Algorithms for Radio Networks

Orthogonal Frequency Division Multiplexing

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer

Mittwoch, 26. Oktober 11
Repetition

- **Multiplexed**
 - Spatial Multiplexing
 - Frequency division multiplexing
 - Time division multiplexing
 - Code division multiplexing
 - Multiple-input multiple-output (next lecture)

- **Modulation**
 - Amplitude modulation
 - Phase modulation
 - Frequency modulation
Principle of OFDM

- OFDM (Orthogonal Frequency Division Multiplex)
 - Signals are divided into parallel signal streams
 - Parallel signals are modulated on carrier waves of different frequencies, phase / amplitude
 - e.g. 16-QAM
 - The carrier signals are combined and transmitted simultaneously

- Special form of frequency-division multiplexing
- The carrier waves using orthogonal frequency:
 - frequencies f, 2f, 3f, 4f, 5f, ...
Repetition: Complex Numbers

- i: imaginary number with
 - $i^2 = -1$

- A complex number is a linear combination of a real part a and imaginary b
 - $z = a + bi$

- Calculation rules:
 - $(a+bi)+(c+di) = (a+c) + (b+d) i$
 - $(a+bi)(c+di) = (ac - bd) + (ad + bc) i$
 - $1/(a+bi) = (a-bi)/(a^2+b^2)$

- Complex conjugate
 - $(a+bi)^* = (a - bi)$
Exponentiation of Complex Numbers

- Important equation
 - $e^{i\pi} = -1$
 - $e^{i\varphi} = \cos \varphi + i \sin \varphi$

- Exponentiation of a complex number
 - $e^{a+bi} = e^a e^{bi} = e^a (\cos b + i \sin b)$

- Therefore
 - real part $e^{i\varphi}$: $\text{Re}(e^{i\varphi}) = \cos \varphi$
 - imaginary of $e^{i\varphi}$: $\text{Im}(e^{i\varphi}) = \sin \varphi$
Equivalent Representations of the FFT

- **Real number representation**
 - Sine and cosine functions of different frequencies

 \[g(x) = \sum_{k=0}^{N-1} a_k \cos \frac{2\pi kt}{T} + b_k \sin \frac{2\pi kt}{T} \]

- **Computation of the inverse by cosine/sine integral product**

 \[a_k = \frac{2}{T} \int_{0}^{T} g(t) \cos(2\pi n ft) dt \]
 \[b_k = \frac{2}{T} \int_{0}^{T} g(t) \sin(2\pi n ft) dt \]

- **Complex representation**
 - real part of the exponential function of different frequencies

 \[f(x) = \sum_{k=0}^{N-1} z_k e^{i2\pi kt/T} \]

- **Computation of the inverse by the integral over the product with the complex conjugated carrier wave**

 \[z_k = \frac{1}{T} \int_{0}^{T} \left(e^{i2\pi kt/T} \right)^* f(x) dt \]
Advantage of the Complex Representation

- Each of the QAM symbols can be represented directly as a complex number

\[f(x) = \sum_{k=0}^{N-1} z_k e^{i2\pi kt/T} \]
Application OFDM

- **Wired**
 - Broadband Internet (ADSL, VDSL)
 - Powerline communications networks (power line communication)

- **Wireless**
 - WLAN: 802.11 a,g,n
 - Terrestrial digital television DVB-T
 - Mobile communication
 - 802.16 WiMAX (Worldwide Interoperability for Microwave Access)
 - WPAN 802.15.3a
Pros and Cons

‣ Pro
 • High bandwidth at low SINR
 • Simple and efficient method
 • Proven technology
 • Robust to Multiple Path Fading
 • Efficient use of frequency bands

‣ Contra
 • Susceptible to Doppler effect
 • High power consumption
 • Synchronization reduces efficiency
Algorithms for Radio Networks

Orthogonal Frequency Division Multiplexing

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer