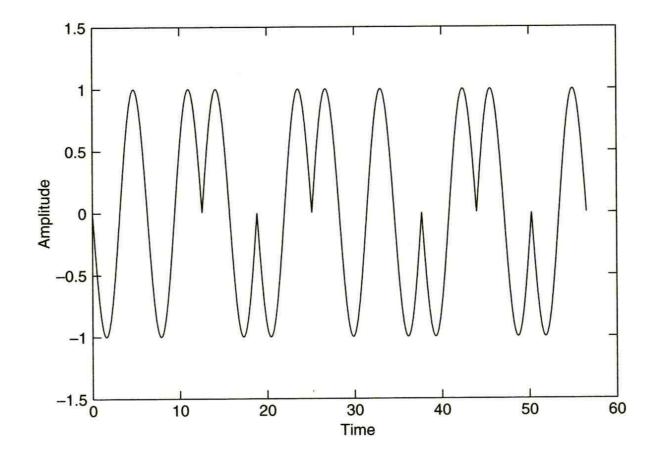
- There is the possibility of receiving inaccuracies to repair and reconstruct the original signal
- Any errors that occur in the analog transmission may increase further

Phase Shift Keying (PSK)

▶ For phase signals \(\phi_i(t)\)

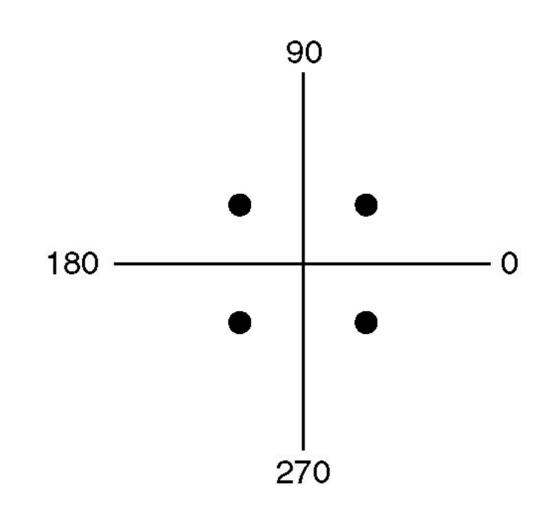
$$s_i(t) = \sqrt{\frac{2E}{T}} \cdot \sin(\omega_0 t + \phi_i(t))$$

Example:



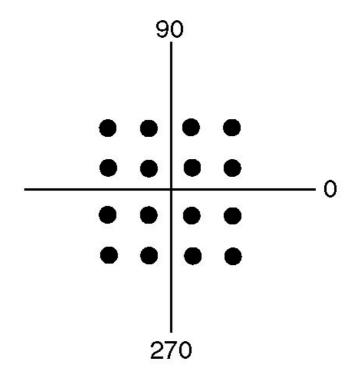
PSK with different symbols

- Phase shifts can be detected by the receiver very well
- Encoding various Symoble very simple
 - Using phase shift e.g. π / 4, 3/4 π , 5/4 π , 7/4 π
 - rarely: phase shift 0 (because of synchronization)
 - For four symbols, the data rate is twice as large as the symbol rate
- This method is called Quadrature Phase Shift Keying (QPSK)



Amplitude and phase modulation

- Amplitude and phase modulation can be successfully combined
 - Example: 16-QAM (Quadrature Amplitude Modulation)
 - uses 16 different combinations of phases and amplitudes for each symbol
 - Each symbol encodes four bits (24 = 16)
 - The data rate is four times as large as the symbol rate



Nyquist's Theorem

Definition

The band width H is the maximum frequency in the Fourier decomposition

Assume

- The maximum frequency of the received signal is f = H in the Fourier transform
 - (Complete absorption [infinite attenuation] all higher frequencies)
- The number of different symbols used is V
- No other interference, distortion or attenuation of

Nyquist theorem

- The maximum symbol rate is at most 2 H baud.
- The maximum possible data rate is a bit more than 2 log₂ H V / s.

Do more symbols help?

 Nyquist's theorem states that could theoretically be increased data rate with the number of symbols used

Discussion:

- Nyquist's theorem provides a theoretical upper bound and no method of transmission
- In practice there are limitations in the accuracy
- Nyquist's theorem does not consider the problem of noise

The Theorem of Shannon

Indeed, the influence of the noise is fundamental

- Consider the relationship between transmission intensity S to the strength of the noise N
- The less noise the more signals can be better recognized

Theorem of Shannon

- The maximum possible data rate is H log2 (1 + S / N) bits / s
 - with bandwidth H
 - Signal strength S

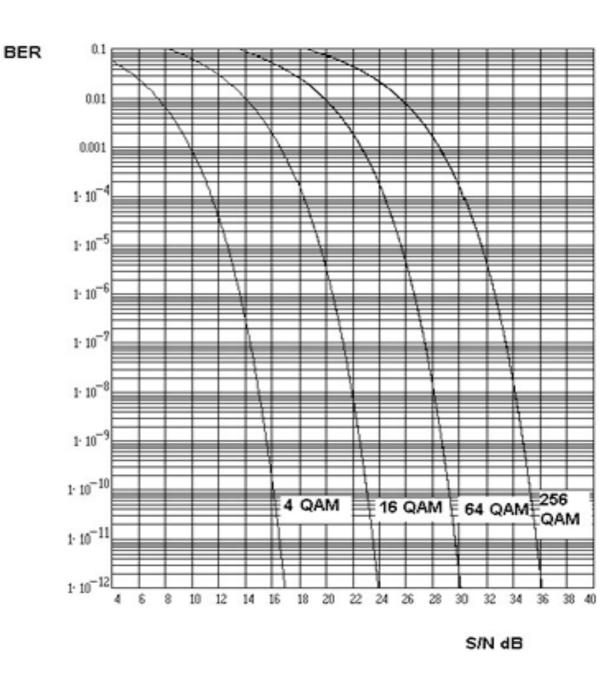
Attention

- This is a theoretical upper bound
- Existing codes do not reach this value

Bit Error Rate and SINR

Higher SIR decreases Bit Error Rate (BER)

- BER is the rate of faulty received bits
- Depends from the
 - signal strength
 - noise
 - bandwidth
 - encoding
- Relationship of BER and SINR
 - Example: 4 QAM, 16 QAM, 64 QAM, 256 QAM



Algorithms for Radio Networks

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof. Christian Schindelhauer

