Algorithms for Radio Networks

Smart Antennas and MIMO
Smart Antennas

- **Alternative terms**
 - Adaptive Array Antennas
 - Multiple Input Multiple Output (MIMO)

- **Prinziple**
 - Multiple antennas are coordinated manner
 - used to improve reception or transmission of behavior
 - to allow additional features

- **Features**
 - Directional receivers
 - Directional senders
 - better path loss exponent
 - spatial multiplexing
 - MIMO communication
With two antennas, one can determine the receive direction (DOA)

Idea:
- The signals arrive at different times to the antennas. By parallel testing of overlays can be candidates for the angle of incidence findenn
Beam forming

- Simulation of receiving or transmitting antenna behavior of any of Smart Antennas

- Active
 - By suitably chosen time shift, receipt of signals at the antennas will transmit the desired direction preference
 - Other directions only increase only background noise
 - Applications: radar, mobile communications, MIMO

- Passive
 - As with the DOA-detection, the signals are delayed and superimposed
 - Applications: Microphones, MIMO
Smart Antennas Combinations

- **SISO (Single Input Single Output)**
 - Classic radio model

- **SIMO (Single Input Multiple Output)**
 - Classical transmitter with an antenna
 - Antenna array at the receiver
 - Different channels can be received in parallel from different angles

- **MISO (Multiple Input Single Output)**
 - Antenna array as a transmitter
 - Individual recipients (groups) can be individually reached

- **MIMO (Multiple Input Multiple Output)**
 - Directed (and parallel) communication between the transmitter and receiver possible
 - Efficient utilization of the medium
MIMO-Klassifikationen

- Single User (since 1996)
 - Only a point to point connection can be made
 - More connections via multiplexing possible
- Multi User (since 2004)
 - Parallel communication between various partners
 - on the same carrier wave, at the same time
 - as long as angles differ
Theoretical Potential of MIMO

- Gerard J. Foschini and Michael. J. Gans

- Shannon's theorem does not apply to antenna arrays
 - Transmission rate can increase arbitrarily for large numbers of antennae
Pros and Cons

- **Pro**
 - Shannon's law repealed
 - SNR is improved
 - more bandwidth, more parallel connections
 - spatial localization possible
 - beam forming

- **Contra**
 - complex structure
 - rotations must be compensated
 - motion tracking necessary